电磁学知识结构体系与教学研究

电磁学知识结构体系与教学研究
电磁学知识结构体系与教学研究

第8卷 第2期

2006年3月天津职业院校联合学报Journal of T i a nji n Vocati o nal I n stitutes NO.2V o.l 8M ar .2006

电磁学知识结构体系与教学研究

向永红,贺 静,王泽玲

(天津工程职业技术学院,天津市 300280)

摘 要: 电磁学知识结构体系分为/静态0知识结构和/动态0知识结构。在电磁学教学中,只有把教育理论与电磁学内容有机结合起来进行教学改革,才能有效地提高学生的科学素质,达到事半功倍的效果。

关键词: 电磁学;知识结构;教学改革

中图分类号:O 441 文献标识码:A 文章编号:1673-582X (2006)02-0139-04

收稿日期:2005-09-26

作者简介:向永红(1967-),女,湖南人,天津工程职业技术学院高级讲师,学士,主要研究物理教学;贺静(1964-),女,河北省人,天津工程职业技术学院讲师,主要研究经济数学;王泽玲(1962-),女,天津人,天津工程职业技术学院讲师,主要研究计算机信息技术。

电磁运动是物质的一种基本运动形式,电磁学的研究范围是电磁现象的规律及其应用。其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。只有在教育科学理论指导下,从物理学的本身进行研究,并从它自身的特点出发挖掘物理教学的育人功能,才可能寻找出最佳的教学结构体系。按照这样的思路,我们在电磁学的教学中作了一些探索性的工作,即把教育科学中的/结构理论0及系统科学的一些成果与电磁学自身的特点相结合,建立了一个电磁学教学结构体系,从实践反馈的信息来看效果是好的。

一、电磁学知识结构体系

所谓学科知识结构理论指的是美国心理学家布鲁纳倡导的,而又被美国教育哲学家施瓦布等人完善的关于课程的理论。布鲁纳指出:/不论我们选教什么学科,务必掌握该学科的结构。0我们从他的代表作《教育过程》中领会他所指的学科结构是由学科的基本概念,基本原理、基本定律组成的体系。但重大欠缺是他的学科结构只注重了理论知识的组成,施瓦布等人针对这种理论的不足,补充、完善了学科结构理论,他主张从概念的产生、形成过程以及知识体系的形成过程,还有主体认识过程的操作/工具0一研究方法去把握结构。可见,知识结构应包括两个方面,为区分起见,我们将这两个方面所反映的知识结构分别称为/静态0知识结构一反映一定历史阶段的理论知识成果和/动态0知识结构一展现了理论认识成果的产生及发展过程。学科知识结构是两者的有机统一,这样的知识结构便是在教学中务必使学生掌握的基本结构。结构的概念来源于系统科学,因此知识结构体系具有这样几个特征:整体性、稳定性、层次性和动态性。我们从三个方面对电磁学知识结构体系进行研究。

(一)电磁学/静态0知识结构体系

电磁学是物理课中最/成熟0同时又是最重要的组成部分,它不仅内容丰富、应用广泛,而且在概念和处理问题方法上都是继力学之后一个新的里程碑。整个电磁学是以下列问题发展演进的。第一,电磁作用的本质和机制是什么?电磁场是否是物质?第二,电场与磁场究竟是彼此无关的,还是有内在联系的相互制约的统一体?电磁场变化运动的规律如何?有什么重要的物质性质?第三,怎样描述电磁场与物质(指有质量的实物)的相互作用?各种物质的微观电磁结构如何?怎样描述物质的电磁性质?第四,麦克斯韦的电磁场理论是怎样建立的?有何预言?他的实验如何作出最终的决定性判断?为什么它被誉为19世纪物理学最伟大的成就?从它的建立能够得到什么重要的启迪?第五,如何用/场0的观点来定义、分析和总结电路中的概念和规律,使我们对电路有更深刻的理解?上述问题横贯电磁学整个课程之中,给予全面的回答也并非电磁学这一部分的任务,但应以此统帅全课,吸引学生关注怎样逐步解决以#139#

上问题。

电磁学的内容基本上可以归纳成两部分:/场0(电场和磁场)和/路0(直流电路和交流电路)。其中场的部分占较大比重,只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力。我们用图1表示电磁学总体/静态0知识结构。

图1

由此图可看出:场的方法是研究电磁学的一般方法。场是物质,是物质相互作用的特殊方式.大学物理的电磁学部分完全可用场的概念统帅起来,静电场、稳恒磁场、恒定电磁场、变化电磁场等,组成一个关于场的系统,该系统包括大学物理电学部分的各章内容。/路0是/场0的一种特殊情况。大学教材以/路0为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等。/场0和/路0之间存在着内在的联系。麦克斯韦方程是电磁场的普遍规律,是以/场0为基础的。/场0是电磁运动的实质,因此可以说/场0是实质,/路0是方法。

(二)电磁学/动态0知识结构体系

物理学家工作的一个重要方面是建立物理理论,因此,物理理论也理所当然地成为物理教学中最为重要的内容。物理理论是在观察和实验研究基础上理性思维的产物,当然也隐含着某些更基本的考虑或某些基本假定。诚然,从现象、事实到理论并没有逻辑通道,它是科学家在一定认识程序上对物理学研究方法的综合应用过程。所以电磁学的/动态0知识结构应该全面反映电磁学研究方法之间以及电磁学理论与研究方法之间的联系。

电磁学理论遵循着观察和实验并在此基础上进行一般逻辑方法(比较、分类、类比、相似、归纳、演绎、分析和综合等)、数学方法、非逻辑方法(直觉、灵感、想象)、物理学中的美学方法,再经过科学抽象和科学假说等方法而建立和发展起来的。

在福兰克林、米歇尔、卡文迪许等人实验基础上,库仑借助扭秤实验分析总结得出以他的名字命名的实验定律,这一定律的建立所运用的方法可概括为:实验探索法;数学演绎法(此前的电磁现象研究停留在定性归纳的非数学描述阶段);直觉思维法(库仑用完全相同的小球平分电荷在当时只是一种不能证明的/猜测0,至于点电荷间静电力沿电荷联线方向也不是实验结果,它们都是从对称性分析得出的);类比推理法(平方反比关系与万有引力定律酷似,库仑借助/点电荷0模型和/电量0概念的假设,类比/质点0和/质量0从而确立了库仑定律)。

奥斯特发现电流的磁效应,第一次揭示了电与磁的联系,而且表明电流对磁极的作用力具有横向力的性质,而当时所知的全部作用力都是推拉性质的有心力。至此,人们很自然地提出:支配横向力的基本定律是什么?毕奥、萨伐尔两人研究和分析了很多实验资料并在法国数学家拉普拉斯的帮助下导出了电流元激发磁场的规律。这个规律并不是直接在实验事实的基础上概括出来的,它的真伪是通过间接方法得到证实的,即由它和磁场迭加原理计算出来的所有结果都很好地与实验相符合。

从发现电流的磁效应起,人们便关注它的逆效应:磁的电效应,即磁能否产生电流?法拉弟坚信各种/自然力0是统一的观点,以及电磁现象近距离作用的观点,他曾明确指出:/我早已持有一种见解,它几乎达到深信不疑的程度,即物质之力所表现出来的各种形式具有共同的起源,换言之,它们彼此是如此之相互依赖,以致于它们能够相互转化并具有力的当量。0正是在这种思想的指引下,法拉弟在毕生的实验研究中,不断地寻找各种不同领域现象之间的联系。10年之后,他通过力线把电现象和磁现象联系了起来。

