线性代数B期末试卷教(学)案答案

线性代数B期末试卷教(学)案答案
线性代数B期末试卷教(学)案答案

2008 – 2009学年第二学期《线性代数B 》试卷

2009年6月22日

一、填空题(共6小题,每小题 3 分,满分18分)

1. 设??

???

??

??

???-=*803

00100001

0000

1A ,则A = .

2. A 为n 阶方阵,T AA =E 且=+

3.设方阵12243,311t -??

??=??

??-??

A B 为三阶非零矩阵,且AB=O ,则=t .

4. 设向量组m ααα,,,21 线性无关,向量β不能由它们线性表示,则向量组,,,,21m ααα β 的秩为 .

5.设A 为实对称阵,且|A |≠0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x = .

6.设3R 的两组基为()

T

11,1,1a =,()21,0,1a T

=-,()31,0,1a T

=;)

,1,2,1(1=βT

,()()232,3,4,3,4,3ββ==T

T

,则由基12

3,,a a a 到基

123,,βββ

的过渡矩阵为 .

二、单项选择题(共6小题,每小题3分,满分18分)

1. 设D n 为n 阶行列式,则D n =0的必要条件是[ ].

(A) D n 中有两行元素对应成比例; (B) D n 中各行元素之和为零; (C) D n 中有一行元素全为零;

(D)以D n 为系数行列式的齐次线性方程组有非零解.

2.若向量组α,β,γ 线性无关,α,β,σ 线性相关,则[ ]. (A) α必可由β,γ,σ 线性表示; (B) β必可由α,γ,σ 线性表示; (C) σ必可由β,γ,α 线性表示; (D) γ必可由β,α,σ 线性表示.

3.设3阶方阵A 有特征值0,-1,1,其对应的特征向量为P 1,P 2,P 3,令P =(P 1,P 2,P 3),则P -1AP =[ ].

(A)

100

010

000

??

??

-

??

??

??

;(B)

000

010

001

??

??

-

??

??

??

(C)

000

010

001

??

??

??

??

??

;(D)

100

000

001

??

??

??

??

??

4.设α1,α2,α3线性无关,则下列向量组线性相关的是[ ].

(A)α1,α2,α3 - α1;(B)α1,α1+α2,α1+α3;

(C)α1+α2,α2+α3,α3+α1;(D)α1-α2,α2-α3,α3-α1. 5.若矩阵A3×4有一个3阶子式不为0,则A的秩R(A) =[ ].

(A) 1;(B)2;

(C)3;(D) 4.

6.实二次型f=x T Ax为正定的充分必要条件是[ ].

(A) A的特征值全大于零;(B) A的负惯性指数为零;

(C) |A| > 0 ;(D) R(A) = n .

三、解答题(共5小题,每道题8分,满分40分)

1.求

1

12

23

3

100

110

011

0011

b

b b

D

b b

b

--

=

--

--

的值.

2. 求向量组)4,1,1,1(1=α,)5,3,1,2(2=α,)2,3,1,1(3--=α,)6,5,1,3(4=α的一个极大无关组,并把其余的向量用该极大无关组线性表出.

3.设A 、P 均为3阶矩阵,且T 100010,000??

????????

P AP=若P =(α1,α2,α3

), Q =(α1+α2,α2,α3),求Q T AQ .

4.设A 是n 阶实对称矩阵,O A A =+22,若)0()(n k k R <<=A ,求

E A 3+.

5.设矩阵22082006a ??

????

????A=相似于对角矩阵Λ,求a .

四、(本题满分10分)对线性方程组23112131231222322313233323142434.

x a x a x a x a x a x a x a x a x a x a x a x a ?++=?++=??++=??++=?,,

(1) 若4321,,,a a a a 两两不等,问方程组是否有解,为什么?

(2)若b a a ==31, b a a -==42 (b ≠0),且已知方程的两个解

T 1(1,1,1)=-ξ, T 2(1,1,1)=-ξ,试给出方程组的通解.

五、(本题满分8分)设二次曲面方程1

22=++byz xz axy

(0>a )经正交变换x y z ξηζ????????=????

????????Q ,化成122

22=-+ζηξ,求a 、b 的值及正交矩阵Q .

六、(本题满分6分)设A 为n 阶实矩阵,α为A 的对应于

实特征值λ的特征向量,β为A T 的对应于实特征值μ的特征向量,且

λ≠μ

,证明α与β正交.

