微合金化非调质钢强韧化机理研究

微合金化非调质钢强韧化机理研究
微合金化非调质钢强韧化机理研究

微合金化非调质钢强韧化机理研究

张跃,黄运华,翟浩,贺建,周成,方圆

(北京科技大学材料物理系,北京100083)

摘 要:通过显微组织观察,并结合力学性能分析,研究了新开发的微合金化非调质钢的强化与韧化机理。结果表明:该钢的强化包括相变强化、位错和亚结构强化、弥散强化以及细晶强化,而韧性则是由粒状贝氏体的铁素体基体的韧性及晶粒尺寸两方面所决定,并且该钢热轧空冷态和回火态的强韧化机制有一定的差别。

关键词:粒状贝氏体;强化;韧化

中图分类号:T G142.41 文献标识码:A 文章编号:100023738(2005)0920008204

Strengthening and Toughening Mechanisms of the Microalloying

Non2quenched and T empered Steel

ZHANG Yue,HUANG Yun2hu a,ZHAI H ao,HE Jian,ZH OU Cheng,FANG Yuan (U niversity of Science and Technology Beijing,Beijing100083,China)

Abstract:The microstructure and mechanical properties of a microalloying non2quenched and tempered steel developed recently were analyzed through OM,SEM and TEM in order to find the strengthening and toughening mechanisms of the steel.The strengthening resulted from phase transition,dislocation,subgrain structure, dispersion phase and fined grain.The toughness was related with the ferrite matrix consisting of granular bainite and the grain size of the steel.The mechanism of the hot2rolled and air2cooled steel was slightly different from that of the tempered steel.

K ey w ords:granular bainite;strengthening;toughening

1 引 言

用于机械零件等结构件的钢材通常在调质状态下使用,具有较好的强度和塑韧性配合。对于不同的性能要求,可以通过改变调质钢的成分及调质工艺来满足。为减少热处理工序,降低成本,各国已相继开发了各强度级别的非调质钢系列[1],包括铁素体2珠光体型、铁素体2贝氏体型、贝氏体型、贝氏体2马氏体型及马氏体型等多种类型[2-7]。对于不同类型、不同性能的非调质钢,其化学成分、微观组织、生产工艺以及强韧化机理都存在一定的差别[6-9]。作者对一种新开发并批量生产的主要用于高等级抽油杆的微合金化非调质钢的强化及韧化机理进行了研究。

收稿日期:2004206228;修订日期:2004209210

基金项目:教育部留学回国人员科研启动重点基金资助项目(教外司留01-498);国家杰出青年科学基金资助项目

(50325209)

作者简介:张跃(1958-),男,湖南醴陵人,教授,博士。2 试样制备与试验方法

该非调质钢的成分(质量分数/%)为:0.10~0120C,0.60~1.0Si,1.40~2.0Mn,0.60~1.0Cr, 0.06~0.12V,0.04~0.10Ti。生产过程为冶炼→L F精炼→连铸→轧制(开轧1150℃,终轧1100℃)→空冷/空冷+(200~350)℃×(30~60)min回火。钢材规格为<19mm和<22mm两种。

用WE21000型1000kN液压万能试验机按G B228-1987《金属拉伸试验方法》进行拉伸试验;用JBD230A常温冲击试验机按G B229-1984《金属夏比冲击试验方法》进行冲击试验;用M TS810113液压伺服万能材料试验机按G B3075 -1982《金属材料轴向疲劳试验方法》进行疲劳试验,其中交变载荷的应力比为0.1;力学性能测试试样的加工及试验量的确定均按照相关标准执行。

用13X51M型光学显微镜及L EO21450型扫描电镜(SEM)观察材料的微观组织;用L EICA大型偏光显微镜和QWIN型图像分析仪测量晶粒面积;

第29卷第9期2005年9月

机 械 工 程 材 料

Materials for Mechanical Engineering

Vol.29 No.9

Sep.2005

用日立H2800型透射电镜观察分析材料的位错、亚结构及弥散析出相;用D T21000型微机控制膨胀仪按G B5057-1985《钢的连续冷却转变曲线图的测定方法(膨胀法)》测试钢的CC T曲线。

3 试验结果及分析

3.1 力学性能

表1、表2数据表明,开发的非调质钢宏观性能良好,具有良好的强度、塑韧性配合,疲劳寿命长,且性能数据稳定;另外经低温回火后,屈服强度稳定,抗拉强度、塑性、冲击韧度有所上升,屈强比下降,且数据分布区间缩小,性能进一步改善。热轧空冷态及低温回火态的各项性能指标都优于S Y/T6272 -1997标准要求,能满足高等级(H级)抽油杆对强韧性、疲劳寿命的要求,可替代传统的优质合金结构钢,也可用于其他需调质处理的高性能的结构件。

表1 非调质钢力学性能

T ab.1 Data of mechanical properties of the non2quenched

and tempered steel b ars

状态σb/MPaσs/MPaδ200/%ψ/%a k/J?cm-2热轧空冷985~1160815~98012~1757~6492~115回火1090~1170835~98015~1762~70109~135

表2 热轧空冷钢材的疲劳性能

T ab.2 Data of fatigue life of the hot2rolled and

air2cooled steel b ars

编号最大应力/MPa试验频率/Hz寿命/次

1550161.8>107

2700162.6>107

3750176.6 5.985×106

4800177.0 1.413×106

5850166.00.295×106

6900170.00.075×106

3.2 微观组织

由图1、图2可见,该钢的组织是粒状贝氏体,即在铁素体的基体上分布着不连续的岛状物。粒状贝氏体组织包含两相,具有良好的塑韧性搭配。其中岛状物为马氏体、渗碳体或奥氏体,贝氏体铁素体具有条状亚结构,条状铁素体周围存在位错墙,条状铁素体群集而组成束,条间是小角度相界,束间界为大角度,岛状物一般分布在铁素体条间,低碳贝氏体的韧性非常高[5]。粒状贝氏体组织之所以具有良好的韧性是因为贝氏体中细小的岛状物不易于激起脆性断裂的裂纹,即使出现裂纹,它的长度也小于裂纹失稳扩展的临界尺寸;

而且粒状贝氏体组织本身的

(a) OM

形貌

(b) SEM形貌

图1 空冷态钢的显微组织

Fig.1 Microstru ctu re of th e steel b ar(a)OM im age(b)SEM im

age

图2 空冷态岛状物中的马氏体形貌

Fig.2 Im ages of m artensite in the island of the granular b ainite 抗拉强度比较高,裂纹难以迅速扩展。对于钒钛非调质贝氏体钢,其K IC随着纤维组织中贝氏体的体积分数的增大而提高[8-11]。

晶粒度测试结果表明,该钢晶粒尺寸相差不大,平均晶粒尺寸在20μm左右。晶粒细小,晶界长度长,不同取向的晶粒多,位错运动时阻力大,有利于

钢的强韧性。晶粒细小与晶界处弥散质点与晶界的钉扎有关。

一般来说,钢的强度和韧性均和晶粒尺寸成反比。晶粒越细,强度和韧性就愈高,疲劳性能就越好。这是因为晶粒越细,不同取向的晶粒越多,晶界总长度越长,位错移动时阻力越大,疲劳裂纹在细晶粒内向前推进时,不但受到相邻晶粒的限制,而且从一个晶粒到另一个晶粒还要改变方向。3.3 位错和亚结构