麦克斯韦电磁场理论建立过程为我们提供了丰富的方法论教益和启迪:第一、寻找不同现象之间的联系,建立统#

#

140

一的动力学解释是理论工作的一贯追求,也是理论发展的诱导动力。建立统一理论的途径不是唯一的,结果也可以大相径庭,评价的标准不仅在于能否统一解释所有的想象和规律,更在于它能否作-出正确的预言,能否为进一步的研究和应用开拓道路,以及本身是否自洽、乘法、和谐等。第二、类比研究在科学发现中具有重大意义。不同事物外在的相似可能隐含内在的相同,这是自然提供的一种暗示,麦氏在他的三篇论文中多次使用了类比研究的方法,使得他逐步揭示了科学真理。第三、用数学工具精确地表述科学思维是科学发展的要求,也是科学成熟的标志之一。麦氏凭借他深厚的数学基础和娴熟的教学技巧,将他的思想、模型和图像最终表述在电磁场的基本方程里。第四、和谐是理论完善的必要因素。自然界是和谐的,反映自然界的科学理论也应该是和谐的。一种理论可能已经具有某些更大实用价值,但是在理论框架上如果还潜存着某些不和谐的因素,那么它必定没有穷尽未知世界的全部特征,也就必定有进一步探索、改进甚至扬弃的必要。N eu m ann-W eber理论与M axw ell的和谐电磁场理论就是一个明证。第五、丰富的想象力和深刻的洞察力,以及在广博知识基础之上的大胆猜测和假设。

通过以上分析,电磁学/动态0知识结构体系可用框图2表示出来。

图2

(三)电磁学知识结构体系的功能

这样构筑的知识结构体系具有以下功能:

1.有助于认识物理知识之间的联系,理解物理知识的深刻内涵,从而产生丰富的联想。

2.结构是有层次的,电磁学中有许多定理、定律和法则,但它们的地位并不平等。例如麦氏议程是整个电磁学领域中的基本规律层次最高,了解了这些就知道哪些是普遍适用的知识,哪些是在特定条件下才适用的知识。

3.它有助于明确所学的物理知识对了解具体问题所达到的效果。

4.有助于牢固记忆知识及对知识的应用。

二、电磁学的教学

我们认为电磁学教学的任务就是将静态和动态的知识结构作为一个有机整体,把它内化为学生的个体知识结构,从而实现物理知识结构的整体转化。教育实践中,若只注重/静态0结构教育,培养的学生不仅没有发展,缺乏创造,而且也不可能真正掌握电磁学的理论知识;若片面追求/动态0结构教育,结果理论方法便失去了赖以作用的对象,失去生机,逐渐枯萎,为此我们提出以下教学建议。

(一)按电磁学科特点施教

电磁场的教学是电磁学课程的重点部分。学生在中学的学习阶段虽也初步接触过一些电场和磁场的知识,但是,当时场仅作为描述电荷间及电流间相互作用的辅助手段,并未触及到实质。因此全面而系统的学习场的知识和研究方法,对于学生而言,都是全新的课题,一开始就应正面强调研究对象的重大变化,引导学生积极主动地去迎接挑战。场是区别于实物的另一类具有广泛的连续分布的客体,认识场要从它的空间分布入手,从总体上去把握它,所以认识场的第一步是确定它的空间分布,诸如对称性分析、近似计算,渐进行为的考察,乃至电力线的形象描绘等等都是为了确定场的空间分布。其次,应该强调的是,对于矢量场,仅仅知道它在各种情况下的空间分布还不够,必须进一步认识其总体分布所具有的某种特征和性质,以便从总体上加以比较和进行区别。以流速场为例,考察流体流动是否形成/旋涡0、是否有/源0,只有这样才能从总体上把握各种流速场的特征,并加以区别、比较。由此就可以理解为什么除了电场强度、磁感应强度等概念外,还需要进一步引入通量和环流的概念,以及高斯定理和环路定理,因为它们正是描述和确定矢量场是否有源、是否有旋的有效手段和恰当的方式。例如静电场的高斯定理表明它是有源的,不能仅仅理解为它是计算场的一种方式;静电场的环路定理表明它是无旋场,它反映了空间各点场之间存在着内在联系,不能仅仅把它理解为由此可以引入电势。上面分析了矢量场的研究方法,对于标量场我们经常用至梯度的概念。只有这样引导,学生才有可能深刻理解结构所蕴含的丰富物理思想。

(二)寓方法于理论知识教学之中施教

根据所讲理论知识自身的特点,有重点地将与该理论知识密切相关的物理学方法贯穿于理论知识的教学之中。例如,导体周围静电场这部分,讨论的理论根据仍是高斯定理和环路定理。原则上可以用它们所导出的微分形式及

#

#

141

有关的物理考虑求出电位与电场强度分布,但数学上遇到困难,属电动力学讨论范围,但是电力线的两个基本性质实际上是这两个规律的形象表现,所以由它来定性讨论静电平衡的若干问题,通过这一部分的学习教会学生演绎推理的逻辑论证方法。类比方法是物理学研究方法同时也是电磁学教学的一种有效方法,通过类比可以由此及彼、融会贯通、加深认识,例如各种矢量场、磁介质与电介质等。电磁学中大量问题涉及对称性分析。当我们建立适当的坐标系之后,可使我们立即判断出某些分量为零,从而使计算大为简化。在电磁学的教学中应有意识的引导学生如何识别对称性并学会利用对称性分析处理有关问题的能力,这对今后学习物理学是大有好处的。/模型0化已成为当今普遍采用的科学研究方法。物理模型遍及基础物理的各个部门,尽管学生在此之前已学了不少模型,但在电磁学中还是不能正确理解诸如:点电荷、线电荷、面电荷等模型的含义,常常发生由于不注意理想模型赖以存在的条件而导致荒谬结果的情况。要在电磁学中让学生明白:在运用理想模型时,必须牢牢记住它赖以建立的条件,如果这些条件遭到破坏,就要恢复实际问题的原貌或者寻找其它合理的物理模型来讨论。

(三)系统性施教

在物理教学中使理论知识的系统性与方法知识的系统性同时并举,以便最终在学生头脑中建立由物理学理论和方法有机联系而构成的物理知识整体结构。电磁学中每教完一章让学生通过学习、思考建立这一章的知识结构,学完电磁学之后,达到对整个结构的掌握。

我们知道电磁学知识结构并不是固定不变的,它是动态的。M ax w e ll电磁场理论达到了经典电磁学的顶峰,但也不是终极理论,它还存在着内部矛盾。例如库仑平方反比率与光子的静止质量关系、磁单极、超导体和等离子体的电磁性质等问题。我们要找出这些近代和前沿课题的生长点在哪里,尔后在这些知识点上配上/接口0,交待以下可由此延伸出去的领域和课题,这是非常有益的。

总之,物理教学既要发展学生的智力,又要培养学生的能力.只要运用科学的方法将知识传授给学生,加强学生理论知识的系统性与方法知识的系统性的培养,调动学生的学习积极性,才能提高教学质量。

参考文献:

[1]J,S布鲁纳.教育过程[M].上海:上海人民出版社,1973.

[2]梁绍荣,等.普通物理学(电磁学)[M].北京:高等教育出版社,1987.

[3]赵凯华.普通物理课程的现代化问题[J].大学物理,1992,(9).