2008 – 2009学年第二学期《线性代数B 》试卷参考答案 2009年6月22日

一、填空题(共6小题,每小题 3 分,满分18分)

1. 设??

???

??

??

???-=*

803

0010000100001A ,则A = 2 .

2. A 为n 阶方阵,T AA =E 且=+

3.设方阵12243,311t -??

??=??

??-??A B 为三阶非零矩阵,且AB=O ,则=t -3 .

4. 设向量组m ααα,,,21 线性无关,向量β不能由它们线性表示,则向量组,,,,21m ααα β 的秩为 m +1 .

5.设A 为实对称阵,且|A |≠0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x =____y 1-A __ .

6.设3R 的两组基为()T

11,1,1a =,()21,0,1a T =-,()31,0,1a T

=;

T 1(1,2,1,)=β,()()232,3,4,3,4,3ββ==T T

,则由基123

,,a a a 到基123

,,βββ的过渡 矩阵P =??

????????---101010432

二、单项选择题(共6小题,每小题3分,满分18分)

1. 设n D 为n 阶行列式,则n D =0的必要条件是[ D ].

(A) n D 中有两行元素对应成比例; (B) n D 中各行元素之和为零; (C)n D 中有一行元素全为零;(D)以n D 为系数行列式的齐次线性方程组有非零解.

2.若向量组α,β,γ 线性无关,α,β,σ 线性相关,则[ C ].

(A) α必可由β,γ,σ 线性表示. (B) β必可由α,γ,σ 线性表示.

(C) σ必可由β,γ,α 线性表示. (D) γ必可由β,α,σ 线性表示. 3.设3阶方阵A 有特征值0,-1,1,其对应的特征向量为P 1,P 2,

P 3,令P =(P 1,P 2,P 3),则P -1AP =[ B ]. (A)100010000??

??-??

????; (B) 000010001????-??

????; (C) 000010001??

????????-;(D)

100000001??????????

-. 4.设α1,α2,α3线性无关,则下列向量组线性相关的是[ D ].

(A )α1,α2,α3 - α1; (B )α1,α1+α2,

α1+α3;

(C )α1+α2,α2+α3,α3+α1; (D )α1-α2,α2-α3,

α3-α1.

5.若矩阵43?A 有一个3阶子式不为0,则[ C ].

(A )R(A )=1; (B ) R(A )=2; (C ) R(A )=3;(D ) R(A )=4 .

6.实二次型f =x 'Ax 为正定的充分必要条件是 [ A ]. (A) A 的特征值全大于零; (B) A 的负惯性指数为零; (C) |A | > 0 ; (D) R (A ) = n .

三、解答题(共5小题,每道题8分,满分40分)

1.求1

12

2

331

00110

011001

1b b b D b b b --=

----的值 解:1

112

222

33

33

3

1

00100100010010010 1.011001

0010

1

10

110

1b b b b b b D b b b b b b =

===------

2. 求向量组)4,1,1,1(1=α,)5,3,1,2(2=α,)2,3,1,1(3--=α,)6,5,1,3(4=α的一个极大无关组,并把其余的向量用该极大无关组线性表出.

解:极大无关组12,αα, 12332ααα-=,1242ααα-=.

3.设A 、P 均为3阶矩阵,且T 100010,000??

????

????

P AP=若 P =(α1,α2,α3),Q =(α1+α2,α2,α3),求Q T AQ .

解:由于

Q =(α1+α2,α2,α3)= (α1,α2,α3) 100100110110,001001????

????=????

????????P 于是Q T AQ =

T

T 100100110100110110010110001001001001????????????

? ?????????= ? ????????? ? ??????????

??????????? P A P P AP 110100100210010010110110.001000001000????????

????????==????????

????????????????

4.设A 是n 阶实对称矩阵,O A A =+22,若)0()(n k k R <<=A ,求

E A 3+.

解: 由O A A =+22知, A 的特征值-2或0,又)0()(n k k R <<=A ,且A 是

n 阶实对称矩阵,则2

2

~0

0-???????

?

-?

????????

?

A (k 个-2),故

E A 3+3n k -=.

5.设矩阵22082006a ??

????

????

A=相似于对角矩阵Λ,求a . 解: 由|A -λE |=0,得A 的三个特征值λ1=λ2=6,λ3= -2.由于A 相似于对角矩阵,R (A -6E )=1,即

42021084~00000000a a --????

????-????????????

