高中数学-导数的几何意义及应用

高中数学-导数的几何意义及应用
高中数学-导数的几何意义及应用

高中数学

导数及其应用复习学案

类型一:利用导数研究函数的图像

例2、若函数()y f x =的导函数...

在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象 可能是( )

(A) (B) (C) (D)

练习1.如右图:是f (x )的导函数,

)(/x f 的图象如右图所示,则f (x )的图象只可能是( )

(A ) (B ) (C ) (D )

2.设f '(x )是函数f (x )的导函数,y =f '(x )的图象如右图所示,则y =f (x )的图象最有可能的是 ( )

B .

C . 类型二:导数几何意义的应用

例3、(1)求曲线21x y x =

-在点()1,1处的切线方程。(2)求抛物线y=2x 过点5,62?? ???

的切线方程 y x y y x y x y x O 1 2 O 1 2 O 1 2 1 2 x

y O 1 2 例1、设a <b,函数y=(x-a)2(x-b)的图象可能是( ) a b a b a o x o x y o x y o x y

32151,09425217257.1..76444644y x y ax x a B C D ==+

----练习:若存在过点()的直线和都相切,则等于()A.-1或-或或-或

7.曲线y =x 2-2x +a 与直线y =3x +1相切时,常数a 的值是________.

类型三:利用导数研究函数的单调性

例4、已知a ,b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f(e)=2(e=2.71828…是自然对数的底数). (I )求实数b 的值;

(II )求函数f (x )的单调区间;

例5、已知函数f(x)=

ax 1x 2

++在(-2,+∞)内单调递减,求实数a 的取值范围.

练习:若函数y =3

1x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围

类型四:导数与极值 ()ln 6x f x x

=

例、求函数的极值。

()3227310,f x x ax bx a x a b =+++=-例、已知在有极值,求常数的值。

练习1、已知f(x)=x 3+ax 2

+(a+6)x+1有极大值和极小值,则a 的取值范围是( )

(A )-1<a <2 (B )-3<a <6

(C )a <-1或a >2 (D )a <-3或a >6

2、直线y =a 与函数f(x)=x 3-3x 的图象有相异的三个公共点,则求a 的取值范围。

类型五:导数与最值

例8、已知函数f(x)=(x-k)e x .

(1)求f(x)的单调区间;

(2)求f(x)在区间[0,1]上的最小值.

练习:已知函数f (x )=ax 3-6ax 2+b ,问是否存在实数a 、b ,使f (x )在[-1,2]上取得最大值3,最小值-29?若存在,求出a 、b 的值;若不存在,请说明理由.

类型六:导数的综合应用

例9、设函数x b ax x x f ln )(2++=,曲线)(x f y =过点P (1,0),且在P 点处的切斜线率为2.

(I )求a ,b 的值;

(II )证明:f (x)2x 2≤-.

例10、已知函数f(x)=2ax x b

+在x=1处取得极值2. (1)求函数f(x)的表达式;

(2)当m 满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?

例11、设()ln f x x =,()()()g x f x f x '=+.

(Ⅰ)求()g x 的单调区间和最小值;

(Ⅱ)讨论()g x 与1()g x 的大小关系;

(Ⅲ)求a 的取值范围,使得()()g a g x -<1a

对任意x >0成立.

类型七:生活中的导数

例12、用半径为R 的圆铁皮剪一个内接矩形,再将内接矩形卷成一个圆柱(无底、无盖),问使矩形边长为多少时,其体积最大?