由图3中可见存在较高密度的位错,密集的位

错还形成了明显的亚晶结构。

与先共析铁素体相比,粒状贝氏体铁素体位错密度高,铁素体基体中没有碳化物存在。位错密度增高,增加钢的强度,同时降低钢的塑韧性;

但其中没

图3 空冷态钢晶粒中的位错和亚晶

Fig.3 Dislocations and subgrains in the grain of the hot 2rolled

and air 2cooled steel

有碳化物则有利于塑韧性的改善,但对基体的强度不

利。综合而言,粒状贝氏体的铁素体基体强度较先共析铁素体高,但塑韧性稍差。位错形成的亚晶结构同样起到强化作用,很明显,由于其位错密度更高,强化效果更显著。但是,钢材经200~350℃回火后,TEM 观察到的位错密度及位错形成的亚晶界数量下降,部分位错及亚晶界消失。位错密度下降可使钢材塑韧性上升,但同时会削弱其强化效果。3.4 弥散相研究

在钢材热轧空冷状态下观察到的弥散质点数量低于回火后的弥散质点数量,说明钢材在回火过程中弥散相进一步析出。回火状态下钢中析出物包括晶内颗粒状析出物(图4a )、细小弥散的点状析出物(图4b )及沿晶界的颗粒状和片层状析出物(图4c )。由图4晶内衍射谱计算标定析出物为VC 质点及α2Fe 基体(VC 的点阵常数a =0.416nm ,fcc 点阵结构);而晶界片层状析出物为Cr 23C 6(其点阵常数a =1.0638nm ,fcc 结构)。晶内析出物的沉淀强化使钢的强度提高,而细小弥散的点状析出物除弥散强化之外,更重要的是位于晶界位置的弥散质点对奥氏体晶界的钉扎作用,使钢材轧制冷却后晶粒细小,在提高强度的同时改善了钢的韧性[7,8]。均匀分布的碳化物颗粒和高密度位错也能抑制裂纹扩展。但是晶界上的片层状析出物对钢的性能不利,会导致晶界脆化,使冲击韧度下降。

回火后弥散相的增加,弥补了因回火后位错密度下降而导致的强度损失。弥散相增加及位错密度降低的综合影响,导致了该钢材经回火处理后,屈服强度和硬度稳定,抗拉强度、塑性和冲击韧度有所上升,屈强比下降。3.5 CCT 曲线

由图5可见,该钢在较大的冷却速度范围(0.1~30℃/s )内均可获得以贝氏体为主的组织,在1

(a)(b)(c)

图4 回火态钢中的不同析出物及衍射谱图

Fig.4 Precipitations and diffraction p atterns in the tempered steel

图5 试验钢的CCT曲线

Fig.5 CCT curves of the steel

10℃/s的冷却速度范围内可以得到完全的贝氏体组织。该曲线表明,对一般规格的棒材,轧制后空冷即可以获得高性能的组织,因此不需要特殊的控制轧制和控制冷却工艺,生产控制较容易。

当钢以0.1℃/s速度冷却时,得到的组织为先共析块状铁素体加粒状贝氏体,使钢既有较高的强度,又有较好的塑韧性,达到了较好的强韧性配合;当钢以0.2℃/s速度冷却时,得到的粒状贝氏体比0.1℃/s冷却得到粒状贝氏体组织细小,说明适当提高冷却速度,可使组织细化,岛状相细化,且分布趋于均匀,M2A岛体积分数减小;进一步提高冷却速度,发现在0.6℃/s及1℃/s冷却速度下,粒状贝氏体组织、晶粒及M2A岛进一步细化,这种较细小的粒状贝氏体组织对韧性有利,强度也有一定程度提高;但冷却速度进一步加大到10℃/s后,贝氏体变成板条状,其组织较粒状贝氏体粗大,强度提高,但韧性下降;冷却速度提高到30℃/s有马氏体生成,则韧性进一步下降。

4 结 论

(1)该钢力学性能良好,具有良好的强度、塑韧性配合,疲劳寿命长,各项指标优于标准要求,且性能试验数据稳定。

(2) 该钢的强化机理包括相变强化、位错和亚结构强化、弥散强化以及细晶强化,而韧性较好则是由于粒状贝氏体的铁素体基体韧性好以及晶粒较细。热轧空冷态时位错和亚结构强化较显著,而低温回火后弥散强化较显著。

(3)根据钢的CC T曲线,该钢在较大的冷却速度范围内均可获得以粒状贝氏体为主的组织,生产工艺较易控制。

参考文献:

[1] 董成瑞,任海朋,金同哲,等.微合金非调质钢[M].北京:冶

金工业出版社,2000.

[2] 赵量.非调质钢的发展和第三代非调质钢[J].钢铁钒钛,

1990,(1):96-101.

[3] Kang M K,Yang Y Q,Wei Q M,et al.On t he prebainitic

phenomenon in some alloys[J].Metall Mater Trans,1994, 25A:1941-1944.

[4] 耿文范.非调质钢的发展现状[J].钢铁研究学报,1995,7(1):

74-76.

[5] 黄进峰,方鸿生,余贵春,等.新型低碳贝氏体非调质钢研究

[J].机械工程材料,1999,23(2):27-30.

[6] Ochi T,Takahashi T,Takada H.Improvement of t he tough2

ness of hot forged product s t hrough intragranular ferrite for2 mation[J].Iron Making and Steel Making,1989,16(2):21-

23.

[7] 尚成嘉,王学敏,杨善武,等.高强度低碳贝氏体钢的工艺与组

织细化[J].金属学报,2003,39(10):1019-1022.

[8] 吴晓春,娄得春,崔昆.钒钛对贝氏体非调质钢组织与性能的

影响[J].钢铁研究,1996,(5):25-27.

[9] Andrade H I,Akben M G,Jonas J J.Effect of molybdenum,

niobium,and vanadium on static recovery and recrystallization and on solute st rengt hening in microalloyed steels[J].Metal2 lurgical Transactions A,1983,14(10):1967-1977.

[10] Tokgji,Ogawa T,Osako S.The growt h of microstruct urally

small fatigue cracks in a ferritic2pearlitic steel[J].Fatigue

Fract Engng Mater Struct,1988,11(5):331-342.

[11] Beretta S,Clerici P.Microcrack propagation and microstruc2

tural parameters of fatigue damage[J].Fatigue Fract Engng

Mater Struct,1996,19(9):1107-1115.