, 显然,当a =0时,R (A-6E )=1,A 的二重特征值6对应两个线性无关的特征向量. 四、(本题满分10分)对线性方程组231121312312223223

13233323142434.x a x a x a x a x a x a x a x a x a x a x a x a ?++=?++=??++=??++=?,

(1) 若4321,,,a a a a 两两不等,问方程组是否有解,为什么?

(2)若b a a ==31, b a a -==42 (b ≠0),且已知方程的两个解

T 1(1,1,1)=-ξ, T 2(1,1,1)=-ξ,试给出方程组的通解.

解:(1)因为

0))()()()()((111134241423131234

24

4

3323332

222

3

12

11≠------=a a a a a a a a a a a a a a a a a a a a a a a a ,故()()R R ≠A b A ,无解.

(2)2)(=A R ,3=n ,故通解

21121()01,()21k k k -????

????=-+=+∈????

????-????

x ξξξR .

五、(本题满分8分)设二次曲面的方程122=++byz xz axy )

0>a 经正交变换x y z ξηζ????

????=????????????Q ,化成12222=-+ζηξ,求a 、b 的值及正交矩阵Q .

解:设012

0210a a

b b ?

?

????

?

?=??????

????

A ,由0,20-=+=A E A E 知1,2-==b a .

当1λ=时,111111111~000111000---????

????-=--????

????--????

A E ,t )0,1,1(1=ξ,T )2,1,1(2-=ξ

当2λ=-时,1012~011000??

??+-??????

A E T 3

(1,1,1).=-ξ

故正交阵

=

?

?

?

Q.

六、(本题满分6分)设A为n阶实矩阵,α为A的对应于实特征值λ的特征向量,β为A T的对应于实特征值μ的特征向量,且λ≠μ,证明α与β正交.

证:依题意得Aα=λα,A Tβ=μβ,将Aα=λα的两边转置得,αT A T =λαT,在上式的两边右乘β得,αT A Tβ=λαTβ,即μαTβ=λαTβ,亦即(μ-λ)αTβ=0,由于λ≠μ,所以αTβ=0,故α与β正交.

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数教学大纲2016

中国海洋大学本科生课程大纲 课程属性:公共基础课 课程性质:必修 一.课程介绍 1.课程描述: 线性代数课程是高等院校理科(非数学类专业)、工科、经济和管理各专业(特别是需要数学基础知识较强的相关专业)的一门公共基础课。线性代数主要处理线性关系问题,它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的应用性。通过线性代数课程学习,要求学生掌握该课程的基本理论与方法,为学习相关课程及进一步扩大数学知识面奠定必要的基础。同时,培养学生的逻辑思维能力以及解决实际问题的能力等,还可以提升学生相应的数学素养。 2.课程内容: 主要内容包括:行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量及矩阵的对角化、二次型。 行列式和矩阵是学习解线性方程组的基础,利用行列式,根据克拉默法则可以求解某些非齐次方程组的解;利用行列式可以判定某些齐次线性方程组是否有非零解。行列式也可以判定矩阵是否可逆,并用之求可逆矩阵的逆矩阵;利用矩阵可以判定和求非齐次方程组的解,以及可以求齐次线性方程组的非零解;建立R n的基与向量在基下的坐标及坐标变换,并讨论欧式空间及其结构;讨论矩阵的特征值和特征向量及矩阵 - 1 -

的对角化问题;利用以上理论讨论二次型及其矩阵表示,合同变换与合同矩阵,二次型的秩、惯性定理、标准形和规范形,用正交变换和配方法化二次型为标准形等。 3. 课程与其他课程的关系: 先修课程:无; 并行课程:微积分,高等数学等; 后置课程:概率论与数理统计。在计算机数据结构、算法、计算机图形学、计算机辅助设计、密码学、经济学、网络技术、虚拟现实等课程中,都会涉及到线性代数的相关基础知识。由于理解及知识储备的原因,建议在一年级下学期或者二年级时,学生开始选修《线性代数》。 二、课程目标 本课程目标是为非数学类专业学生学习有关专业课程和扩大数学知识面提供必要的数学基础和基本技能,更旨在通过本课程的学习培养学生的逻辑推理和抽象思维能力、空间直观和想象能力。到课程结束时,学生应能: (1)掌握行列式、矩阵的基本定义及性质等,能够计算行列式的值; (2)理解线性方程组求解理论,掌握向量组的秩、矩阵的秩、线性相关、线性无关等概念,会分析并求解齐次、非齐次线性方程组。 (3)熟练掌握向量的运算,理解R n中的基、坐标、基变换与坐标变换及内积的相关知识; (4)掌握矩阵的特征值和特征向量,矩阵的对角化理论; (5)掌握二次型的标准型和正定二次型的基本概念和理论; (6)能够借助Matlab等计算机软件进行行列式的计算、求解线性方程组等。 三、学习要求 要完成所有的课程任务,学生必须: - 1 -