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

导数概念及其几何意义

导数概念及其几何意义 1、在函数的平均变化率的定义中,自变量的的增量满足() A .>0 B .<0 C D. =0 2、设函数,当自变量由改变到时,函数值的改变量是() A B C D 3、已知函数的图像上一点(1,2)及邻近一点,则等于() A 2 B 2x C D 2+ 5.函数y=f(x)在x=x0处可导是它在x=x0处连续的() A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件 6.在曲线y=2x2-1的图象上取一点(1,1)及邻近一点(1+Δx,1+Δy),则等于() A.4Δx+2Δx2B.4+2Δx C.4Δx+Δx2D.4+Δx 7.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则() A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在 8.已知命题p:函数y=f(x)的导函数是常数函数;命题q:函数y=f(x)是一次函数,则命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 9.设函数f(x)在x0处可导,则等于() A.f′(x0) B.0 C.2f′(x0) D.-2f′(x0) 10.设f(x)=x(1+|x|),则f′(0)等于()A.0 B.1 C.-1 D.不存在 11.若曲线上每一点处的切线都平行于x轴,则此曲线的函数必是______ 函数.(填增、减、常函数) 13.设f(x)在点x处可导,a、b为常数,则=_____. 16.已知曲线y=2x2上一点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线方程. 17.已知函数f(x)=,试确定a、b的值,使f(x)在x=0处可导. 导数的运算(二)

高中数学-导数的几何意义及应用

高中数学 导数及其应用复习学案 类型一:利用导数研究函数的图像 例2、若函数()y f x =的导函数... 在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象 可能是( ) (A) (B) (C) (D) 练习1.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( ) (A ) (B ) (C ) (D ) 2.设f '(x )是函数f (x )的导函数,y =f '(x )的图象如右图所示,则y =f (x )的图象最有可能的是 ( ) B . C . 类型二:导数几何意义的应用 例3、(1)求曲线21x y x = -在点()1,1处的切线方程。(2)求抛物线y=2x 过点5,62?? ??? 的切线方程 y x y y x y x y x O 1 2 O 1 2 O 1 2 1 2 x y O 1 2 例1、设a <b,函数y=(x-a)2(x-b)的图象可能是( ) a b a b a o x o x y o x y o x y

32151,09425217257.1..76444644y x y ax x a B C D ==+ ----练习:若存在过点()的直线和都相切,则等于()A.-1或-或或-或 7.曲线y =x 2-2x +a 与直线y =3x +1相切时,常数a 的值是________. 类型三:利用导数研究函数的单调性 例4、已知a ,b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f(e)=2(e=2.71828…是自然对数的底数). (I )求实数b 的值; (II )求函数f (x )的单调区间; 例5、已知函数f(x)= ax 1x 2 ++在(-2,+∞)内单调递减,求实数a 的取值范围. 练习:若函数y =3 1x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围 类型四:导数与极值 ()ln 6x f x x = 例、求函数的极值。 ()3227310,f x x ax bx a x a b =+++=-例、已知在有极值,求常数的值。 练习1、已知f(x)=x 3+ax 2 +(a+6)x+1有极大值和极小值,则a 的取值范围是( ) (A )-1<a <2 (B )-3<a <6 (C )a <-1或a >2 (D )a <-3或a >6 2、直线y =a 与函数f(x)=x 3-3x 的图象有相异的三个公共点,则求a 的取值范围。 类型五:导数与最值 例8、已知函数f(x)=(x-k)e x . (1)求f(x)的单调区间;

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

3.1.3 导数的几何意义(优秀经典公开课比赛教案及联系解答)

3.1.3导数的几何意义 教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数. 教学重难点:函数切线的概念,切线的斜率,导数的几何意义 教学过程: 情景导入:如图,曲线C 是函数y=f(x)的图象,P(x0,y0)是曲线C 上的任意一点,Q(x0+Δx,y0+Δy)为P 邻近一点,PQ 为C 的割线,PM//x 轴,QM//y 轴,β为PQ 的倾斜角. .tan , ,:β=???=?=x y y MQ x MP 则 展示目标:见学案 检查预习:见学案 合作探究:探究任务:导数的几何意义 问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化 趋是什么? y x ??请问:是割线PQ 的什么?