欢迎订阅《塑料工业》杂志

《塑料工业》创刊于1970年,是国内外公开发行的中央级专业技术期刊,全国中文核心期刊,美国化学文摘(CA)收录核心期刊,中国科学引文数据库来源期刊,亦是中国工程塑料工业协会会刊。《塑料工业》以促进塑料工业的发展,提供最前沿的相关技术与最新信息,准确报道国内外塑料工业的发展趋势为办刊宗旨,全面,快速,翔实地报道有关塑料原料,塑料改性,相关助剂,成型加工,合成工艺,新技术,新产品的生产及应用等领域的技术动态及发展方向,每年提供一篇有关国外塑料工业发展的最新动态的文章。《塑料工业》每期刊载数十页印刷精美、信息丰富的彩色、双色广告,为各企业和科研院所进一步实现科技成果产业化架起了一座桥梁。《塑料工业》为月刊,每月20日出版。国内邮发代号62-71,全国各地邮局均可订阅,也可直接汇款到我刊编辑部订阅,定价13元/本,全年定价156元。并优惠发售2004年合订本光盘,80元/张。

地址:四川省成都市人民南路四段30号 邮编:610041

电话:028*********,85570801 传真:028********* 网址:https://www.360docs.net/doc/034149723.html, E2mail:office@https://www.360docs.net/doc/034149723.html,

AZ31镁合金塑性变形不均匀性与变形机制的研究

AZ31镁合金塑性变形不均匀性与变形机制的研究镁合金性能优异、应用广泛,但较差的室温塑性及变形过程中的不均匀性极大地制约了它的生产应用。深入研究镁合金的变形不均匀性及内在塑性变形机制是理解镁合金变形行为的关键。 本文以商用轧制AZ31镁合金为初始材料,基于数字图像相关方法(DIC)、电子背散射衍射技术(EBSD),建立了微观尺度应变不均匀性及组织变形不均匀性的有效表征方法。在此基础上详细研究了晶粒尺度变形不均匀性与变形机制的内在联系,并深化了对不均匀变形条件下塑性变形机制的行为理解。 获得的主要研究结论如下:借助纳米级表面标记颗粒实现了试样表面高分辨应变场的分析,探索了晶粒以及晶内孪晶尺度的应变分布情况,证实了应变分布在微观尺度的不均匀性。同时结合微观组织结构及变形机制的研究解释了应变不均匀性的产生原因,研究表明晶体取向的自身软硬程度以及与相邻区域的相对软硬状态都会影响应变的分布,在某些界面处的应变累积是由于界面两侧缺乏有效的塑性变形机制以完成应变的传递。 为理解局部应变对塑性变形机制的行为影响,对晶界处的孪晶穿透行为进行了详细的统计研究。总结了孪晶穿透在小取向差角晶界处容易发生的规律,探究了Schmid因子对孪晶穿透的影响,并利用几何协调因子m’从应变协调角度解释了某些不遵循Schmid定律的孪晶行为。 分析表明m’可以较好地解释局部应变下的孪晶变体选择行为,但对于孪晶穿透在何处发生并没有良好的预测性。基于EBSD获得的取向数据,建立了晶粒尺度组织变形不均匀性的两种可视化表征方法。 验证了“晶内取向分散”方法表征晶粒分裂的有效性及优越性,并运用“晶

内取向发展”方法揭示了介观变形带的信息。研究表明晶粒分裂在低应变量下就已经发生,结合Sachs模型及低能位错结构(LEDS)理论分析得出晶内同一组滑移体系间相对开动量的不同会导致晶内各部分不同的转动行为。 利用上述表征方法能够帮助对热变形过程中组织的不均匀变化及动态再结晶形核机制的理解。研究表明在低应变阶段,晶粒长大可以降低体系能量从而弱化晶内变形的不均匀性,晶粒长大过程中晶界的迁移大多符合降低界面能量的要求。 随着应变量的增加,晶内变形的不均匀性迅速增加,并在不均匀变形组织中观察到晶界突出和应变诱发的矩形晶界迁移形貌。AZ31镁合金在200℃的热变形过程中同时存在着不连续动态再结晶(DDRX)及连续动态再结晶(CDRX)的形核机制。

调质钢与非调质钢简介

调质钢与非调质钢简介 一、调质钢 1、简介 所谓调质钢,一般是指含碳量在0.30~0.60%的中碳钢。一般用这类钢材制作的零部件要求具有很好的综合机械性能,即在保持较高强度的同时,又具有很好的塑性和韧性,传统方法往往是使用“调质处理”来达到这个目的,所以习惯上就把这一类钢称作调质钢。 各类机器上的结构零件大量采用调质钢,是结构钢中使用最广泛的一类钢,它是零件淬火后在500~650℃温度范围内进行回火处理的钢。经调质处理后,钢的强度、塑性及韧性有良好的配合。碳素钢、低合金钢及中合金钢,调质处理后的金相组织是回火索氏体。各类机器上的结构零件大量采用调质钢,是结构钢中使用最广泛的一类钢。 2、性能特点 除一般的冶金方面的低倍和高倍组织要求外,主要为钢的力学性能以及与工作可靠性和寿命密切相关的冷脆性转变温度、断裂韧性和疲劳抗力等。在特定条件下,还要求具有耐磨性、耐蚀性和一定的抗热性。由于调质钢最终采用高温回火,能使钢中应力完全消除,钢的氢脆破坏倾向性小,缺口敏感性较低,脆性破坏抗力较大,但也存在特有的高温回火脆性。 大多数调质钢为中碳合金结构钢,有焊接性能要求的调质钢则为低碳合金结构钢,具有很高的塑性和韧性,少数沉淀硬化型调质钢,属高强度和超高强度调质钢。 3、分类 常用的合金调质钢按淬透性和强度分为4类: ①低淬透性调质钢

②中淬透性调质钢 ③较高淬透性调质钢 ④高淬透性调质钢 以下介绍两种最典型的调质钢: A、45碳素调质钢 45钢是中碳碳素结构钢,含碳量在0.42-0.50%,现执行标准为《优质碳素结构钢》,即GB/T 699-2015,冷热加工性能都不错,机械性能较好,且生产成本较低,价格低,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。 45钢调质件淬火后的硬度应该达到HRC56~59(洛氏硬度),截面大的可能低些,但不能低于HRC48,不然,就说明工件未得到完全淬火,组织中可能出现索氏体甚至铁素体组织,这种组织通过回火,仍然保留在基体中,达不到调质的目的。45钢淬火后的高温回火,加热温度为560~600℃,硬度要求为HRC22~34。因为调质的目的是得到综合机械性能,所以硬度范围比较宽。但图纸有硬度要求的,就要按图纸要求调整回火温度,以保证硬度。如有些轴类零件要求强度高,硬度要求就高;而对于齿轮类、带键槽的轴类等零件,因调质后还要进行车、插、创、铣、钻等机加工,硬度要求就低些。 B、40Cr合金调质钢 40Cr钢是中碳合金结构钢,含碳量在0.37-0.44%,含Cr量在0.80-1.10%,现执行标准为《合金结构钢》,即GB/T 3077-2015。 以40Cr为代表的合金调质钢广泛用于制造汽车、摩托车、柴油机、机床和其它机器上的各种重要零件,如齿轮、轴类件、转向节、半轴、连杆、螺栓等。调质件大多承受多种工作载荷,受力情况比较复杂,要求高的综合机械性能,即具有高的强度、良好的塑性和韧性。合金调质钢还要求有很好的淬透性。但不同