[4]陈熙谋,等.建立严密的知识结构体系[J].物理通报.1995,(9).

[责任编辑:袁征]

Structural Syste m of Knowledge about E lectro magnetis m

and Teaching Research

X I A NG Y ong-hong,H E Ji n g,WANG Ze-li n g

(T ianjin Vocational T echno logical Engineer in g College,T ianjin300280China)

Abst ract:Kno w ledge struct u res of both static state and dyna m ic state are i n cluded in the str uctural sys-te m of kno w ledge about electro m agnetis m.In the electro m agne tis m teach i n g,t h e co m b i n ation of educational t h eory and the contents o f electro m agnetis m as w ell as refo r m i n educati o n w ill contri b ute to effecti v e l y en-hancing students'scientific quality and attaining the resu lt o f getting t w ice the resu ltw ith ha lf t h e e ffor.t

K ey w ords:electr o m agnetis m;know ledge structure;refor m i n teach i n g

#

#

142

电磁学知识结构体系与教学研究

第8卷 第2期 2006年3月天津职业院校联合学报Journal of T i a nji n Vocati o nal I n stitutes NO.2V o.l 8M ar .2006 电磁学知识结构体系与教学研究 向永红,贺 静,王泽玲 (天津工程职业技术学院,天津市 300280) 摘 要: 电磁学知识结构体系分为/静态0知识结构和/动态0知识结构。在电磁学教学中,只有把教育理论与电磁学内容有机结合起来进行教学改革,才能有效地提高学生的科学素质,达到事半功倍的效果。 关键词: 电磁学;知识结构;教学改革 中图分类号:O 441 文献标识码:A 文章编号:1673-582X (2006)02-0139-04 收稿日期:2005-09-26 作者简介:向永红(1967-),女,湖南人,天津工程职业技术学院高级讲师,学士,主要研究物理教学;贺静(1964-),女,河北省人,天津工程职业技术学院讲师,主要研究经济数学;王泽玲(1962-),女,天津人,天津工程职业技术学院讲师,主要研究计算机信息技术。 电磁运动是物质的一种基本运动形式,电磁学的研究范围是电磁现象的规律及其应用。其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。只有在教育科学理论指导下,从物理学的本身进行研究,并从它自身的特点出发挖掘物理教学的育人功能,才可能寻找出最佳的教学结构体系。按照这样的思路,我们在电磁学的教学中作了一些探索性的工作,即把教育科学中的/结构理论0及系统科学的一些成果与电磁学自身的特点相结合,建立了一个电磁学教学结构体系,从实践反馈的信息来看效果是好的。 一、电磁学知识结构体系 所谓学科知识结构理论指的是美国心理学家布鲁纳倡导的,而又被美国教育哲学家施瓦布等人完善的关于课程的理论。布鲁纳指出:/不论我们选教什么学科,务必掌握该学科的结构。0我们从他的代表作《教育过程》中领会他所指的学科结构是由学科的基本概念,基本原理、基本定律组成的体系。但重大欠缺是他的学科结构只注重了理论知识的组成,施瓦布等人针对这种理论的不足,补充、完善了学科结构理论,他主张从概念的产生、形成过程以及知识体系的形成过程,还有主体认识过程的操作/工具0一研究方法去把握结构。可见,知识结构应包括两个方面,为区分起见,我们将这两个方面所反映的知识结构分别称为/静态0知识结构一反映一定历史阶段的理论知识成果和/动态0知识结构一展现了理论认识成果的产生及发展过程。学科知识结构是两者的有机统一,这样的知识结构便是在教学中务必使学生掌握的基本结构。结构的概念来源于系统科学,因此知识结构体系具有这样几个特征:整体性、稳定性、层次性和动态性。我们从三个方面对电磁学知识结构体系进行研究。 (一)电磁学/静态0知识结构体系 电磁学是物理课中最/成熟0同时又是最重要的组成部分,它不仅内容丰富、应用广泛,而且在概念和处理问题方法上都是继力学之后一个新的里程碑。整个电磁学是以下列问题发展演进的。第一,电磁作用的本质和机制是什么?电磁场是否是物质?第二,电场与磁场究竟是彼此无关的,还是有内在联系的相互制约的统一体?电磁场变化运动的规律如何?有什么重要的物质性质?第三,怎样描述电磁场与物质(指有质量的实物)的相互作用?各种物质的微观电磁结构如何?怎样描述物质的电磁性质?第四,麦克斯韦的电磁场理论是怎样建立的?有何预言?他的实验如何作出最终的决定性判断?为什么它被誉为19世纪物理学最伟大的成就?从它的建立能够得到什么重要的启迪?第五,如何用/场0的观点来定义、分析和总结电路中的概念和规律,使我们对电路有更深刻的理解?上述问题横贯电磁学整个课程之中,给予全面的回答也并非电磁学这一部分的任务,但应以此统帅全课,吸引学生关注怎样逐步解决以#139#

电学实验基础知识归纳

电学实验基础知识归纳 一.读数 1. 图甲为用螺旋测微器、图乙为用游标尺上有50个等分刻度的游标卡尺测量工件的情况,请读出它们的读数.甲:读数为 mm ;乙:读数为 mm 2、万用电表的读数一多用电表的电阻档有三个倍率,分别是×1、×10、×100。用×10档测量某电阻时,操作步骤正确,发现表头指针偏转角度很小,为了较准确地进行测量,应换到 档。如果换档后立即用表笔连接待测电阻进行读数,那么缺少的步骤是 ,若补上该步骤后测量,表盘的示数如图,则该电阻的阻值是______Ω。若将该表选择旋钮置于1 mA 挡测电流,表盘仍如所示,则被测电流为 mA 。 实验七:测定金属的电阻率 由于该实验中选用的被测电阻丝的电阻较小,所以测量电路应该选用伏安法中的电流表外接法。本实验对电压的调节范围没有特殊要求,被测电阻又较小,因此供电电路可以选用限流电路。 本实验通过的由于金属的电阻率随温度的升高而变大,因此实验中通电时间不能太长(每次记录数字时最好先断开电键),电流也不宜太大(一般选择0.6A 量程的电流表),以免电阻丝发热后电阻率发生较明显的变化。由于选用限流电路,为保护电表和电源,闭合电键开始实验前应该注意滑动片的位置,使滑动变阻器接入电路部分的电阻值最大。 1.实验目的 用伏安法测定金属的电阻率 2.实验原理:根据欧姆定律和电阻定律。S L R ρ==L R d 42π 3.实验电路图如图所示,请根据电路图连接实物,闭合电键前,滑动片应在 。