新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线 割线的斜率是:n k = 当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数 就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ?→+?-'==? 新知: 函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x ?→+?-'=? 精讲精练: 例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况. 解:可用曲线 h(t) 在 t0 , t1 , t2 处的切线刻画曲线 h(t) 在上述三个时刻附近的变化情况. (1) 当 t = t0 时, 曲线 h(t) 在 t0 处的切线 l0 平行于 x 轴.故在 t = t0 附近曲线比较平坦, 几乎没有升降.(2)当 t = t1 时, 曲线 h(t) 在 t1 处的切线 l1 的斜率 h’(t1) <0 .故在t = t1 附近曲线下降,即函数 h(t) 在 t = t1 附近单调递减.(3)当 t = t2 时, 曲线 h(t) 在 t2处的切线 l2 的斜率 h’(t2) <0 .故在 t = t2 附近曲线下降,即函数 h(t) 在t = t2 附近也单调递减.从图可以看出,直线 l1 的倾斜程度小于直线 l2 的倾斜程度,这说明 h(t) 曲线在 l1 附近比在 l2 附近下降得缓慢。 例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)

导数的概念及其几何意义教案

§2 导数的概念及其几何意义 第四课时 导数的几何意义习题课 一、教学目标:会利用导数的几何意义求曲线上某点处的切线方程。 二、教学重点:曲线上一点处的切线斜率的求法 教学难点:理解导数的几何意义 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导数的几何意义:函数)(x f y =在x 0处的导数就是曲线)(x f y =在点(x 0,)(0x f )处的切线的斜率。 (二)、探究新课 例1、在曲线34x y =上求一点P 使得曲线在该点处的切线满足下列条件: (1)平行于直线y =x +1; (2)垂直于直线2x -16y +1=0; (3)倾斜角为135°。 解:设点坐标为(0x ,0y ),则 202002020202020) (48)()(484)(4x x x x x x x x x x x x x x x x x y ?+?--=??+?-?-=?-?+=?? ∴当Δx 趋于0时,30 400088)(x x x x f -=-='。 (1)∵切线与直线y =x +1平行。 ∴1)(0='x f ,即1830 =-x , ∴20-=x ,10=y 。 即P (―2,1)。 (2)∵切线与直线2x -16y +1=0垂直, ∴1)16 2(·)(0-=--'x f ,即181·830-=-x ,

∴10=x ,40=y 。 即P (―1,4)。 (3)∵切线倾斜角为135°, ∴1135tan )(00-=='x f ,即1830 -=- x , ∴20=x ,10=y 。 即P (2,1)。 例2、求曲线1)(3+==x x f y 过(1,1)点的切线的斜率。 解:设过(1,1)点的切线与13+=x y 相切与点)1,(300+x x P ,则 2020320203030)(33)()(33)1(1)(x x x x x x x x x x x x x x x y ?+?+=??+?+?=?+-+?+=?? 当Δx 趋于0时, 2003)(x x f =', 由导数的几何意义可知,曲线在点P 处的切线的斜率为203x k = ① 又过(1,1)点的切线的斜率1 11030--+=x x k ② ∴由①②得:130302 -=x x x 解得:00=x 或230=x ,∴0=k 或427=k , ∴曲线13+=x y 过(1,1)点的切线的斜率为0或427。 例3、如图,它表示跳水运动中高度随时间变化的函数 2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线 比较平坦,几乎没有升降. (2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

导数几何意义的应用

导数几何意义的应用 1.若函数f (x )=-3x -1,则f ′(x )等于( )A.0B.-3x C.3D.-3 2.已知曲线y =-12 x 2-2上一点 P 处的切线的倾斜角为( )A.30° B.45°C.135°D.165°3.在曲线y =x 2上切线倾斜角为π4的点是() A.(0,0) B.(2,4) 4.已知y =f (x )的图象如下图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(x B ) B .f ′(x A )

8.若曲线2y x ax b =++在点()0,b 处的切线方程是10x y -+=,则() A.1a =,1 b =B.1a =-,1b =C.1a =,1b =-D.1a =-,1 b =-9.曲线sin y x x =在点(,0)P π处的切线方程是() A.2y x ππ=-+B.2y x ππ=+C.2 y x ππ=--D.2y x ππ=-10.若曲线上点P 处的切线平行于直线2x-y+1=0,则点P 的坐标是. 11.(广东高考理科)曲线y=e -5x +2在点(0,3)处的切线方程为. 12.(全国Ⅰ卷)已知1)(3++=x ax x f 的图像在点) ,()1(1f 处的切线过点(2,7),则a=. 13.(江西高考理科·T13)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是. 14.曲线12+=-x e y 在点(0,2)处的切线与直线0=y 和x y =围成的三角形面积为 15.(广东高考理科·T10)若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k=. 16.(江西高考文科)若曲线y x 1α=+(α∈R )在点(1,2)处的切 线经过坐标原点,则α= 17.曲线)1ln 3(+=x x y 在点(1,1)处的切线方程为 .18.曲线x e y =在点(0,1)处的切线与曲线x y 1= (0>x )上点P 处的切线垂直,则P 的坐标为x x y ln ?=