镁合金强韧化方法的研究进展

龙源期刊网 https://www.360docs.net/doc/034149723.html, 镁合金强韧化方法的研究进展 作者:张萍张保丰刘德波 来源:《科技资讯》2011年第22期 摘要:镁合金是一种新兴的金属结构材料,具有很好的应用前景。本文介绍了目前镁合金强韧化处理方法和研究现状,阐述了不同强韧化方法的特点及强化机理。 关键词:镁合金强化韧化 中图分类号:TF6 文献标识码:A 文章编号:1672-3791(2011)08(a)-0022-02 镁合金是目前最轻的金属结构材料,具有高的比强度、比刚度、减振性、导热性、可切削 加工性和可回收性,而且镁是自然界中分布最广的元素之一,金属中仅次于Al和Fe而占第三位,被人们誉为“21世纪最具发展潜力和前途的绿色工程材料”[1~3]。强韧性较低是限制镁合金广泛应用的主要原因之一,因此提高镁合金的强韧性是目前镁合金研究的重点之一。本文综述了 近年来国内外提高铸造镁合金强韧化的方法。 1 合金化 目前,提高铸造镁合金的强韧化的一个主要方法就是合金化,即向纯镁中添加合金化元素,利用固溶强化、沉淀硬化和弥散强化来提高合金的常温及高温性能[4~7]。来提高镁的物理、化学和力学性能。合金化设计从晶体学、原子的相对大小,以及原子价、电化学因素等[8]方面进行考虑,选择的合金化元素应在镁基体中有较高的固溶度,并且随着温度变化有明显的变化,在时效过程中合金化元素能形成强化效果比较突出的过渡相。除了对力学性能进行优化外,还要考 虑合金化元素对抗蚀性、加工性能及抗氧化性的影响。 根据合金化元素对二元镁合金机械性能的影响,可以将合金化元素分为三类[4~6]。 ①提高强度韧性的(以合金元素作用从强到弱排序)。 Al,Zn,Ca,Ag,Ce,Ga,Ni,Cu,Th(以强度为评价指标)。 Th,Ga,Zn,Ag,Ce,Ca,Al,Ni,Cu(以韧性为评价指标)。 ②能增强韧性而强度变化不大的,如Cd,Tl,Li。

镁合金塑性变形与断裂行为的研究

镁合金塑性变形与断裂行为的研究 刘天模,卢立伟,刘宇 重庆大学材料科学与工程学院,重庆(400030) E-mail: haonanwa@https://www.360docs.net/doc/034149723.html, 摘要:通过室温压缩拉伸实验,研究了AZ31挤压镁合金的断裂失效机制。研究表明,在压缩破坏实验中有镦粗现象,金相显示沿粗大晶界处形成了大量的孪晶,部分孪晶界诱发裂纹源,裂纹沿晶界处传播,同时部分孪晶对裂纹起钝化阻碍作用,断口扫描表明属于韧脆混合断裂;在拉伸破坏实验中出现明显颈现象,金相显示沿拉长晶晶界处形成大量孪晶,孪晶和裂纹之间存在交互作用,断口扫描表明属于韧性断裂,同时显示出空洞形核诱发裂纹的机制。 关键词:压缩变形;拉伸变形;孪晶;断裂 中图分类号:TG 1. 引言 镁合金属于密排六方晶体结构,其轴比(c/a)值为1.623,接近理想的密排值1.633,室温滑移系少在室温塑性变形时,出现大量的孪晶协调其塑性变形,塑性变形能力差,容易断裂[1]。金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。因为材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原子间的结合力遭到破坏,便出现了裂纹,裂纹经过扩展而使金属断开。金属塑性的好坏表明了它抑制断裂能力的高低。在塑性加工生产中,尤其是对塑性较差的材料,断裂常常是引起人们极为关注的问题。加工材料的表面和内部的裂纹,以至于整体的断裂,都会使得成品率和生产率大大降低[2,13]。因此,研究镁合金塑性变形中的断裂行为和规律对于有效地防止金属成形过程中的断裂,充分发挥金属材料潜在的塑性有重要意义. 2. 实验内容 实验材料选用AZ31挤压材,挤压温度为300℃,挤压比为4.5,挤压速度为1mm/s,将挤压样加工成标准压缩样Φ7×14mm和标准拉伸样,并选此标准压缩样进行400℃保温2小时的退火,利用新三思万能电子试验机CMT-5150以1mm/min的速度沿挤压方向进行压缩和拉伸破坏实验;然后利用数码相机对失效后试样断口方向及断面进行拍照宏观分析;再对失效试样的压缩或拉伸方向进行金相显微组织分析;最后利用扫描电子显微镜对压缩和拉伸的断口形貌进行分析。 3.试验结果 3.1 挤压态压缩破坏样 3.1.1 断口宏观分析

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

45号钢调质处理

45# (号)钢和40Cr钢调质的热处理工艺 调质是淬火加高温回火的双重热处理,其目的是使工件具有良好的综合机械性能。 调质钢有碳素调质钢和合金调质钢二大类,不管是碳钢还是合金钢,其含碳 量控制比较严格。如果含碳量过高,调质后工件的强度虽高,但韧性不够,如含碳量过低,韧性提高而强度不足。为使调质件得到好的综合性能,一般含碳量控制在0.30~0.50%。 调质淬火时,要求工件整个截面淬透,使工件得到以细针状淬火马氏体为主的显微组织。通过高温回火,得到以均匀回火索氏体为主的显微组织。小型工厂不可能每炉搞金相分析,一般只作硬度测试,这就是说,淬火后的硬度必须达到该材料的淬火硬度,回火后硬度按图要求来检查。 工件调质处理的操作,必须严格按工艺文件执行,我们只是对操作过程中如何实施工艺提些看法。 1、45号钢的调质 45号钢是中碳结构钢,冷热加工性能都不错,机械性能较好,且价格低、 来源广,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。 45号钢淬火温度在A3+(30~50) C,在实际操作中,一般是取上限的。偏高的淬火温度可以使工件加热速度加快,表面氧化减少,且能提高工效。为使工 件的奥氏体均匀化,就需要足够的保温时间。如果实际装炉量大,就需适当延长保温时间。不然,可能会出现因加热不均匀造成硬度不足的现象。但保温时间过长,也会也出现晶粒粗大,氧化脱碳严重的弊病,影响淬火质量。我们认为,如 装炉量大于工艺文件的规定,加热保温时间需延长1/5。 因为45号钢淬透性低,故应采用冷却速度大的10%盐水溶液。工件入水后,应该淬

透,但不是冷透,如果工件在盐水中冷透,就有可能使工件开裂,这是因为当工件冷却到180 C左右时,奥氏体迅速转变为马氏体造成过大的组织应力所致。因此,当淬火工件快冷到该温度区域,就应采取缓冷的方法。由于出水温度难以掌握,须凭经验操作,当水中的工件抖动停止,即可出水空冷(如能油冷更好)。另外,工件入水宜动不宜静,应按照工件的几何形状,作规则运动。静止的冷却介质加上静止的工件,导致硬度不均匀,应力不均匀而使工件变形大,甚至开裂。 45号钢调质件淬火后的硬度应该达到HRC56~59,截面大的可能性低些,但不能低于HRC48,不然,就说明工件未得到完全淬火,组织中可能出现索氏体甚至铁素体组织,这种组织通过回火,仍然保留在基体中,达不到调质的目的。 45号钢淬火后的高温回火,加热温度通常为560~600 C,硬度要求为HRC22~34。因为调质的目的是得到综合机械性能,所以硬度范围比较宽。但图纸有硬度要求的,就要按图纸要求调整回火温度,以保证硬度。如有些轴类零件要求强度高,硬度要求就高;而有些齿轮、带键槽的轴类零件,因调质后还要进行铣、插加工,硬度要求就低些。关于回火保温时间,视硬度要求和工件大小而定,我们认为,回火后的硬度取决于回火温度,与回火时间关系不大,但必须回透,一般工件回火保温时间总在一小时以上。 2、40Cr钢的调质处理 Cr能增加钢的淬透性,提高钢的强度和回火稳定性,具有优良的机械性能。截面尺寸大或重要的调质工件,应采用Cr钢。但Cr钢有第二类回火脆性。 40Cr工件调质的淬回火,各种参数工艺卡片都有规定,我们在实际操作中体会是:(一)40Cr工件淬火后应采用油冷,40Cr钢的淬透性较好,在油中冷却能淬硬,而且工件的变形、开裂倾向小。但是小型企业在供油紧张的情况下,对形状不复杂的工件,可以在水中淬火,并未发现开裂,只是操作者要凭经验严格掌握入水、出水的温度。