E r s Rx R 4.实验器材 毫米刻度尺、螺旋测微器、直流电压表和直流电流表、滑动变阻器、干电池(或学生电源)、电键及导线若干、待测金属丝。 4.实验步骤 ①用螺旋测微器在导线的三个不同位置上各测一次,取直径d 的平均值. ②将金属丝两端固定在接线柱上,用最小刻度为毫米的米尺测量接入电路的金属丝长度L(即有效长度)。 ③根据电路图用导线把器材连好(保持电键断开状态),并把滑动变阻器的阻值调至最大。 ④电路经检查无误后,闭合电键S ,读出相应的电流表、电压表的示数I 和U 的值,断开电键S ,记录数据。 ⑤改变滑动变阻器滑动片的位置,闭合开关,读出相应的电流表、电压表的示数I 和U 的值,断开开关,记录数据。重复5-7次。 ⑥断开电键,S 拆去实验线路,整理好实验器材,求出电阻R 的平均值。 ⑦将测得的R ,L ,d 的值代入电阻率计算公式中,计算出金属导线的电阻率. 6.注意事项 ①金属导线的长度,应该是在连入电路之后再测量,测量的是接人电路部分的长度,并且要在拉直之后再测量。 ②用螺旋测微器测直径时应选三个不同的部位测3次,再取平均值. ③接通电源的时间不能过长,通过电阻丝的电流强度不能过大,否则金属丝将因发热而温度升高,这样会导致电阻率变大,造成误差。 ④要恰当选择电流表、电压表的量程,调节滑动变阻器的阻值时,应注意同时观察两表的读数,尽量使两表的指针偏转较大,以减小读数误差。 ⑤伏安法测电阻是这个实验的中心内容,测量时根据不同情况,根据所给器材对电流表的内接还是外接作出正确选择。 7.误差来源: ①测金属丝直径时出现的误差; ②测金属丝长度时出现的误差; ③电压表、电流表读数时出现的误差; ④电压表、电流表内阻对测量结果产生的误差; ⑤通电时间太长,电阻丝发热产生的误差;

结构力学知识点复习过程

建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称为结构。 从几何角度来看,结构可分为三类,分别为:杆件结构、板壳结构、实体结构。 结构力学中所有的计算方法都应考虑以下三方面条件: ①力系的平衡条件或运动条件。 ②变形的几何连续条件。 ③应力与变形间的物理条件(或称为本构方程)。 结点分为:铰结点、刚结点。 铰结点:可以传递力,但不能传递力矩。 刚结点:既可以传递力,也可以传递力矩。 支座按其受力特质分为:滚轴支座、铰支座、定向支座、固定支座。 在结构计算中,为了简化,对组成各杆件的材料一般都假设为:连续的、均匀的、各向同性的、完全弹性或弹塑性的。 荷载是主动作用于结构的外力。 狭义荷载:结构的自重、加于结构的水压力和土压力。 广义荷载:温度变化、基础沉降、材料收缩。 根据荷载作用时间的久暂,可以分为:恒载、活载。 根据荷载作用的性质,可以分为:静力荷载、动力荷载。 结构的几何构造分析 在几何构造分析中,不考虑这种由于材料的应变所产生的变形。 杆件体系可分为两类: 几何不变体系------在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系------在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 自由度:一个体系自由度的个数,等于这个体系运动时可以独立改变的坐标的个数。 一点在平面内有两个自由度(横纵坐标)。 一个刚片在平面内有三个自由度(横纵坐标及转角)。 凡是自由度的个数大于零的体系都是几何可变体系。 一个支杆(链杆)相当于一个约束。可以减少一个自由度。 一个单铰(只连接两个刚片的铰)相当于两个约束。可以减少两个自由度。一个单刚结(刚性结合)相当于三个约束,可以减少三个自由度。 如果在一个体系中增加一个约束,而体系的自由度并不因而减少,则此约束称为多余约束。增加了约束,计算自由度会减少。因为w=s-n . 瞬变体系:本来是几何可变、经微小位移后又成为几何不变的体系称为瞬变体系。 实铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,并且两根链杆能在其中一个刚片上交于一点,所构成的铰就叫实铰。 瞬铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,两根链杆在两刚片间没有交于一点,而是在两根链杆的延长线上交于一点,从瞬时微小运动来看,这就是瞬铰了。两根链杆所起的约束作用等效于在链杆交点处上面放了一个单铰的约束作用。通常所起作用为转动。 截面上应力沿杆轴切线方向的合力,称为轴力。轴力以拉力为正。 截面上应力沿杆轴法线方向的合力称为剪力。剪力以绕微段隔离体顺时针转者为正。 截面上应力对截面形心的力矩称为弯矩。在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。 作轴力图和剪力图要注明正负号。作弯矩图时,规定弯矩图的纵坐标应画在受拉纤维一边,不注明正负号。 通常在桁架的内力计算中,采用下列假定: ①桁架的结点都是光滑的铰结点; ②各杆的轴线都是直线并通过铰的中心; ③荷载和支座反力都作用在结点上。 根据几何构造的特点,静定平面桁架可分为三类:简单桁架,联合桁架,复杂桁架。 在单杆的前提下,当结点无荷载作用时,单杆的内力必为零。此单杆称为零杆。 由链杆和梁式杆组成的结构,称为组合结构。 链杆只受轴力作用;梁式杆除受轴力作用外,还受弯矩和剪力作用。 三铰拱受力特点: ①在竖向荷载作用下,梁没有水平反力,而拱则有推力。 ②由于推力的存在,三铰拱截面上的弯矩比简支梁的弯矩小。弯矩的降低,使拱能更充分地发挥材料的作用。 ③在竖向荷载作用下,梁的截面内没有轴力,而拱的截面内轴力较大,且一般为压力。 合理拱轴线:在固定荷载作用下使拱处于无弯矩、无剪力、而只有轴力作用的轴线。 合理轴线:通常指具有不同高跨比的一组抛物线。 影响线 内力影响线:表示单位移动荷载作用下内力变化规律的图形。无论在剪力、弯矩、支座反力的影响线图中都需要标上正负号。影响线是研究移动荷载最不利位置和计算内力最大值(或最小值)的基本工具。 荷载:特定单位移动荷载P=1 固定、任意荷载最不利位置:如果荷载移动到某个位置,使某量Z达到最大值,则此荷载位置称为最不利位置。 影响线的一个重要作用,就是用来确定荷载的最不利位置。 定出荷载最不利位置判断的一般原则是:应当把数量大、排列密的荷载放在影响线竖距较大的部位。 计算结构的位移目的有两个: ①一个目的是验算结构的刚度,即验算结构的位移是否超过允许的位移限值。 ②另一个目的是为超静定结构的内力分析打下基础。 产生位移的原因主要有下列三种: ①荷载作用②温度变化和材料胀缩③支座沉降和制造误差 一组力可以用一个符号P表示,相应的位移也可用一个符号Δ表示,这种夸大了的力和位移分别称为广义力和广义位移。 图乘法的应用条件:①杆段应是等截面直杆段。②两个图形中至少应有一个是直线,标距y0 应取自直线图中。 互等定理包括四个普遍定理:①功的互等定理②位移互等定理 ③反力互等定理④位移反力互等定理。 3、对称结构就是指: ①结构的几何形式和支承情况对某轴对称。 ②杆件截面和材料性质也对此轴对称。(因而杆件的截面刚度EI对此轴对称) 4、对称荷载:对称荷载绕对称轴对折后,左右两部分的荷载彼此重合(作用点相对应、数值相等、方向相同) 反对称荷载:反对称荷载绕对称轴对折后,左右两部分的荷载正好相反(作用点相对应、数值相等、方向相反) 超静定结构有一个重要特点,就是无荷载作用时,由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用也可以产生内力。 超静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移也可以产生内力。 静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移但不能产生内力。 力法:多余未知力静定结构变形协调(位移相等) 位移法:结构独立结点位移(角、线位移)超静定单杆(是用位移表示的)平衡方程 2、系数EAi /Li是使杆端产生单位位移时所需施加的杆端力,称为杆件的刚度系数。 体系的自由度指的是确定物体位置所需要的最少坐标数目。 拱的基本特点是在竖向荷载作用下会产生水平支座反力。 .静定结构的特性:(1)静定结构的全部约束反力与内力都可以用静力平衡方程求得。(2)温度变化、支座位移不引起静定结构的内力。3)当一个平衡力系作用在静定结构的某一自身几何不变的杆上时,静定结构只在该力系作用的杆段内产生内力。(4).作用在静定结构的某一自身为几何不变的杆 段上的某一荷载,若用在该段上的一个等效 力系来代替,则结构仅在该段上的内力发生 变化,其余部分内力不变。 1.平面杆件结构分类? 梁、刚架、拱、桁架、组合结构。 2.请简述几何不变体系的俩刚片规则。 两刚片用一个铰和一根不通过该铰链中心的链杆或不全交于一点也不全平行的三根链杆相联,则组成的体系是几何不变的,并且没有多余约束。 3.请简述几何不变体系的三刚片规则。 三刚片用不共线的三个铰两两相联或六根链杆两两相联,则组成的体系是几何不变体系,且没有多余约束。 4.从几何组成分析上来看什么是静定结构,什么是超静定结构?(几何特征) 无多余约束的几何不变体系是静定结构,有多余约束的几何不变体系是超静定结构,有几个多余约束,即为几次超静定。 5.静定学角度分析说明什么是静定结构,什么是超静定结构? 只需要利用静力平衡条件就能计算出结构全部支座反力和构件内力的结构称为静定结构;全部支座反力和构件内力不能只用静力平衡条件确定的结构称为超静定结构。 6.如何区别拱和曲梁 杆轴为曲线且在竖向荷载作用下能产生水平推力的结构,称为拱;杆轴为曲线,但在竖向荷载作用下无水平推力产生,称为曲梁。 7.合理拱轴的条件? 在已知荷载作用下,如所选择的三铰拱轴线能使所有截面上的弯矩均等于零,则此拱轴线为合理拱轴线。 仅供学习与参考