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵 数 学 模 型: 生态学:海龟种群统计数据 该模型在高等数学教学应用的目的: 1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。 2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。 3. 巩固矩阵的概念和计算。 生态学:海龟种群统计数据 管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。举例来说,可以用一个四阶段的模型来分析海龟种群的动态。 如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是 111i i d i i i d i s p s s -??-= ?-?? 种群可以存活且在次年进入下一阶段的比例是 ()11i i d i i i d i s s q s -= - 如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵

12341 2233 400000 p e e e q p L q p q p ?? ? ?= ? ??? 那么L 可以用来预测未来几年每阶段的种群数。上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。根据前面表格数据,我们模型的莱斯利矩阵是 0127790.670.73940000.000600000.810.8077L ?? ? ?= ? ??? 假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后 每阶段的种群数可以如下计算 100 0127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ?????? ??? ? ??? ?=== ??? ? ??? ??????? (这里的计算进行了四舍五入)。为了得到2年后的种群数,再用矩阵L 乘一次。 2210x Lx L x == 一般来说,k 年后的种群数由公式0k k x L x =给出。为了了解更长时期的趋势,计算出x 10、 x 25和x 50,如下表所示。 这个模型预测50年后繁殖期的海龟总数下降了80%。 下面的文献[1]介绍了一个七阶段的种群动态模型,文献[2]是莱斯利原来那篇文章。 思考:海龟最终是否会灭绝?如果不灭绝,海龟种群数有无稳定值?该模型用到了那些数学知识?该模型可以进行怎样的推广? 参考文献 1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation,” Ecology , 68(5), 1987 2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” Biometrika , 33, 1945.

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数教学大纲

线性代数Ⅰ课程教学大纲 一课程基本情况 课程名称:线性代数。 课程名称(英文): Linear Algebra。 课程编号:B11071。 课程总学时:40学时(全部为课堂讲授)。 课程学分:2学分。 课程分类:必修,考试课。 开课学期:第3学期。 开课专业:适合对数学类基础课要求较高的理工类本科专业,包括物理学(S)、计算机科学与技术(S)、农业机械化及其自动化、机械设计制造及其自动化、电气工程与自动化、电子信息工程、土木工程、工程管理等专业。 先修课程:无。 后续课程:大学物理等基础课和各专业相应专业课。 二课程的性质、地位、作用和任务 《线性代数》是高等学校上述各专业的重要基础课。由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现我院上述各专业培养目标的必备前提。本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。从而为学生进一步学习后续课程和进一步提高打下必要的数学基础。 三主要容、重点及深度 了解行列式的定义,掌握行列式的性质及其计算。理解矩阵(包括特殊矩阵)、逆矩阵、矩阵的秩的概念。熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。理解逆矩阵存在的充要条件,掌握矩阵的求逆的方法。掌握矩阵的初等变换,并会求矩阵的秩。理解n维向量的概念。掌握向量组的线性相关和线性无关的定义及有关重要结论。掌握向量组的极大线性无关组与向量组的秩。了解n 维向量空间及其子空间、基、维数等概念。理解克莱姆(Cramer)法则。理解非齐次线性方程组有解的充要条件及齐次线性方程组有非零解的充要条件。理解齐次线性方程组解空间、基础解系、通解等概念。熟练掌握用行初等变换求线性方程组通解的方法。掌握矩阵的特征值和特征向量的概念及其求解方法。了解矩阵相似的概念以及实对称矩阵与对角矩阵相似的结论。了解向量积及正交矩阵的概念和性质。了解二次型及其矩阵表示,会用配方法及正交变换法化二次型为标准形。了解惯性定理、二次型的秩、二次型的正定性及其判别法。

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

关于《线性代数》教学的一些想法和思考(精)