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/

45#钢和40Cr钢调质的热处理工艺

45#钢和40Cr钢调质的热处理工艺.txt逆风的方向,更适合飞翔。我不怕万人阻挡,只怕自己投降。你发怒一分钟,便失去60分钟的幸福。忙碌是一种幸福,让我们没时间体会痛苦;奔波是一种快乐,让我们真实地感受生活;疲惫是一种享受,让我们无暇空虚。生活就像"呼吸""呼"是为出一口气,"吸"是为争一口气。45#(号)钢和40Cr钢调质的热处理工艺 调质是淬火加高温回火的双重热处理,其目的是使工件具有良好的综合机械性能。 调质钢有碳素调质钢和合金调质钢二大类,不管是碳钢还是合金钢,其含碳量控制比较严格。如果含碳量过高,调质后工件的强度虽高,但韧性不够,如含碳量过低,韧性提高而强度不足。为使调质件得到好的综合性能,一般含碳量控制在0.30~0.50%。 调质淬火时,要求工件整个截面淬透,使工件得到以细针状淬火马氏体为主的显微组织。通过高温回火,得到以均匀回火索氏体为主的显微组织。小型工厂不可能每炉搞金相分析,一般只作硬度测试,这就是说,淬火后的硬度必须达到该材料的淬火硬度,回火后硬度按图要求来检查。 工件调质处理的操作,必须严格按工艺文件执行,我们只是对操作过程中如何实施工艺提些看法。 1、 45号钢的调质 45号钢是中碳结构钢,冷热加工性能都不错,机械性能较好,且价格低、来源广,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。 45号钢淬火温度在A3+(30~50) ℃,在实际操作中,一般是取上限的。偏高的淬火温度可以使工件加热速度加快,表面氧化减少,且能提高工效。为使工件的奥氏体均匀化,就需要足够的保温时间。如果实际装炉量大,就需适当延长保温时间。不然,可能会出现因加热不均匀造成硬度不足的现象。但保温时间过长,也会也出现晶粒粗大,氧化脱碳严重的弊病,影响淬火质量。我们认为,如装炉量大于工艺文件的规定,加热保温时间需延长1/5。 因为45号钢淬透性低,故应采用冷却速度大的10%盐水溶液。工件入水后,应该淬透,但不是冷透,如果工件在盐水中冷透,就有可能使工件开裂,这是因为当工件冷却到180℃左右时,奥氏体迅速转变为马氏体造成过大的组织应力所致。因此,当淬火工件快冷到该温度区域,就应采取缓冷的方法。由于出水温度难以掌握,须凭经验操作,当水中的工件抖动停止,即可出水空冷(如能油冷更好)。另外,工件入水宜动不宜静,应按照工件的几何形状,作规则运动。静止的冷却介质加上

镁合金表面纳米化及孪晶强韧化机制研究

目录 摘要.................................................................................................................................................................. I ABSTRACT ................................................................................................................................................... IV 第 1 章绪论 (1) 1.1 镁合金塑性变形机制和技术 (1) 1.1.1 镁合金的滑移、层错和孪生 (1) 1.1.2 镁合金塑性变形技术方法 (9) 1.2 晶粒细化及纳米化 (10) 1.2.1 Hall-Petch效应 (11) 1.2.2 纳米化及表面纳米化 (12) 1.3 孪晶强韧化 (13) 1.3.1 其他金属材料中的纳米孪晶强韧化 (13) 1.3.2 镁合金中的孪晶强韧化 (15) 1.4 表面机械研磨处理(SMAT) (18) 1.4.1 原理方法简介 (18) 1.4.2 SMAT方法在其他金属材料中的发展 (19) 1.4.3 SMAT方法在镁合金中的发展 (20) 1.5 课题意义及研究内容 (21) 1.5.1 选题意义 (21) 1.5.2 研究内容 (22) 参考文献 (23) 第 2 章实验过程和研究方法 (30) 2.1 工艺路线 (30) 2.2 合金制备 (31) 2.2.1 Mg-3Gd合金熔炼铸造与热挤压 (31) 2.2.2 Mg-7Al-2Sn合金压铸与热处理 (32) 2.3 表面机械研磨处理(SMAT) (34) 2.4 力学性能测试 (35) 2.4.1 微观硬度测试 (35)

微合金非调质钢的发展及现状

微合金非调质钢的发展及 现状 Revised by Jack on December 14,2020

微合金非调质钢的发展及现状 刘瑞宁1,2,王福明1,李强2 (11北京科技大学冶金与生态工程学院,北京100083;21石家庄钢铁公司技术中心,河北石家庄050031)摘要:介绍了微合金非调质钢的发展及其应用现状,开发微合金非调质钢符合钢铁产业发展政策和石钢公司的“边缘-精进”战略。 关键词:微合金;非调质钢;发展;应用 1前言 石家庄钢铁有限责任公司是中国汽车用钢(棒材)专业化生产企业,现年产钢能力近260万t,产品结构以优质碳素结构钢、合金结构钢、齿轮钢、轴承钢等五大系列汽车用钢(棒材规格为Φ14~180mm)为主,其热轧汽车棒材主要供锻造厂锻造成汽车零配件(如汽车前桥、半轴、转向节、发动机曲轴、连杆等)。微合金非调质钢是一种理想的节约能源、节约资源的经济型新材料,符合钢铁产业发展政策要求,其用途十分广泛:凡是加工过程中需要调质的钢(如45,40Cr等)均可用非调质钢替代;省略调质工序,可省去占调质钢生产总成本6%的热处理(淬火+高温回火)费用,德国人估计用49MnVS3非调质钢代替调质钢做连杆可节约总成本的38%。日本爱知公司分析,微合金非调质钢因省略调质处理这一工序,就可使热锻产品的成本降低18%[1]。 2微合金非调质钢的发展 微合金非调质钢强化机理不同于调质钢。调质钢是将轧、锻后钢材重新加热淬火再经高温回火获得所需组织性能。而微合金非调质钢是在轧制温度下,使钢中V,Nb,Ti等合金碳氮化合物较充分溶入奥氏体,使奥氏体充分合金化,在轧、锻冷却过程中析出大量微细弥散分布的合金碳氮化合物,并发生沉淀强化及先共析铁素体呈细、小、弥散析出,分割和细化奥氏体晶粒使钢的强度与硬度增加,基体组织显着强化。为此,获得相当调质钢经调质处理后的综合力学性能,由于省去了调质处理工序,因此称之为微合金非调质钢。 国外微合金非调质钢的开发及应用 20世纪60年代发展起来的微合金化技术为非调质钢的产生提供了理论和生产基础,70年代初期发生的能源危机直接促成非调质钢的出现及发展。1972年德国THYSSEN公司开发了第一个非调质锻钢49MnVS3(铁素体-珠光体,抗拉强度850MPa)取代了调质CK45钢制造汽车曲轴,提高了锻件成品率、切削加工性能、疲劳性能、生产效率,降低了成本,此钢种很快在德国、瑞典等欧洲国家用于汽车曲轴、连杆等锻件的生产。德国奔驰汽车曲轴使用非调质钢代替40CrMn调质钢制造,瑞典Volvo汽车制造厂在20世纪90年代初期年用量就3万多吨,其目标是除渗碳件外,所有锻件全部采用非调质钢生产。随后英国钢铁公司建立了Vanard(850~1100MPa)热锻用非调质钢系列,法国SAFE公司开发了一系列METASAFE钢(800~1000MPa)[2]。此外,美国福特、意大利菲亚特及俄罗斯伏尔加汽车都采用非调质钢制造汽车的曲轴、连杆等零件。近年来日本研究微合金非调质钢最为活跃,处于世界先进水平,新日铁、神户制钢、爱