电磁学基础知识

电磁学基础知识 电场 一、场强E (矢量,与q 无关) 1.定义:E = 单位:N/C 或V/m 方向:与+q 所受电场力方向 电场线表示E 的大小和方向 2.点电荷电场:E = 静电力恒量 k = Nm 2/C 2 匀强电场:E = d 为两点在电场线方向上的距离 3.E 的叠加——平行四边形定则 4.电场力(与q 有关) F = 库仑定律:F = (适用条件:真空、点电荷) 5.电荷守恒定律(注意:两个相同带电小球接触后,q 相等) 二、电势φ(标量,与q 无关) 1.定义:φA = = = 单位:V 说明:φ=单位正电荷由某点移到φ=0处的W ⑴沿电场线,电势降低 ⑵等势面⊥电场线;等势面的疏密反映E 的强弱 2.电势叠加——代数和 3.电势差:U AB = = 4.电场力做功:W AB = 与路径无关 5.电势能的变化:Δε=W 电场力做正功,电势能 ;电场力做负功,电势能 需要解决的问题: ①如何判电势的高低以及正负(由电场线判断) ②如何判电场力做功的正负(由F 、v 方向判) ③如何判电势能的变化(由W 的正负判) 三、电场中的导体 1.静电平衡:远端同号,近端异号 2.静电平衡特点 ⑴E 内=0;⑵E 表面 ⊥表面;⑶等势体(内部及表面电势相等);⑷净电荷分布在外表面 四、电容器 1.定义:C = (C 与Q 、U 无关) 单位:1 F =106 μF =1012 pF 2.平行板电容器: C = 3.两类问题:①充电后与电源断开, 不变;②始终与电源相连, 不变 五、带电粒子在电场中的运动 1.加速:qU = 2.偏转:v ⊥E 时,做类平抛运动 位移:L = ; y = = = 速度:v y = = ; v = ; tan θ= 六、实验:描绘等势线 1.器材: 2.纸顺序:从上向下

结构力学主要知识点归纳

结构力学主要知识点 一、基本概念 1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。通常包括以下几个方面: A 、杆件的简化:常以其轴线代表 B 、支座和节点简化: ①活动铰支座、固定铰支座、固定支座、滑动支座; ②铰节点、刚节点、组合节点。 C 、体系简化:常简化为集中荷载及线分布荷载 D 、体系简化:将空间结果简化为平面结构 2、结构分类: A 、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。 B 、按内力是否静定划分: ①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。 ②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。 二、平面体系的机动分析 1、体系种类 A 、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。 B 、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。常具体划分为常变体系和瞬变体系。 2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。 3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系 ①一个链杆可以减少一个自由度,成为一个联系。②一个单铰为两个联系。 4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。 A 、W>0,表明缺少足够联系,结构为几何可变; B 、W=0,没有多余联系; C 、W<0,有多余联系,是否为几何不变仍不确定。 5、几何不变体系的基本组成规则: A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。 B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。 C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。 6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰。虚铰在无穷远处的体系分析可见结构力学P20,自行了解。 7、静定结构的几何构造为特征为几何不变且无多余联系。 三、静定梁与静定钢架 1、内力图绘制: A 、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示

生活与哲学知识结构框架图(一目了然,快速记忆)

《生活与哲学》知识框架图(复习神器,一目了然,快速记忆) (1)哲学是一门给人智慧,使人聪明的学问。(注意:此处不能改成科学,只能是学问) 一.含义: (2)哲学是系统化理论化的世界观。(或关于世界观的学说) (3)哲学是对自然、社会和思维知识的概括与总结。(注意:具体科学包括自然科学、社会科学和思维科学,之间关系不能等同) 二.产生:(1)产生于人们实践活动中;(1)源于人们对世界的追问和对实践的反思 三.哲学的功能:指导人们正确的认识世界和改造世界(注意:哲学有正确与错误之分。只有正确的哲学才能让人们正确的认识与改造世界) (1)哲学与世界观:A 区别:a 、含义不同:世界观是人们对整个世界及人与世界关系的总的看法及根本观点 b 、世界观人从都有,哲学并非人人都有; c 、世界观是不自觉的、不系统的,哲学是系统化、理论化的。 四.哲学、世界观、方法论的关系: B:联系:哲学是对世界观进行系统化、理论化而形成的思想体系。(世界观和哲学一样有正确与错误之分) (2)世界观与方法论:一般来说,世界观决定方法论,方法论体现世界观。有什么样的世界观就有什么样的方法论。 (注意:在解题时时要注意世界观与方法论对应正确) 五.哲学同具体科学关系:1.区别:具体科学揭示某一具体领域的规律和奥秘(强调具体); 哲学则对具体科学进行新的概括和总结,从中抽象出最一般的本质和最普遍的规律(强调抽象、一般)。 2.联系:(1)具体科学是哲学的基础,具体科学的进步推动着哲学的发展。 (2)哲学为具体科学提供世界观和方法论的指导。 六.哲学基本问题:1.是什么:(思维与存在关系问题)具体包括:(1)思维和存在何者为本原的问题。(以此划分唯物主义与唯心主义) (2)思维和存在有没有同一性问题。(思维能否正确认识存在的问题)(以此划分可知论与不可知论) 2.为什么:(1)思维与存在的关系问题,首先是人们在生活和实践活动中遇到的和无法回避的基本问题。 (2)思维与存在的关系问题,是一切哲学都不能回避的问题。它贯彻哲学始终。 1.唯物主义:(1)基本观点:物质是本原,意识是派生的;先有物质后有意识;物质决定意识。 (2)三种基本形态:古代朴素唯物主义、近代形而上学唯物主义、辩证唯物主义 七.哲学两大派别:2.唯心主义:(1)基本观点:意识是本原;先有意识后有物质;意识决定物质 (2)两种基本形态:主观唯心主义和客观唯心主义 主观唯心主义(把人的主观精神,如人的目的、意志等夸大为万物的本原,认为人的主观精神,决定客观事物乃至整个世界) 客观唯心主义(把客观精神,如上帝、鬼神、理念等看作世界的主宰与本原,它决定着客观事物的存在和发展)。 哲 学