关于《线性代数》教学的一些想法和思考 作者:薛艳霞杜莹https://www.360docs.net/doc/0c5607215.html, 2011-12-25 23:45:51 来源:毕业论文网 摘要:本文结合线性代数课程本身的特点和作者自身的教学实践,就如何提高线性代数课程的教学效果,提出改进线性代数教学方法的几点想法和建议。 关键词:线性代数、学习兴趣、教学方法 《线性代数》是高等院开设的一门重要的数学基础课,该课程对于提高学生的数学素养、培养学生用数学思维分析问题和运用数学知识解决实际问题的能力是非常有用的。因为它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已广泛渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域,同时为后续课程包括数学建模、运筹学等的深入学习作铺垫。但是,该课程具有概念多、抽象、逻辑性强的特点,学生们普遍反映线性代数抽象、枯燥、繁琐、难学、没用,并因此失去了学习的兴趣,更缺乏进一步深入研究和探索该门课程的愿望。作为从事《线性代数》教学的教师,不能满足只是完成把知识强施于人,这样绝大部分学生会反感,进而会产生抵触情绪,以致放弃该门课程的学习。那么怎样才能让学生产生主动学习的兴趣,怎样才能将课堂内容用更好的教学方式组织以便让学生乐于接受,怎样才能让学生更有成效的学好这门课程,笔者认为可以从以下几个方面入手。 第一,创设学习情境,激发学生的学习兴趣。俗话说,“兴趣是最好的老师”。因此作为任课教师,第一堂课前必须花费大量时间做好准备工作,比如查阅资料追溯线性代数的相关历史,收集一些将想象力、创造力、努力交织在一起的数学家们的有趣事迹,让学生充分了解课程内容的相关背景知识及发展现状,激励学生学习的兴趣。这样,基于学生对这些数学家们的好奇心,便急于想从学习过程中寻找答案。从而教师便可以创设一种很轻松的学习氛围,使他们了解知识点的来龙去脉,进而加深他们对概念的理解,同时还有利于拓广他们的知识面,提高他们的数学修养,激发他们的学习兴趣和主动探索知识的内在动力,学生如果对学习线性代数有了强烈的兴趣,也达到了我们的教学效果,自然就提高了学习效率。 第二,建立和谐的师生关系,用情感教育激发学生的学习兴趣。“感人心者先乎于情”,作为教师,我们不要“居高临下”,应从自身角度提升自己的素养,使自己对学生有一定的亲和力,注重加强与学生感情的交流,经常关心他们,鼓励他们,热情地帮助他们解决学习和生活中的所遇到的一些困难。另外,教师要创设一种轻松愉悦的课堂气氛,要注意抓住每位学生的闪光点,并不失时机地给他们以鼓励和表扬,以激发学生的自信心,随着自信心的增强,学生的自我表现愿望得以满足,从而“润物细无声”,在潜移默化中达到“尊

线性代数课堂教学的几点体会

线性代数课堂教学的几点体会 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 线性代数课堂教学的几点体会 线性代数是数学的一个重要分支,其计算技巧与数学理论对自然学科和数学学科本身的发展起着重要作用,它不仅是一门非常好的数学课程,而且是一门非常好的工具学科,在很多领域都有广泛的用途。同微积分一样,它是高等数学中两大入门课程之一,是大学理工科和部分文科专业主要的基础课程。它的理论和方法无论是对学生知识结构的完善还是对学生综合素质的提高,以及创新能力的培养都有着十分重要的作用。线性代数的教学效果直接影响学生在实践中应用数学的能力。笔者结合自己十几年来的教学实践,从课前备课、课堂教学及课后作业批阅三个方面就如何增强线性代数教学效果谈谈体会。 一、认真准备,精心备课 上课前充分备课是上好课的前提,要提高课堂教学质量和效率,首先要抓好备课这一环节。大量的教学实践表明,教师在备课上所花的工夫直接影响授课质量。就同一任课教师来说,进行观摩教学时教学效