微合金钢

微合金钢 微合金化是一个笼统的概念,通常指在原有主加合金元素的基础上再添加微量的Nb、V、Ti 等碳氮物形成元素,或对力学性能有影响、或对耐蚀性、耐热性起有利作用、添加量随微合金化的钢类及品种的不同而异,相对于主加合金元素是微量范围的,如非调质结构钢中一般加入量在0.02—0.06%,在耐热钢和不锈钢中加入量在0.5%左右,而在高温合金中加入量高达1—3%。 微合金化钢的基本属性:(1)添加的碳氮化物形成元素,在钢的加热和冷却过程中通过溶解一析出行为对钢的力学性能发挥作用。 (2)这些元素加进量很少,钢的强化机制主要是细晶强化和沉淀强化。 (3)钢的控轧控冷工艺对微合金化钢有重要意义,也是微合金化钢叫作新型低合金高强度钢的依据。钢的微合金化和控轧控冷技术相辅相承,是微合金化钢设计和生产的重要条件。 因此说,微合金化钢是指化学成分规范上明确列进需加进一种或几种碳氮化物形成元素的钢。如GB/T 1591—94中Q295一Q460的钢,对其中Nb、V、Ti的含量通常有以下规定: (1)Nb,0.015%~0.06%; (2)V,0.02%~0.15%(0.20%); (3)Ti,0.02%~0.20%。 同时规定Nb+V+Ti≤0.15%。微合金化的高强度低合金钢。 它是在普通软钢和普通高强度低合金钢基体化学成分中添加了微量合金元素(主要是强烈的碳化物形成元素,如Nb、V、Ti、Al等)的钢,合金元素的添加量不多于0.20%。添加微量合金元素后,使钢的一种或几种性能得到明显的变化。 典型的微合金钢有15MnVN和06MnNb。微合金钢中含有一种或几种微合金元素,其含量大约在0.01%~0.20%之间。 微合金钢由于屈服强度高、韧性好、焊接性和耐大气腐蚀性好,可用于大型桥梁建筑,制造各类车辆的冲压构件、安全构件、抗疲劳零件及焊接件,它也是锅炉、高压容器、输油和输气管线,以及工业和民用建筑的理想材料。 关于微合金钢中Nb的析出对变形诱导铁素体相变的影响有两种不同观点:一是认为在变形过程Nb通过动态析出消耗形变储能而抑制变形诱导铁素体相变; 微合金钢就是这些“高技术钢材”中用量最大的一种。 处理办法:微处理可有效地提高16Mn原规格钢板、20MnSi大规格螺纹钢筋的屈服强度约10—20Mpa,改善A、B级一般强度板和X42—X46级管线钢的低温韧性,还可使16Mnq、15MnVNq 桥梁钢板的时效敏感比降低或消除。据不完全统计,1998年我国微合金化钢的产量为346万吨,占年全低合金高强度钢总产量55.1%。微处理钢(主要是Nb处理和Ti处理,还包括稀土处理钢在内)产量大致也在300万吨左右。 近20年来,世界钢铁工业最富活力和创造性进展,莫过于低合金高强度钢生产装备和工艺技术前所未有的变革,几乎使低合金高强度钢的所有品种领域更新了一代,甚至两代。微合金化钢属于低合金高强度钢范畴,或者说是新型的低合金高强度钢。 我国80年代以来的钢材生产及近年的钢材品种结构调整同样表明了: ①低合金高强度钢的新发展,借助了钢铁生产工艺技术的一切进步和最新成就。 ②低合金高强度钢的产量大,使用面广,适应了方方面面特殊性能要求,支持了各行各业产品的升级,增加了我国的机电产品和成套装备生产的竞争力。 ③微合金化带动了我国富有合金资源的生产和综合利用,微合金化钢生产促进了钢铁企业结构调整和流程优化。 所以,形成了一个崭新的观点,发展微合金化钢就是抓住了基础原材料工业发展的关键,通

合金结构钢的定义与分类

合金结构钢的定义与分类 一、调质钢 经受淬火和在AC1以下进行回火的热处理钢称为调质钢。传统的调质钢是指淬火和高温火钢 调质钢是机械制造行业中应用十分广泛的重要材料之一。 调质钢在化学成分上的特点是,碳含量为0.3—0.5%,并含有一种或几种合金元素。具有较低或中等的合金化程度。钢中合金元素的作用主要是提高钢的淬透性和保证零件在高温回火后获得预期的综合性能。 热处理工艺是在临界点以上一定温度加热后淬火成马氏体,并在500℃--650℃回火。热处理后的金相组织是回火索氏体。这种组织具有强度、塑性的韧性的良好配合。 调质钢的质量要求,除一般的冶金方面的代倍和高倍组织要求外,主要为钢的力学性能以及与工作可靠性和寿命密切相关的冷脆性转变温度、断裂韧性和疲劳抗力等。在特定条件下,还要求具有耐磨性、耐蚀性和一定的抗热性。由于调质钢最终采用高温回火,能使钢中应力完全消除,钢的氢脆破坏倾向性小,缺口敏感性较低。脆性破坏抗力较大。但也存在特有的高温回火脆性。 大多数调质钢为中碳合金结构钢,屈服强度(σ0.2)在490—1200MPao以焊接性能为突出要求的调质钢。,为低碳合金结构钢,屈服强度(σ0.2)一般为4901—800MPa,有很高的塑性和韧性。少数沉淀硬化型调质钢,屈服强度(σ0.2)可到1400MPa以上,属高强