五大电磁学知识点

五大电磁学知识点 一、电场 1.两种电荷-----(1)自然界中存在两种电荷:正电荷与负电荷. (2)电荷守恒定律: 2.★库仑定律 (1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上. (2)公式: (3)适用条件:真空中的点电荷. 点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少. 3.电场强度、电场线 (1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性. (2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式: E=F/q方向:正电荷在该点受力方向. (3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱; ③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹. (4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线. (5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和. 4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功W AB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:U AB=W AB /q 电势差有正负:U AB=-U BA,一般常取绝对值,写成U. 5.电势φ:电场中某点的电势等于该点相对零电势点的电势差. (1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.(2)沿着电场线的方向,电势越来越低. 6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU 7.等势面:电场中电势相等的点构成的面叫做等势面.

电学实验的基础知识

电学实验的基础知识 一、测量电路与控制电路的选择与设计 1.测量电路 (1)电流表的接法和外接法的比较 接法外接法电路图 误差原因电流表分压 U测=Ux+U A 电压表分流I测=Ix+I V 与真实值比较测量值大于真实值测量值小于真实值 适用条件R A<>R X 适用于大阻值电阻小阻值电阻 (2)两种电路的选择 ①临界值计算法: R X2RvR A时,用电流表接法。 ②实验试探法:按图所示接好电路,让电压表一根接线柱P先后与a、b处接触一下,如果电压表的示数有较大的变化,而电流表的示数变化不大,则可采用电

流表外接法;如果电流表的示数有较大的变化,而电压表的示数变化不大,则可采用电流表接法。 2.控制电路 (1)滑动变阻器的限流式接法和分压式接法 方式 内容 限流式接法 分压式接法 对比说明 两种接法电 路图 串、并联关系不同 负载R 上电压调节范围 RE R +R ab ≤U ≤E 0≤U ≤E 分压电路调节范围 大 (2)必须选用分压式的“3种情况” ①若采用限流式接法不能控制电流满足实验要求,既若滑动变阻器阻值调到最大时,待测电阻上的电流(或电压)仍超过电流表(或电压表)的量程,或超过待测电阻的额定电流(或电压),则必须选用分压式接法。 ②若待测电阻的阻值比滑动变阻器总电阻大得多,以致在限流电路中,滑动变阻器的滑片从一端滑到另一端时,待测电阻上的电流或电压变化不明显,此时,应改用分压式接法。

③若实验中要求电压从零开始调节,则必须采用分压式接法。 二、练习 1.[测量电路的选择]在伏安法测电阻的实验中,待测电阻R X约为200Ω,电压表的阻约为2kΩ,电流表的阻约为10Ω,测量电路中电流表的连接方式如图1(a)或(b)所示,结果由公式R=U/I计算得出,式中U与1分别为电压表和电流表的示数。若将图(a)和(b)中电路测得的电阻值分别记为Rx1和Rx2,则 (填Rx1或Rx2)更接近待测电阻的真实值,且测量值Rx1 (填“大于”、“等于”或“小于”)真实值,测量值Rx2 (填“大于”、“等于”或“小于”)真实值。 2.[控制电路的选择]有一个电阻Rx,其阻值大约是10 Ω,请选择适当的器材,以便测量其阻值。可供选择的电路如图5。可供选择的器材是: A.电动势4.5 V、阻不计的电源E B.量程为15 V、阻10 kΩ的电压表V1

结构力学各章重要内容、知识点、难点

结构力学各章重要内容、知识点、难点 1、绪论 知识点:结构和结构的分类,结构力学的任务,结构的计算简图与杆件结构分类,荷载的分类。 重点:结构的计算简图选择原则、简化要点,结点和支座的变形和受力特性。难点:活载,铰结点、刚结点、组合结点的特点。 2、平面体系的几何组成分析 知识点:自由度、约束、瞬铰、多余约束等概念, 体系自由度计算公式,平面几何不变体系的组成规则,瞬变体系的特性,静定、超静定结构的几何 组成。 重点:应用平面几何不变体系的组成规则分析平面杆系的几何组成。 难点:复杂平面杆系的几何分析。 3、静定梁和静定刚架 知识点:截面法计算指定截面的内力,利用微分关系作内力图,分段迭加法画弯矩图,简支斜梁的计算,多跨静定梁的组成特点及计算。静定平面刚 架的特点、几何组成及型式,反力的计算,内力的计算和内力图的绘制, 内力图的校核。 重点:分段迭加法画弯矩图;多跨静定梁反力、内力的计算及内力图绘制;静定平面刚架内力的计算和内力图。 难点:简支斜梁的计算;已知弯矩图,绘制剪力图、轴力图。 4、三铰拱 知识点:三铰拱的组成和类型,三铰拱的反力和内力,三铰拱的受力特点,合理轴线。 重点:三铰拱的反力和内力计算。 难点:三铰拱截面剪力和轴力的计算。 5、静定桁架和组合结构 知识点:桁架的特点和组成分类,结点法、截面法和联合法求桁架内力,组合结构的内力计算。 重点:特殊杆内力判断,结点法、截面法和联合法求桁架内力,组合结构的内力计算。 难点:复杂桁架内力计算,组合结构中梁式杆的弯矩图。 6、虚功原理和结构位移计算 知识点:位移计算的目的;变形体系的虚功原理;结构位移计算的一般公式; 静定结构在荷载作用下的位移计算;图乘法;静定结构由于温度变化 及支座移动下的位移计算;线弹性结构的互等定理。 重点:静定结构在荷载作用下的位移计算。 难点:图乘法。 7、力法 知识点:超静定结构和超静定次数,力法的基本结构、基本未知量、及其物理意义,利用对称性简化力法计算,超静定结构位移的计算。 重点:根据力法基本方程物理意义列各类结构在各种外界因素作用时的基本方程并计算内力和位移,对称结构取“半边结构”。 难点:支座移动时的力法计算,计算超静定结构位移时基本结构的选择,力法

马克思主义哲学知识体系结构图

马克思主义哲学知识体系 结构图 Newly compiled on November 23, 2020

马克思主义哲学理论结构图 【整体结构图】 物质及其存在形式辩证唯物主义物质范畴辩证唯物论物质世界与人的实践存在形式:运动、时间、空间 世界物质统一性与实事求是 普遍联系 基本特征 永恒发展 对立统一规律:揭示事物发展的动力和源泉唯物辩证法基本规律质量互变规律:揭示事物发展的形式和状态 马否定之否定规律:揭示事物发展的方向和道路克原因与结果 思现象与本质 主基本范畴内容与形式 义可能与现实 哲偶然与必然 学 认识是主体对客体的能动反映 认识的本质 认识与实践 第一次飞跃:从感性认识到理性认识辩证唯物主义认识的过程第二次飞跃:从理性认识到实践 认识论认识的循环性和上升性 认识的真理性 真理观检验真理的标准 真理与谬误 思维方法:分析与综合、归纳与演绎、抽象与具体、历史与逻辑 社会存在 社会本质和社会的实践本质 基本结构社会结构 社会基本矛盾:社会发展的根本动力历史唯物论社会发展规律科学技术:第一生产力 和历史创造者人民群众:历史创造者 社会历史进程 社会发展和人的本质和价值 人的发展共产主义社会 【第一章结构图】 哲学是理论化系统化的世界观 哲学哲学与世界观的关系 哲学与具体科学的关系 哲学和哲学朴素唯物主义