导数的几何意义教学导案后附教学反思

导数的几何意义教案(后附教学反思)

————————————————————————————————作者:————————————————————————————————日期:

导数的几何意义教案(后附教学反思) 永嘉中学 数学组 周瑛 08.4.13 【教学目标】 知识与技能目标: (1)使学生掌握函数)(x f 在0x x =处的导数()0/ x f 的几何意义就是函数)(x f 的 图像在 0x x =处的切线的斜率。(数形结合),即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/=切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。 过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。 情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。 【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 【教学过程】 (一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。(承上启下,自然过渡)。 师:导数的本质是什么?写出它的表达式。(一位学生板书),其他学生在“学案”中写: 导数)(0/x f 的本质是函数)(x f 在0x x =处的瞬时变化率.....,即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/ (注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

导数的几何意义教学设计(教案)-函数的导数的几何意义教学设计

导数的几何意义教学设计(教案) 一、【教学目标】 1.知识与技能目标: (1)使学生掌握函数)(x f 在0x x =处的导数()0/ x f 的几何意义就是函数)(x f 的 图像在 0x x =处的切线的斜率。(数形结合),即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/=切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。 2.过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。 3.情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。 【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 二、【教学过程】 (一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。(承上启下,自然过渡)。 师:导数的本质是什么?写出它的表达式。(一位学生板书),其他学生在“学案”中写: 导数)(0/x f 的本质是函数)(x f 在0x x =处的瞬时变化率.....,即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/ (注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意 义奠定基础) 师:导数的本质仅是从代数(数)的角度来诠释导数,若从图形(形)的角

(完整版)导数的概念及其几何意义同步练习题(学生版)

导数的概念及其几何意义同步练习题 一、选择题 1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .0 2. 质点运动动规律23s t =+,则在时间(3,3)t +?中,相应的平均速度为( ) A .6t +? B .96t t +?+? C .3t +? D .9t +? 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为( ) A.f (x 0+⊿x ) B.f (x 0)+⊿x C. f (x 0)?⊿x D. f (x 0+⊿x )- f (x 0) 4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则 等于( ) A.4 B.4x C.4+2⊿x D.4+2(⊿x ) 2 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( ) A. 3Δt +6 B. -3Δt +6 C. 3Δt -6 D. -3Δt -6 6.若函数y =f (x )在x 0处可导,则000()()lim h f x h f x h ?+-的值( ) A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 都无关 7. 函数y =x +1x 在x =1处的导数是( ) A.2 B.1 C.0 D.-1 8.设函数f (x )=,则()()lim x a f x f a x a ?--等于( ) A.1a - B.2a C.21a - D.21a 9. 下列各式中正确的是( ) A. y ′|x =x 0=li m Δx →0 f (x -Δx )-f (x 0)Δx B. y ′|x =x 0=li m Δx →0 f (x 0+Δx )+f (x 0)Δx C. f ′(x 0)=li m Δx →0 f (x 0-Δx )-f (x 0)Δx D. f ′(x )=li m Δx →0 f (x 0)-f (x 0-Δx )Δx 10. 设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx 等于( ) A. f ′(1) B. 不存在 C. 13 f ′(1) D. 以上都不对 11. 设函数f (x )=ax +4,若f ′(1)=2,则a 等于( ) A. 2 B. -2 C. 3 D. 不确定 12. 已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A. 194 B. 174 C. 154 D. 134 13.曲线y=2x 2+1在点P (-1,3)处的切线方程是( ) A.y =-4x -1 B.y =-4x -7 C.y =4x -1 D.y =4x -7 14.过点(-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是( ) A.y =2x -1 B.y =2x +1 C.y =2x +4 D .y =2x -4 15. 下面四个命题: ①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线; ②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在; ③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在; ④曲线的切线和曲线有且只有一个公共点. 其中,真命题个数是( ) A. 0 B. 1 C. 2 D. 3 16. 函数y =f (x )的导函数f ′(x 0)图像如图所示,则在y =f (x )的图像上A 、B 的对应点附近,有( )