度的超高强度调质钢。 常用的合金调质钢按淬透性的强度妥为四类:①低淬透性调质钢; ②中淬透性调质钢;③较高淬透性调质钢;④高淬透性调质钢。 二、渗碳钢 具有高碳的耐磨表层和低碳的高强韧性心部,能承受巨大的冲击载荷、接触应力和磨损。汽车、工程机械和机械制造等行业中,大量使用的齿轮,是渗碳钢应用中最具代表性实例。 渗碳钢常用的合金钢系列主要是Cr-Mn系、Cr-Mo系和Cr-Ni-Mo系等。 保证渗碳钢心部的组织和性能的核心是淬透性。一般用途的渗碳件的心部组织为50%左右的马氏体加其它非马氏体组织。重要用途(如航空渗碳齿轮),心部组织亦应为马氏体或马氏体/贝氏体组织。提高淬透性的常用合金元素有铬、锰、镍、钼和硼。从合金化的经济角度考虑,Cr-Mn系(特别是含硼钢)值得推荐,但就生产和使用的角度而言,Cr-Mo钢更为优越。重要用途的、高质量要求的渗碳钢一般均含有一定量的钼,尤其是对于重载的大型渗碳件更需要。 当心部性能确定后,渗层组织和性能对使用寿命具有决定性作用。渗层的组织要求为马氏体和细小、弥散、球状分布的合金碳化物。保证渗层组织的核心仍然是淬透性。渗层应具有高的硬度、良好的显微组织、合理的残余应力分布和一定的韧性储备。 三、氮化钢(渗氮钢) 适合天氮化(或渗氮)工艺的钢种,称氮化钢或渗氮钢。一般狭

镁合金研究现状及发展趋势

镁合金研究现状及发展趋势 摘要:镁合金作为21世纪的绿色环保工程材料之一,近年来已成为学术界的一个研究热点。本文主要综述了镁合金的研究进展和应用,介绍了耐热、耐蚀、阻燃和高强高韧等高性能镁合金材料的最新发展。还介绍了镁合金成型技术的研究成果,最后展望了高性能镁合金的发展前景。 关键词:镁合金;高强高韧;成型技术;应用 1.引言 镁(Mg)是地球上储量最为丰富的元素之一,在陆地、湖泊和海洋中都广为分布,例如,其在地壳表层金属矿资源中的含量达2.3%,仅次于占8.1%的铝和5%的铁,居第三位;海水中的镁含量达到2.1×1015吨,可以认为是取之不尽、用之不竭的元素[1]。此外,我国的白云石矿储量、菱镁矿以及原镁的产量位列世界镁资源储量首位[2]。同时,随着当前钢铁行业中铁矿石等资源的日趋紧张,开发和利用镁作为替代材料是必然的趋势。被誉为“二十一世纪绿色金属结构工程材料”的镁合金是目前所知金属结构材料中最轻的,与其他同类材料相比,它具有密度小,比强度、比刚度较高,可以回收再利用且机加工性能优异,阻尼减震性好,电磁屏蔽效果佳等一系列优点,因此在交通运输(如汽车、摩托车、自行车等工业)、航空航天、武器装备、计算机通讯和消费电子产品等领域具有广阔的应用前景[3],但其使用量与铝合金和塑料相比还相当少[4]。 目前,从全球镁合金研发状况看,发展方向如图1所示[5],我国在镁合金材料的应用研究与产业化方面也己取得重大进展,形成了从高品质镁材料生产到镁合金产品制造的完整产业链,为我国实现由镁资源大国向镁应用强国的跨越奠定了坚实的基础。

图1 镁合金的研发方向[5] Fig. 1 Directions of Mg alloy development 2.镁合金的特点及分类 通过在纯镁中添加其他化学元素,可显著改善镁的物理、化学和力学性能。但镁合金同时存在着显著的缺点,下面对镁合金的优缺点进行简要的阐述。 2.1镁合金的优点[6 ~ 8] 1)密度小、质量轻。镁合金是目前工业应用中最轻的金属结构材料,根据合金成分的不同,其密度通常在1.75-2.10g/cm3范围内,约为铝的2/3,钢的1/4。 2)比强度、比刚度高。镁合金的比强度高于铝合金和钢铁,但略低于比强度最高的纤维增强塑料。其比刚度与铝合金和钢铁相当,但却远高于纤维增强塑料。镁合金材料与其他相关材料的物理性能和力学性能分析比较如表1所示。 表1 镁合金和相关材料的物理和力学性能比较 Tab. 1 The comparison of physical and mechanical properties between magnesium alloy and other materials [9] 材料抗拉强度/Mpa 屈服强度/Mpa 延伸率/% 弹性模量/Gpa 比强度镁合金AZ31 251 154 13.8 45 141 镁合金AZ91 275 145 13.8 45 151 镁合金AM60 240 140 15 45 134 铝合金380 315 160 3 71 106 碳钢517 140 22 200 80 塑料ABS 35 - 40 2.1 41 塑料PC 104 - 3 6.7 102 3)吸震阻尼性能好。镁合金与铝合金、钢、铁相比具有较低的弹性模量,在同样受力条件下,可消耗更大的变形功,具有降噪、减振功能,可承受较大的冲击震动负荷。镁合金具有极好的滞弹吸震能力,其抗冲击性是铝合金的10倍,塑料的20倍。 4)良好的铸造性能。镁与铁的反应低,熔炼时可用铁坩埚,熔融镁对坩埚的侵蚀小,压铸时对压铸模的侵蚀小,与铝合金压铸相比,压铸模使用寿命可提高2-3倍,通常可维持20万次以上。镁合金的比热和结晶潜热小,所以流动性

微合金元素在钢中作用

微合金元素在钢中溶解析出及影响因素? 在奥氏体中,氮化物通常比碳化物更加稳定。微合金化元素不同,其碳化物和氮化物的溶解度绝对值有很大差异:V、Ti的碳化物与氮化物的溶解度差值较大,而Nb的碳化物与氮化物的溶解度比较接近,尽管NbN的溶解度仍然低于NbC的溶解度。ALN的溶解度与NbN 接近,说明其溶解度比VC还要大。多数微合金碳化物和氮化物在奥氏体中的溶解度比较接近,虽然多数微合金元素的碳化物或氮化物在钢水中的溶解度还不确定,数据显示,TiN在钢水中的溶解度要比在同温度奥氏体中高10~100倍;因此TiN在1600℃钢水中的溶解度与其它微合金化元素在1200℃奥氏体中的溶解度接近。热力学计算表明,Nb的碳化物和氮化物在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。实验和热力学计算均证实,VC在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。 碳化物和氮化物的溶解度差导致碳氮化物中富集低溶解度化合物(氮化物)。在通常的复合微合金化钢中,碳化物和氮化物的溶解度差按铌、钒、钛的次序增大。合金碳氮化物中富集的氮化物的分数比例按钛、钒、铌的次序递减。合金碳氮化物中碳化物和氮化物的分数比例取决于钢中C和N的含量,在大多数钢中,远高于氮含量的碳含量在一定程度上抵销了碳化物和氮化物在溶解度上的差异。合金碳氮化物中碳化物和氮化物的分数比例还受合金元素含量的影响,合金元素含量升高降低氮化物的分数比例,尤其是在合金元素含量超过氮在钢中化学计量比的情况下。提高温度会增加氮化物的分数比例。钢中未溶解合金碳氮化物的数量高于从不互相溶解的析出模型所预期的值,更为重要的是,合金碳氮化物能够在独立碳化物或氮化物的溶解度曲线以上温度存在。 1、应变诱导析出:未变形材料中除了在晶界和相界上形核外,沉淀相在晶粒内主要是以均匀形核机制生成;而在变形材料中,沉淀相主要在位错和各种晶体缺陷上非均匀形核。由于在位错上形核的激活能低,因此形核率很高,可得到很高的沉淀相粒子密度和很小的沉淀相尺寸。变形使析出过程的孕育时间大大缩短。 2、钢的成分偏聚:由于钢液在凝固过程中发生溶质元素的偏聚,在枝晶间隙区的浓度要明显高于钢的平均含量,即使经过高温的固溶处理,在微米尺度上溶质元素在钢中仍然是不均匀分布的 3、Ostwald 熟化:Ostwald熟化过程在析出相体积分数不变的条件下,通过颗粒的粗化使基体和析出相的界面能明显降低。在熟化过程中,第二相颗粒被一定厚度的基体所分离,为了确保相互分离的大颗粒长大而小颗粒缩小乃至消失以降低系统的总界面能,颗粒通过基体一定存在一种非接触式的感知。 微合金元素在钢对钢中组织元素及相转变的影响? 当钒单独加入时,并不抑制铁素体的形成;相反,它加速珠光体的形成。然而,当钒和铌同时存在时,易于形成贝氏体组织,而钒在贝氏体内沉淀析出。正是这种钒与铌的差别,导致了在热轧交货的小型材中多倾向于加钒。这些轧态小型材冷却快,如果有铌存在的话,则形成导致脆性的贝氏体组织,而含钒钢中则不会形成这种脆性组织。钒能促进珠光体的形成,还能细化铁素体板条,因此钒能用来增加重轨的强度和汽车用锻件的强度。碳化钒也能在珠光体的铁素体板条内析出沉淀,从而进一步提高了材料的硬度和强度。钒像大多数溶质合金一样能抑制贝氏体的形成。因此,如果它是溶解而不是以碳化钒和氮化钒的形式沉淀析出,则可用来增加淬透性。当钢中钒的质量分数低于0.03%时,固溶态的钒才可以占绝大多数,才能有效地提高淬透性。与锰提高铌、钒的溶解度一样,钼也提高它们在钢中的溶解度。而添加了元素钼后,可固溶的钒含量明显增加,可达0.06%左右。 微合金对钢铁强度韧性热塑性的影响及强韧化机理? 钒通过在铁素体中的沉淀析出,来增加钢的强度,它可使钢的强度增加150MPa以上。碳氮化物在轧制过程和轧制以后形成,而且在正火过程中,当钢被加热时,它们将溶解,并