的基本问题唯物主义形而上学唯物主义 第一性问题辩证唯物主义和历 史唯物主义哲学基本问题主观唯心主义 (思维和存在唯心主义 的关系问题)客观唯心主义 可知论 马克第二性问题 思主不可知论 义哲历史根源和阶级基础 学是马哲产生的自然科学和社会科学前提 科学马克思主义历史必然性直接理论来源 的世哲学的基本主观条件 界观特征科学性 和方马哲的本质革命性 法论特征实践性 现代西方哲学科学主义 马哲与现代的两大流派人本主义 西方哲学 马哲与现代西本质区别 方哲学的关系相互影响 深化了马哲的宇宙观 现代科技革命对证明丰富了马哲的一系列 马克思主马哲与现代马哲的丰富和发展基本原理 义哲学与科技革命拓展了马哲的研究领域 现时代马哲对科学技术提供科学的世界观方法论 的指导作用提供哲学论证 毛泽东思想 马克思主义邓小平理论 哲学中国化“三个代表”重要思想 【第二章结构图】 物质是标志客观实在的哲学范畴 辩证唯物主 义物质范畴坚持了彻底的唯物主义一元论 物质范畴坚持了彻底的可知论和唯物主物质及其的意义义反映论 存在形式坚持了辩证的、历史的物质观 运动是物质的根本属性和存在方式 存在形式时空的相对性和绝对性 时间和空间 时空的无限性和有限性 实践的本质:人类有目的地改造客观世界的一切社会性的物质活动 实践主体 世界实践的要素实践客体

(完整版)七年级下册数学知识结构图

第五章知识结构如下图所示: 第六章知识结构 第七章知识结构框图如下:

(二)开展好课题学习 可以如下展开课题学习: (1)背景了解多边形覆盖平面问题来自实际. (2)实验发现有些多边形能覆盖平面,有些则不能. (3)分析讨论多边形能覆盖平面的基本条件,发现问题与多边形的内角大小有密切关系,运用多边形内角和公式对实验结果进行分析. (4)运用进行简单的镶嵌设计. 首先引入用地砖铺地,用瓷砖贴墙等问题情境,并把这些实际问题转化为数学问题:用一些不重叠摆放的多边形把平面的一部分完全覆盖.然后让学生通过实验探究一些多边形能否镶嵌成平面图案,并记下实验结果:

(1)用正三角形、正方形或正六边形可以镶嵌成一个平面图案(图1).用正五边形不能镶嵌成一个平面图案. (2)用正三角形与正方形可以镶嵌成一个平面图案.用正三角形与正六边形也可以镶嵌成一个平面图案. (3)用任意三角形可以镶嵌成一个平面图案, 用任意四边形可以镶嵌成一个平面图案(图2).

观察上述实验结果,得出多边形能镶嵌成一个平面图案需要满足的两个条件: (1)拼接在同一个点(例如图2中的点O)的各个角的和恰好等于360°(周角); (2)相邻的多边形有公共边(例如图2中的OA两侧的多边形有公共边OA). 运用上述结论解释实验结果,例如,三角形的内角和等于180°,在图2中,∠1+∠2+∠3=180°.因此,把6个全等的三角形适当地拼接在同一个点(如图2), 一定能使以这点为顶点的6个角的和恰好等于360°,并且使边长相等的两条边贴在一起.于是, 用三角形能镶嵌成一个平面图案.又如,由多边形内角和公式,可以得到五边形的内角和等于 (5-2)×180°=540°. 因此,正五边形的每个内角等于 540°÷5=108°, 360°不是108°的整数倍,也就是说用一些108°的角拼不成360°的角.因此,用正五边形不能镶嵌成一个平面图案. 最后,让学生进行简单的镶嵌设计,使所学内容得到巩固与运用.1.利用二(三)元一次方程组解决问题的基本过程 2.本章知识安排的前后顺序

电学实验考点归纳总结

高中物理选修3-1电学实验考点归纳总结 一、电路设计或器材选择原则 1、安全性:实验方案的实施要安全可靠,实施过程中不应对仪器及人身造成危害。要注意到各种电表均有量程、电阻均有最大允许电流和最大功率,电源也有最大允许电流,不能烧坏仪器。 2、准确性:在实验方案、仪器、仪器量程的选择上,应使实验误差尽可能的小。保证流过电流表的电流和加在电压表上的电压均不超过使用量程,然后合理选择量程,务必使指针有较大偏转(一般要大于满偏度的1/3),以减少测读误差。 3、便于调节:实验应当便于操作,便于读数。 二、内、外接法的选择 1、外接法与外接法对比 2、内、外接法的确定方法: ①将待测电阻与表头内阻比较 R R V x x x A R R R >?? 为小电阻 外接法 R R V x x x A R R R ??< 为大电阻 内接法 ②试触法 触头P 分别接触A 、B 电压表示数变化大?电流表分压作用大?外接法 电流表示数变化大?电压表分流作用大?内接法 三、分压、限流接法的选择 1 .两种接法及对比 限流接法 分压接法 电路图 电压调节范围 x x ER R x U E R ≤≤+ 0x U E ≤≤ 电路消耗总功率 x EI ()x ap E I I + 闭合K 前 滑动头在最右端 滑动头在最右端