果一般都比平时好,原因并非观摩教学时教学能力高,而在于教师备课比平时充分得多,进行了认真的筹划和精心的设计。针对线性代数课程学时少、概念多、抽象度高、思维方式独特的特点,教师要在教学过程中既保证数学原理的传授,又使学生及时掌握主要的解题方法,就必须认真地筹划和精心地设计每一节课的每一个知识点。 要备好课,首先要熟悉教材的整体构架。具体地指,这册教材是怎么样编写的,它是以怎么样的脉络为主线的,主要内容有哪些,分为几大版块,每个版块由哪些具体的内容构成。只有对教材框架熟悉,我们才可以创造性地加工教材,对教材本文由论文联盟http://收集整理科学地重组、合并、添加及删除,让教材符合学生的实际,符合学生的口味。这就是说,我们要用教材教,而不是教教材。例如大多数线性代数教材讲行列式的时候,开始都是以2阶与3阶行列式引入一般行列式的定义的,如文献[1]和[2]。如果严格按照课本章节,那么2阶节行列式还容易让学生记住,但是3阶行列式对于大多数学生来说,不但有的6项不容易记住,而且常会为这些项的正负号纠结。如果熟悉了教材的整体框架,知道这不过是为了引入行列式一般概念而设的章节,就完全可以跳过这部分

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数课程教学总结

线性代数课程教学总结 《线性代数课程教学总结》的范文,这里给大家。篇一:线性代数课程总结 线性代数精讲 曾经我学过线性代数,但是没有深入的学习,所有一直希望有一个机会能够深入学习线性代数的机会。没有想到的是,今年的选修课给了我这样一个机会。线性代数精讲,当我看到它的时候,毅然的选了这门选修课。 现在这学期快要结束了,当然这门选修课也即将结束,在这里我想总结一下这门选修课给我带来的帮助。首先从专业来说,对于学习计算机的人来说,数学的重要性不言而喻。打一个比方,数学就好比计算机的左膀右臂。对于想深入学习计算机的人来说,数学必须学得很好。所以线性代数这门课对我来说很重要,它与我们所讲的数据结构中的图有很大的联系。通过这门课程的学习,我已经深入了解了线性代数,它使我对原来学过的某些知识有种恍然大悟的感觉。以后我还会继续学习线性代数这门课程,我相信它给我带来的还远不止这些。 其次,从考研方面来说,对于考研考试中的数学试卷,线性代数占有很大的比重,这也显现出来线性代数对考研的学生来说有多么重要。我是一个将在后年要参加考研的学生,能听到线性代数精讲这样一门课,我很高兴。在这门课程的学习过程中,老

师深入地讲解了线性代数,让我的考研之路轻松了不少。而且,老师在将课的同时还插入例如考研真题,这是最让我感激的地方。有这样的辅导,我的线性代数还愁不过吗? 最后,我想从对实际生活的影响方面来说,生活中的思维模式是 数学思维模式的一种映射。从某一个方面来说吧,比如做数学中的证明题,每一步都不是凭空而来的,精品而是根据题中的实际要求一步一步推出来的,这就好比做生活中的某件事,如果没有一步一步踏踏实实的走过,是不可能有好的结果的。这门课的讲解,让我对数学的思维模式有了更深入地了解,对生活也有了更深入的认识。 通过这半学期的学习,让我学到了很多,我想说对老师说声谢谢。希望这门课能够一直的讲下去,让更多学弟学妹们受到帮助。 篇二:线性代数课程总结 线性代数课程总结 第一章行列式 1.1二阶、三阶行列式 (一)二阶行列式 (二)三阶行列式 1.2 (二)

线性代数教学大纲

线性代数教学大纲 一.课程基本要求 (一)矩阵 1. 理解矩阵概念。了解单位矩阵,对角矩阵,对称矩阵等特殊矩阵。 2. 熟练掌握矩阵的线性运算、乘法运算、转置运算及其运算规律。 3. 了解行列式的定义和性质,掌握行列式的计算。 4. 掌握克拉默(Cramer)法则。 5. 熟练掌握矩阵的初等变换,理解初等矩阵的概念。 6. 熟练掌握矩阵秩的求法,了解满秩矩阵的性质。 7. 理解逆矩阵的概念及其存在条件,熟练掌握求逆的方法。 8. 掌握分块矩阵的运算并能利用矩阵分快法简化矩阵运算。 (二)n维向量 1. 理解n维向量的概念。掌握向量的线性运算。 2. 理解向量组线性相关,线性无关的定义。了解有关的定理结论。 3. 理解向量组的极大无关组与向量组的秩的概念,熟练掌握向量组的的秩与极大无关组的求法。 4. 理解向量的内积及正交的定义,掌握线性无关向量组正交规范化的方法及正交矩阵的判定及性质。 5. 了解n维向量空间、子空间、基、维数、坐标等概念。 (三)线性方程组 1. 理解齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件。 2. 理解齐次线性方程组的基础解系及通解的概念。熟练掌握其求法 3. 理解非齐次线性方程组解的结构及通解的概念。 4. 熟练掌握用行初等变换求线性方程组通解的方法。 (四)矩阵的特征值与特征向量 1. 理解矩阵的特征值与特征向量的概念及性质,熟练掌握特征值与特征向量的