非调质钢简介及牌号

非调质钢简介 (整理点资料) 1)名称: 非调质钢,西方国家把它叫作MICROALLOYED STEEL,译成中文意思是微合金钢。 2) 成份和优点:所谓非调质钢,是指在中碳钢中加入微量的V、Nb、Ti 等合金元素而行成的一种新钢种。在大多数情况下加入的微合金的总量一般不超过百分之零点二五(0.25%)。 世界上第一个非调质钢是由德国的GERLACH公司在1970年推出的,这家公司用他们自己刚刚研制成功的非调质取代原来使用的调质钢CK45钢生产曲轴,取得了很好的效益。由於使用非调质钢生产锻件可以省去调质处理即(淬火+高温回火)过程中的两次加热而耗费的能量,因此具有节能和环保的优点,被称为绿色钢种。 1973年中东战争暴发,石油价格高起,迫使人们更加关注节能降耗,在这种背景下非调质钢的开发和利用在西方掀起了高潮,各国相继推出了自己的非调质钢。到1984年日本有60%的曲轴和50%的连杆都是用非调质钢锻成的。德国人说,使用49MnVS3非调质钢代替调质钢生产连杆可以省去占总成本6%的热处理费用,日本爱知公司说,用非调质钢可以使成本下降18%。 3)非调质钢的强化机理: 无论是用调质钢还是用非调质钢生产锻件,锻件在锻成后如果不经过强化处理是不能使用的,不同的钢,强化的机理是不同

的。调质钢的强化机理是:先通过淬火。让钢变成马氏体组质,然后再通过回火处理使马氏体变成回火索氏体,回火索氏体是一种稳定组织,具有良好的综合机械性能。而非调质钢的强化机理是:首先,非调质钢中的V、Nb、Ti等合金元素形成的合金碳氮化合物在锻造前的加热过程中充分地溶入到了奥氏体中,然后,在锻后的冷却过程中这些合金碳氮化合物又从奥氏体中析出,形成无数个微小而且弥散分布的合金碳氮化合物,随着温度的进一步下降发生沉淀强化。与此同时,从钢中析出的细小铁素体通过分割和细化奥氏体使得钢的强度和硬度得以提高。在上述两种力的综合作用下使钢得到了强化。 4)非调质钢的发展过程: 非调质钢的发展经历了三个阶段,第一代非调质钢是铁素体—珠光体型非调质钢。第二代是贝氏体型非调质钢,第三代是低碳马氏体型非调质钢。 4.1)铁素体—珠光体型非调质钢是目前用量最大的非调质钢,,约占总用量的60%以上。与调质钢相比,它的强度有余而韧性不足,因此,必需在保证强度的前题条件下设法提高韧性。日本钢铁公司的研究人员发现通过适当控制生产工艺,让奥氏体晶体内行成大量的铁素体成核核心P1,然后在相变时铁素体不仅在晶界上形成,也在奥氏体晶包内形成。这些细小,而且分布均匀的铁素体,使得钢的韧性显著提高。

金属强韧化原理

1金属材料强韧化的目的和意义? 目的:A.节约材料,降低成本,节约贵重的合金元素的使用,增加材料在使用过程中的可靠性和延长服役寿命。 B.希望所使用的材料既有足够的强度,又有较好的韧性,但通常的材料二者不可兼得。 意义:在于理解材料强韧化机理、组织形态、微观结构与金属的强度、韧性之间的确切关系,以便找出适宜的冶金技术途径来提高金属的强韧性,使之达到新的水平或研究出新的高强韧性的金属。这是一个具有重大的理论意义和经济价值的研究开发领域。理解材料强韧化机理,掌握材料强韧化现象的物理本质,是合理运用和发展材料强韧化方法从而挖掘材料性能潜力的基础。 2.金属材料强韧化的主要机制有哪些? 1)物理强韧化:所谓物理强韧化是指在金属内部晶体缺陷的作用和通过缺陷之间的相互作用,对晶体的力学性能产生一定的,进而改变金属性能。 2)化学强韧化:化学强韧化是指是元素的本质决定的因素以及元素的种类不同和元素的含量不同造成的材料性能的改变。 3)机械强韧化:就是除了结构、尺寸、形状方面的机械原因外,主要指界面作用造成的强韧化。 4)复合组织强韧化:即两种或两种以上的金属组织复合在一起,其中有的组织强度比较高,有的组织韧性比较高,复合后起到了既提高强度有提高韧性的作用。 3.如何理解强化和韧化的关系 强度是是在给定条件(温度/压力/应力状态/应变速率/周围介质)下材料达到给定变形量所需要的应力,或材料发生破坏的应力,研究变形及断裂是研究强度的重要手段和过程。 韧性是断裂过程的能量参量,是材料强度与塑性的综合表现,它是材料在外加负荷作用下从变形到断裂全过程吸收能量的能力,所吸收的能量愈大,则断裂韧性愈高。 一般情况下,材料的强度和韧性是不可兼得的,在提高金属材料强度的同时塑性必然会下降,反之,在改善金属的塑性的同时,强度也会下降。目前,晶粒细化是提高金属强韧化的有效方法,金属的晶粒变细后,强度提高,韧性又不显著降低。 4.试举出3种最新强韧化技术方法的例子。 1)细晶强化:它是常温下一种有效的材料强化手段。细化晶粒可以提高金属的强

相关文档
最新文档