2.选择方法及依据 ①从节能角度考虑,能用限流不用分压。 ②下列情况必须用分压接法 A.调节(测量)要求从零开始,或要求大范围测量。 B.变阻器阻值比待测对象小得多(若用限流,调不动或调节范围很小)。 C.用限流,电路中最小的电压(或电流)仍超过用电器的额定值或仪表量程。 四、实物图连接的注意事项和基本方法 ⑴注意事项: ①连接电表应注意量程选用正确,正、负接线柱不要接错。 ②各导线都应接在接线柱上,不应在导线中间出现分叉。 ③对于滑动变阻器的连接,要搞清楚接入电路的是哪一部分电阻,在接线时要特别注意不能将线接到滑动触头上。 ⑵基本方法: ①画出实验电路图。 ②分析各元件连接方式,明确电流表与电压表的量程。 ③画线连接各元件。(用铅笔画线,以便改错)连线方式应是单线连接,连线顺序应先画串联电路,再画并联电路。 一般先从电源正极开始,到电键,再到滑动变阻器等。按顺序以单线连接方式将干路中要串联的元件依次串联起来;然后连接支路将要并联的元件再并联到电路中去。连接完毕,应进行检查,检查电路也应按照连线的方法和顺序。 五、电学实验 (1)描绘小电珠的伏安特性曲线 器材:电源(4-6v)、直流电压表、直流电流表、滑动变阻器、小灯泡(4v,0.6A 3.8V,0.3A)灯座、单刀开关,导线若干 注意事项: ①因为小电珠(即小灯泡)的电阻较小(10Ω左右)所以应该选用安培表外接法。 ②灯泡两端的电压应该由零逐渐增大到额定电压(电压变化范围大)。所以滑动变阻器必须选用分压接法。 在上面实物图中应该选用上面右面的那个图, ③若选用的是标有“3.8V 0.3A”的小灯泡,电流表应选用0-0.6A量程;电压表开始时应选用0-3V量程,当电压调到接近3V时,再改用0-15V量程。 ④小灯泡的电阻会随着电压的升高,灯丝温度的升高而增大,且在低电压时温度随电压变化比较明显,因此在低电压区域 内,电压电流应多取几组,所以得出的U-I曲线不是直线。 为了反映这一变化过程,说明灯丝的电阻随温度升高而增大,也就说明金属电阻率随温度升高而增大。(若用U-I曲线,则曲线的弯曲方向相反。) ⑤开始时滑动触头应该位于最小分压端(使小灯泡两端的电压为零)。 (2)练习使用多用电表 [实验步骤] 1.机械调零,用小螺丝刀旋动定位螺丝使指针指在左端电流零刻度处,并将红、黑表笔分别接入“+”、“-”插孔。2.选挡:选择开关置于欧姆表“×1”挡。 3.短接调零:在表笔短接时调整欧姆挡的调零旋钮使指针指在右端电阻零刻度处,若“欧姆零点”旋钮右旋到底也不能调零,应更换表内电池。 4.测量读数:将表笔搭接在待测电阻两端,读出指示的电阻值并与标定值比较,随即断开表笔。 5.换一个待测电阻,重复以上2、3、4过程,选择开关所置位置由被测电阻值与中值电阻值共同决定,可置于“×1”或“×10”或“×100”或“×1k”挡。 6.多用电表用完后,将选择开关置于“OFF”挡或交变电压的最高挡,拔出表笔。 [注意事项] 1.每次换档必须重新电阻调零。 2.选择合适的倍率档,使指针在中值电阻附近时误差较小。若指针偏角太大,应改换低挡位;若指针偏角太小,应改

民事诉讼法地知识体系框架图(超级版)

民事诉讼法知识体系框架图 基本原则:平等、调解、辩论、处分 基本原则与基本制度 基本制度:合议、回避、两审终审、公开审判 人民调解不影响起诉 主管问题劳动争议仲裁前置 选择仲裁不得诉讼 管辖 级别管辖 地域管辖 管辖问题裁定管辖 管辖权异议 主体论 原告与被告:诉讼权利能力和诉讼行为能力; 特殊情形下的当事人确定 必要共同诉讼 共同诉讼: 当事人普通共同诉讼 诉讼代表人 诉讼代理人 有独立请求权第三人 第三人 无独立请求权第三人

本证 依照证据与证明责任之间的关系分类 反证 直接证据 依据证据与案件事实的关系分类 证据分类间接证据 原始证据 依据证据的来源分类 传来证据 概念 举证责任合同纠纷举证责任分配 侵权的举证责任分配 绝对免证:自然规律和定理证据论免证 相对免证:众所周知/推定/ 生效文书确认 证明对象三种形式 自认撤回 三点注意 适用与确定(必须;协商与指定)举证延长:可两次延长,本院决定 举证期限效力:增加/变更诉求/反诉-举证期限内 一审程序 “新的证据”概念 二审程序 适用与确定(非必须;协商与指定) 证据交换视为公开质证(认可的证据) 效力: 出庭(证人) 法院调查收集证据:依职权;依申请

原则上都要质证 质证 例外(证据规定47、48):需要保密的证据不得公开质证 证据论不能单独作为认定案件事实的依据:年龄智力不相当,证人 无因不出庭;证人有利害;视听有疑点;复件无核对认证明显优势证据:《证据规定》第73条 不利证据的认定:《证据规定》第75条 证明力大小排序:《证据规定》第77条 原告:有利害关系 被告与诉讼请求明确具体 起诉条件主管与管辖要求“正确” 不予受理 程序启动不符合起诉 条件的处理: 驳回起诉 一审程序主管:诉讼与仲裁 不予受理和内涵 应当受理的一事不再理例外 特殊情形注意 离婚、收养婚34 案件的特殊民诉111 规定意见151 诉讼时效:应当受理 主体 申请撤诉的条件时间 撤诉裁定 诉讼程序特殊情形视为撤诉的情形 适用范围不同 诉讼中止与适用效果不同 延期审理恢复审理上不同程序论法定情形不同

结构力学知识点总结

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0,体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。

9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 11.分布力q(y)=0时(无分布载荷),剪力图为一条水平线;弯矩图为一条斜直线。 () ()Q dM x dF x dx =2 2 ()()()Q dF x d M x q y dx dx ==-,,B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=- =+ ? ? ?

分布力q(y) = 常数时,剪力图为一条斜直线;弯矩图为一条二次曲线。 12.只有两杆汇交的刚结点,若结点上无外力偶作用,则两杆端弯矩必大小相等,且同侧受拉。 13.对称结构受正对称荷载作用, 内力和反力均为对称(K行结点不受荷载情况)。对称结构受反对称荷载作用, 内力和反力均为反对称。 14.三铰拱支反、内力计算公式(竖向荷载、两趾等高)

电机中的电磁学基本知识

第一章 电机中的电磁学基本知识 1.1 磁路的基本知识 1.1.1 电路与磁路 对于电路系统来说,在电动势E 的作用下电流I 从E 的正极通过导体流向负极。构成一个完整的电路系统需要电动势、电导体,并可以形成电流。 在磁路系统中,也有一个磁动势F (类似于电路中的电势),在F 的作用下产生一个 Φ(类似于电路中的电流),磁通Φ从磁动势的N 极通过一个通路(类似于电路中的导 体)到S 极,这个通路就是磁路。由于铁磁材料磁导率比空气大几千倍,即空气磁阻比铁磁材料大几千倍,所以构成磁路的材料均使用导磁率高的铁磁材料。然而非铁磁物质,如空气也能通过磁通,这就造成铁磁材料构成磁路的周围空气中也必然会有磁通σΦ(,由于空气磁阻比铁磁材料大几千倍,因而σΦ比Φ小的多,σΦ常常被称为漏磁通,Φ称为主磁通。因此磁路问题比电路问题要复杂的多。 1.1.2 电机电器中的磁路 磁路系统广泛应用在电器设备之中,如变压器、电机、继电器等。并且在电机和某些电器的磁路中,一般还需要一段空气隙,或者说空气隙也是磁路的组成部分。 图1—1是电机电器的几种常用磁路结构。图(a)是普通变压器的磁路,它全部由铁磁材料组成;图(b)是电磁继电器磁路,它除了铁磁材料外,还有一段空气隙。 图(c)表示电机的磁路,也是由铁磁材料和空气隙组成;图(b)是无分支的串联磁路,空气隙段和铁磁材料串联组成;图(a)是有分支的并联磁路。图中实(或虚)线表示磁通的路径。 (a) (b) (c) 图1—1 几种常用电器的典型磁路 (a) 普通变压器铁芯; (b) 电磁继电器常用铁芯; (c) 电机磁路 1.1.3 电气设备中磁动势的产生 为了产生较强的磁场,在一般电气设备中都使用电流产生磁场。电流产生磁场的方法是:把绕制好的N 匝线圈套装在铁心上,并在线圈内通入电流i ,这样在铁心和线圈周围的空间中就会形成磁场,其中大多数磁通通过铁心,称为主磁通Φ;小部分围绕线圈,称为漏磁通σΦ,如图1—2所示。套装在铁心上用于产生磁通的N 匝线圈称为励磁线圈,励磁

相关文档
最新文档