求法。 2. 理解相似矩阵的概念、性质,掌握矩阵相似对角化的充要条件及求法。(五)二次型 1. 掌握二次型及其矩阵表示,了解二次型的秩的概念,了解二次型的标准形,规范形的概念及惯性定理。 2. 熟练掌握用正交变换法化二次型为标准型的方法。 3. 了解二次型的分类,熟练掌握二次型及其矩阵的正定性与判别法。 二. 课程内容 第一章矩阵(8-10学时) §1 矩阵的概念 §2 矩阵的线性运算 §3 方阵的行列式及其性质 §4 初等变换与矩阵的秩 §5 初等矩阵与逆矩阵 §6 分块矩阵 习题课 第二章 n维向量(7-8学时) §1 n维向量及其运算 §2 向量组的线性相关性 §3 向量组的秩 §4 向量空间 §5 向量组的正交性与正交矩阵 习题课 第三章线性方程组(3-4学时) §1 齐次线性方程组 §2 非齐次线性方程组 习题课 第四章矩阵的特征值与特征向量(4-6学时) §1 矩阵的特征值与特征向量

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

《线性代数》课程教学中的几点思考

【摘要】针对线性代数课程中存在学时少、内容多、概念抽象、学生学习积极性不高等问题,提出改进线性代数教学方法的几点想法,以激发学生学习的兴趣和积极性,从而提高线性代数的教学效果。 【关键词】线性代数;学生;学习 《线性代数》是各类高等院校的的一门重要基础理论课程,是学习许多后续课程不可缺少的工具。它在自然科学、社会科学和工程技术等诸多领域都有广泛的应用。相比于《高等数学》、《概率论与数理统计》,《线性代数》具有高度的理论性、逻辑性和抽象性,所以它对培养学生的抽象思维能力、严密的逻辑论证能力具有重要作用。但从教学实践看,线性代数课程存在学时少、内容多、概念抽象、学生学习积极性不高等问题。笔者认为建立融洽的师生关系,注重课程的知识结构,在教学中注重数学思想方法的使用和知识的实际应用以及易错问题的讲解,这些措施有助于激发学生学习的兴趣和积极性,培养学生的创造性思维和创新意识,提高线性代数的教学效果。 一、建立融洽的师生关系 师生关系在教育实践中的功效是巨大的,它的和谐与否很大程度上决定了高等教育质量的高低。学生的学习兴趣、学习动机与师生关系间存在较高的相关性。学生经常会把“喜欢教师”作为学习努力的原因之一,“不喜欢教师”也常常是学生对某门课失去兴趣的原因。教师在线性代数教学中应该不断提高自己的教学水平,展现积极的情感、严谨的治学态度和高尚的人格;应该尊重、爱护、了解学生,带动学生一起探究知识,进行学业和思想上的交流。这样可以取得学生的尊重和认可,进而喜欢上线性代数这门课。 因此,建立融洽的师生关系对提高教育教学质量是必要而且可行的。 二、注重课程的知识结构 我国现行的《线性代数》教材中,主要遵循行列式―矩阵―线性方程组―向量―相似矩阵与矩阵对角化―二次型这样顺序安排教学内容。这些分散的块状结构使得学生普遍感到线性代数知识点较多,内容不连贯,杂乱无章,抓不住重点。行列式、矩阵、向量、二次型都是学生不曾接触过的内容,而线性方程组是他们稍微熟悉的内容。因此,在实际教学中,要注重课程的知识结构,在内容的组织上就要有精心的设计,要分析五部分内容间的关系,让这些内容联系起来。以线性方程组求解为主线,渐次引进行列式、矩阵和向量这些新工具,有了这些工具,就可以理解方程组的类型和通解及解集的结构,也就是本课程第一到第四章的内容。而后围绕相似矩阵与矩阵对角化和化二次型为标准形展开,而这些问题则完全可以看作是行列式、矩阵、线性方程组的的应用。因此,教师在线性代数的教学过程中,通过理清课程主线,构建知识体系,可以使学生掌握线性代数的整个知识脉络,了解各知识点之间的联系及在整个知识体系中的地位和作用,能够突破学习线性代数的重点和难点,充分夯实基础。 三、注重数学思想方法的使用 学生在学习线性代数课程时,通常感到内容抽象,逻辑性强,趣味性少,推导和计算繁琐,对学习缺乏兴趣。所以,在教学的过程中,我们要注意教学方法的运用。在教学中可以将数学思想方法,例如,化归、归纳、演绎、类比等思想方法融入线性代数课程教学中。例如,每一章节或单元的内容可以建立知识链或通过运用图像图表进行归纳总结;在二阶行列式逆矩阵的计算中可以归纳为两调一除原则;在讲解逆矩阵的性质时,引入穿脱原理这样的比喻。这样可以激发学生学习的兴趣和积极性,提高线性代数课程教学效果,培养学生的创造性思维和创新意识。 四、注重实际应用价值 在教学中,经常会有学生问这样的问题:“老师,学习线性代数课程有什么用?”这反映