高中数学导数及其应用

高中数学导数及其应用 一、知识网络 二、高考考点?1、导数定义的认知与应用; ?2、求导公式与运算法则的运用; ? 3、导数的几何意义; ?4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。??三、知识要点? (一)导数?1、导数的概念?(1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果

时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作 ,即 。 ?(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值 ,都对应着一个确定的导数 ,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间( )内的导函数(简称导数),记作或, 即。??认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当 时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量 ;? ②求平均变化率; ③求极限?上述三部曲可简记为一差、二比、三极限。?? (2)导数的几何意义:?函数在点处的导数,是曲线在点 处的切线的斜率。? (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别:?(Ⅰ)若函数在点处可导,则在点处连续;?若函数在开区间()内可导,则在开区间()内连续(可

导一定连续)。??事实上,若函数在点处可导,则有 此 时,? ? ? ?记 ,则有即在点处连续。?(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。?反例:在点处连续,但在点处无导数。 事实上,在点处的增量?当 时,, ;?当时,, 由此可知,不存在,故在点处不可导。??2、求导公式与 求导运算法则 (1)基本函数的导数(求导公式) 公式1 常数的导数:(c为常数),即常数的导数等于0。??公式2 幂函 数的导数:。? 公式3 正弦函数的导数:。??公式4 余弦函数的导数: ??公式5 对数函数的导数:? (Ⅰ); ?(Ⅱ)

导数的概念及导数的几何意义

§57 导数的概念及导数的几何意义⑴ 【考点及要求】了解导数的概念,理解导数的几何意义,通过函数图象能直观地理解导数的几何意义。 【基础知识】 1.一般地,函数)(x f 在区间],[21x x 上的平均变化率为,平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),或说在某个区间上曲线陡峭的程度; 2.不妨设))(,()),(,(0011x f x Q x f x P ,则割线PQ 的斜率为, 设x 1-x 0=△x ,则x 1 =△x +x 0,∴=PQ k ,当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=) ()(00无 限趋近点Q 处切线。 3.曲线上任一点(x 0,f(x 0))切线斜率的求法:x x f x x f k ?-?+= ) ()(00,当 △x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的,记为. 4.瞬时速度与瞬时加速度:位移的平均变化率: t t s t t s ?-?+) ()(00,称为;当无限趋近于0 时, t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常数称为t=t 0时的;速度的平均变化率: t t v t t v ?-?+)()(00,当无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这个常数 称为t=t 0时的. 【基础练习】 1.已知函数2()f x ax =在区间[1,2]上的平均变化率为,则()f x 在区间[-2,-1]上的平均变化率为 . 2.A 、B 两船从同一码头同时出发,A 船向北,B 船向东,若A 船的速度为30km/h,B 船的速度为40km/h,设时间为t,则在区间[t 1,t 2]上,A,B 两船间距离变化的平均速度为____ __ _ 【典型例题讲练】 例1.已知函数f(x)=2x+1, ⑴分别计算在区间[-3,-1],[0,5]上函数f(x)的平均变化率; ⑵.探求一次函数y=kx+b 在区间[m ,n]上的平均变化率的特点; 练习:已知函数f(x)=x 2+2x ,分别计算f(x)在下列区间上的平均变化率; ⑴[1,2]; ⑵[3,4]; ⑶[-1,1]; ⑷[2,3] 【课堂检测】 1.求函数()y f x == 在区间[1,1+△x]内的平均变化率