对《线性代数》课程教学的认识

对《线性代数》课程教学的认识 【摘要】本文针对《线性代数》课程的“抽象性”的特点,从线性代数的研究对象、研究思想、概念和方法以及应用等方面,通过一些实例,提出了如何使线性代数课程生动起来的几点认识。 【关键词】线性代数;抽象性;生动;实例 《线性代数》与《高等数学》是大学数学教学中的两个最基本的课程。相比于《高等数学》,《线性代数》课程有它独有的特点,比如:学时相对较少、概念和内容比较抽象等。但是,学生通常并没有因为它的内容少,定理、公式少而觉得容易学习,反而因为线性代数的抽象性而“望而生畏”,很难入门。教师的任务就是如何化“抽象”为“生动”,引领学生走进线性代数的奇妙世界,使学生理解并掌握线性代数的思想与精髓,并能很顺利的加以应用,同时提高学生的数学素养。 1 让线性代数的研究对象和思想生动起来 每一门课程都有它的主要研究对象,线性代数的研究对象是向量空间及线性变换的理论。线性代数以代数的方法在解决几何问题,体现了代数与几何的结合。而将代数与几何互相转换的方式融入教学中去,就使得教学过程生动、形象而又直观。 (1)在学习矩阵的运算时,矩阵乘法相对来说,会使学生觉得非常“不自然”,如果适当融入一些与空间相关的例子,会产生意想不到的效果! 例1 计算cosφ sinφ-sinφ cosφ. 通过计算,我们得到:cosφ sinφ-sinφ cosφ= cos nφ sin nφ-sin nφ cos nφ. 事实上,我们知道,矩阵cosφ sinφ-sinφ cosφ可以表示二维空间,即平面上的旋转变换,指空间中的向量都旋转φ(弧度),是线性变换的一种。而cosφ sinφ-sinφ cosφ可以理解为空间做了n次这样的旋转变换,得到旋转nφ的变换,对应表示矩阵恰好为: cos nφ sin nφ-sin nφ cos nφ. 这样,我们就从几何空间的直观例子使矩阵乘法变得生动、形象。 (2)初等矩阵的理解也可以借助几何方法:如初等矩阵1 0 00 k 00 0 1可以理解为一个拉伸或压缩变换;1 0 00 1 00 c 1可以看做是一个投影平移变换等。 (3)利用正交变换使二次型化标准形,这是线性代数课程的一个难点,很多学生不理解为什么要化标准形?为什么要使用正交变换法?这样做有什么实际意义?下面我们举例说明。 例2 用正交变换法将二次型化为标准型:f=2x+3x+3x+4xx. 我们可以通过正交变换xxx=1 0 0 0 0 -yyy,使二次型化为标准形:f=2y+5y+y. 从几何角度理解,2x+3x+3x+4xx=1在三维线性空间中,表示什么样的曲面呢?我们知道正交变换保持正交性不变,即在变换后,在仍为空间直角坐标系的新坐标下,方程化为2y+5y+y=1,即表示的曲面是一个椭球! 二次型标准化问题是矩阵理论的一个应用,是将一个有中心的二次曲线(面)方程化为标准方程,从而对其进行分类,线性代数中将它推广到n维空间中,并给予了解决。如果将这种方法用到解析几何中,它可以解决有心曲线(面)的分类问题. 这充分反映了利用矩阵这个线性代数的重要工具,去研究问题的价值体现。也使得线性代数研究对象和思想的应用灵活起来。

相关文档
最新文档