导数的概念、几何意义及其运算

导数的概念、几何意义及其运算 常见基本初等函数的导数公式和常用导数运算公式 : +-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1 )(log ;1)(ln ''== 法则1: )()()]()([' ''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾: 1.导数的定义:函数)(x f y =在0x 处的瞬时变化率 x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈, 都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/ y ,即)(/ x f =/ y = x x f x x f x ?-?+→?) ()(lim 0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 )(x f y =在0x 处的导数0 /x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y == )(0/x f 。 2. 由导数的定义求函数)(x f y =的导数的一般方法是: (1).求函数的改变量 )()(f x f x x f -?+=?; (2).求平均变化率 x x f x x f x ?-?+= ??)()(f ; (3).取极限,得导数/ y =x x ??→?f lim 0。 3.导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率。 基础练习: 1.曲线324y x x =-+在点(13), 处的切线的倾斜角为( ) A .30° B .45° C .60° D .120° 2.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B . 1 2 C .1 2 - D .1 -

高中数学知识点总结-导数的定义及几何意义

导数的定义及几何意义 1.x x f x x f x f x ?-?+=→?)()(lim )(0000/ 叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。 注:①函数应在点0x 的附近有定义,否则导数不存在。②在定义导数的极限式中,x ?趋近 于0可正、可负、但不为0,而y ?可能为0。③x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点(0x ,)(0x f )及点(0x +x ?, )(00x x f ?+)的割线斜率。④导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是 曲线)(x f y =上点(0x ,)(0x f )处的切线的斜率。⑤若极限x x f x x f x ?-?+→?)()(lim 000不存在,则称函数)(x f y =在点0x 处不可导。⑥如果函数)(x f y =在开区间),(b a 内每一点 都有导数,则称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应 着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/ x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分: 求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。 [举例1]若2)(0/=x f ,则k x f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2 解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2?k x f k x f k 2)()(lim 000--→=-1。 [举例2] 已知0,a n >为正整数设()n y x a =-,证明1'() n y n x a -=- 解析:本题可以对()n y x a =-展开后“逐项”求导证明;这里用导数的定义证明: x a x a x x y n n x ?---?+=→?)()(lim 0/= x a x x C x a x C x a x C a x n n n n n n n n n x ?--?++?-+?-+---→?)()()()()()(lim 222110 =

导数的几何意义教案

导数的几何意义教案

导数的几何意义教案 曾垂乐 【教学目标】 知识与技能目标: (1)使学生掌握函数f (x )在x X 0处的导数f /X o 的 几何意义就是函数 住)的图像在 x X 0 处的切线的斜率。(数形结合),即: (2)会利用导数的几何意义解释实际生活问题, 体会“以直代曲”的数学思想方法。 过程与方法目标:通过让学生在动手实践中探 索、观察、反思、讨论、总结,发现问题,解决 问题,从而达到培养学生的学习能力,思维能力, 应用能力和创新能力的目的。 【教学手段】采用计算机(Flash,Powerpoint ), 实物投影等多媒体手段,增大教学容量与直观 性,有效提高教学效率和教学质量。 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲” 的思想方法。 难点:发现、理解及应用导数的几何意义 f / X o l X m o X0 X f (X0)=切线的斜率 X

【教学过程】 (一)作业点评,承上启下: 问题:在高台跳水运动中,t 秒(s )时运动员相 对于水面的高度是h (t ) 4.9t 2 6.5t 10 (单位:m ),求 运动员在t 1s 时的瞬时速度,并解释此时的运动 状态;在t 0.5s 时呢? 教师点评作业的优点及不足;由学生甲解释 t 1s , t 0.5s 时运动员的运动状态。 (说明:实例引入,承上启下,有效铺垫,直接 过渡) (二)课题引入,类比探讨: 由导数的物理意义是瞬时速度,我们知道了导数 的本质。 ?问(一):导数的本质是什么?写出它的表达 式。 学生活动:在“学生动手实践”中,学生写出: 导数f ,(X 0)的本质是函数f (x )在x x o 处的瞬时变化 率 ,即: (说明:教师不能代替学生的思维活动, 学生将f / X o f X o X f(X o )

相关文档
最新文档