正弦信号激励下系统的稳态响应_例3

正弦信号激励下系统的稳态响应_例3

信号与系统实验指导书

实验一 常用信号分类与观察 一、实验目的 1、了解单片机产生低频信号源; 2、观察常用信号的波形特点及产生方法; 3、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ? ??><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

信号与系统常用公式

常用 公式 第一章 判断周期信号方法 两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。 2/2/2/(2/),/N N M M N πβπβ πβπβπβ==仅当为整数时正弦序列才具有周期当为有理数时 正弦序列仍具有周期性, 其周期为取使为整数的最小整数当2为无理数时 正弦序列不具有周期性, 1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。 2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。 信号的能量 def 2 ()E f t dt +∞ -∞=? 信号的平均功率 def 2 /2 /2 1lim ()T T T P f t dt T +-→∞=? 冲激函数的特性 '''()()(0)()(0)()f t t f t f t δδδ=- ()()(0)()f t t f t δδ= ()()()()f t t a f a t a δδ-=- ()()(0),f t t dt f δ∞ -∞ =? ()()()f t t a dt f a δ∞ -∞ -=? ()()11()()n n n at t a a δδ= g 001 ()()t at t t a a δδ-=- 000()()()()f k k k f k k k δδ-=- ()()()()(1)(0)n n n t f t dt f δ∞ ∞ =-? - ''()()(0)t f t dt f δ∞ ∞ =-?- 动态系统是线性系统的条件 可分解性 {}{}{}{}()()()0,()(0),0f x y y y T f T x ?=?+?=?+???????? 零状态线性 {}{}{}{}{}{}12120,()()0,()0,()T af t bf t aT f bT f +=?+????????????? 零输入线性 {}{}{}{}{}{}1212(0)(0),0(0),0(0),0T ax bx aT x bT x +=+???????????? 判断系统时不变、因果、稳定的方法。 线性时不变的微分和积分特性。 第二章

--非正弦交流电路

第9章非正弦交流电路 学习指导与题解 一、基本要求 1.建立几个频率为整数倍的正弦波可以合成为一非正弦周期的概念。明确一个非正弦周期波可以分解为一系列频率为整数倍正弦波之和的概念(即谐波分析)、谐波中的基波与高次谐波的含义。了解谐波分析中傅里叶级数的应用。 2.掌握波形对称性与所含谐波分量的关系。能根据波形的特点判断所含谐波的情况。了解波形原点选择对所含谐波的影响。 3.掌握非正弦周期电压和电流的平均值(即直流分量)和有效值的计算。能根据给定波形计算出直流分量。能根据非正弦周期波的直流分量和各次谐波分量,计算出它的有效值。 4.掌握运用叠加定理和谐波分析计算非正弦交流电路中的电压和电流的方法。 5.建立同频率的正弦电压和电流才能形成平均功率的概念。掌握运用叠加定理和谐波分量计算非正弦交流电路中和平均功率。 二、学习指导 在电工技术中,电路除了激励和响应是直流和正弦交流电和情况外,也还遇到有非正弦周期函数电量的情况。如当电路中有几个不同频率的正弦量激励时,响应是非正弦周期函数;含有非线性元件的电路中,正弦激励下的响应也是非线性的;在电子、计算机等电路中应用的脉冲信号波形,都是非正弦周期函数。因此,研究非正弦交流电路的分析,具有重要和理论和实际意义。 本章的教学内容可分为如下三部分: 1.非正弦周期波由谐波合成的概念; 2.非正弦周期波的谐波分析; 3.非正弦交流电路的计算。 着重讨论非正弦周期波谐波分析的概念,非正弦周期量的有效值和运用叠加定理计算非正弦交流电路的方法。 现就教学内容中的几个问题分述如下。 (一)关于非正弦周期波的谐波的概念 非正弦周期波是随时间作周期性变化的非正弦函数。如周期性变化的方波、三角波等。这类波形,与正弦波相比,都有变化的周期T和频率f,不同的是波形而已。

信号与系统作业

实验一常用连续时间信号的实现 一、实验目的 (1)了解连续时间信号的特点; (2)掌握连续时间信号表示的向量法和符号法; (3)熟悉MA TLABPlot函数等的应用。 二、涉及的MATLAB函数 1.plot函数 功能:在X轴和Y轴方向都按线性比例绘制成二维图形。 2.ezplot函数 功能:绘制符号函数在一定范围内的二维图形,简易绘制函数曲线。 3.Sym函数 功能:定义信号为符号变量。 4.subplot函数 功能:产生多个绘图区间。 三、实验内容与方法 1.正弦交流信号f(t)=sin(ωt+φ) (1)符号推理法生成正弦交流信号。 MATLAB程序:. t=-0:0.001:1; f=sym('sin(2*pi*t)'); ezplot(f,[0,1]); xlabel('时间(t)'); ylabei('幅值(f)'); title(‘正弦交流信号'); 用符号法生成的正弦交流信号如图所示:

(2)数值法生成正弦交流信号。 MATLAB程序:. t=-0:0.001:1; y=sin(2*pi*t); plot(t,y,'k'); xlabel('时间(t)'); ylabei('幅值(f)'); title('正弦交流信号'); 用数值法生成的正弦交流信号如图所示: 2.单边衰减指数信号. MATLAB程序: t1=-1;t2=10;dt=0.1; t=t1:dt:t2; A1=1; %斜率 a1=0.5; %斜率 n=A1*exp(-a1*t); plot(t,n); axis([t1,t2,0,1]); xlabel('时间(t)'); ylabel('幅值(f)'); title('单边衰减指数信号'); 用数值法生成的单边衰减指数信号如图所示:

第九章正弦稳态电路的分析

第九章 正弦稳态电路的分析 本章重点: 1.阻抗,导纳及的概念 2.正弦电路的分析方法 3.正弦电路功率的计算 4.谐振的概念及谐振的特点 本章难点:如何求电路的参数 主要内容 §9-1阻抗和导纳 1.阻抗 (1)复阻抗:u i Z U U Z Z R jX I I ψψ?==-=∠=+&& 式中22U Z R X I ==+为阻抗的模; Z u i X arctg R ?ψψ=-=为阻抗角(辐角); R=Re[Z]cos z Z ?=称为电阻; X=Im[Z]=sin z Z ?称电抗。 (2)RLC 串联电路的阻抗: 1 U Z R j L I j c ωω==++ =&& 1 ()()L C Z R j L c R j X X R jX Z ωω?+- = ++=+=∠ 式中L X L ω=称为感抗;1C X c ω=- 称为容抗;1L C X X X L c ωω=+=- 可见,当X.>0,即1L c ωω>时,Z 是感性; 当X<0,即1L c ωω<时,Z 呈容性。 (3)阻抗三角形: 2.导纳 Z ?Z R X Z &U &+ — I &U &+ — C L

(1)复导纳:1i u Y I I Y Y G jB Z U U ψψ?===∠-=∠=+&& 式中I Y U = =称为导纳的模;arctan Y B G ψ=称为导纳角; Re[]cos Y G Y Y ψ==称为电导; Im[]sin Y B Y Y ψ==称为电纳。 (2)RLC 并联电路的导纳: 1111 ()I Y j c j c U R j L R L ωωωω==++=+-=&& ()C L Y G j B B G jB Y ψ++=+=∠ 式中1L B L ω=- 称为感纳;C B C ω=称为容纳;1C L B B B c L ωω=+=-;1 G R =。 可见,当0,B >即1c L ωω>时,Y 呈容性;当0,B <即1 ,c L ωω

第3章 正弦稳态电路分析习题讨论课

第3章 正弦稳态电路分析习题讨论课 Ⅰ 本章要奌归纳 1、正弦量的三要素:),(,T f U m ω,?{要求:①由正弦时间函数、由波形会求三个“要 素”;②由三个“要素”会写正弦时间函数、会画波形图。} 有效值:m U U 21= ,m I I 2 1 =;{注意:①交流电流表的读数一般为有效值;②若知有效值写时间函数表达式,一定将有效值换算为振幅值。} 相 量:{要求:①由正弦量u ,i 会写对应的相量I U ,;②由相量再告知(ω或T 或f )会写相应的正弦时间函数。} 2、基本元件VCR 的相量形式 R I R U = L I L j U ω= C C j U ω1-= I KL 相量形式 KCL 相量形式 ∑=0I KVL 相量形式 ∑=0U 3、阻抗与导纳定义及其串并联等效 ?? ? ???????+== jX R e Z I U Z z j ? (1) ?? ????????+==jB G e Y U I Y y j ? (2) 显然二者互为倒数关系:,1Y Z = Z Y 1 = 阻抗串、并联求等效阻抗的公式,串联分压、并联分流公式类同电阻串、并联相应的公式。 导纳串、并联求等效导纳的公式,串联分压、并联分流公式类同电导串、并联相应的公式。 C j ω1-

注意这里的运算都是复数运算。 4.相量用于正弦稳态电路分析 (1)正弦函数激励的线性时不变渐近稳定电路,且电路达到稳态,只求稳态响应,称正弦 稳态电路分析。 (2)若单一频率正弦函数激励源的正弦稳态电路分析,应用相量分析法。 基本思路: 5、正弦稳态电路中的功率 (1)平均功率 )cos(i u UI P ??-= (1) 应用式(1)计算平均功率时,N 内含有电源不含电源均可使用。 若N 内不含电源,则z i u θ??=- 则 z UI P θcos = (2) 式(2)中z θcos 称功率因数,这时P 又称为有功功率。 (2)无功功率 z UI Q θsin = (3)视在功率 UI S = (4)复功率 S ~ =jQ P +I U =* 注意:整体电路与各部分电路间的几种功率关 k m k P P ∑ == 1 ∑==m k k Q Q 1 ∑==m k k S S 1 ~ ~ (S ≠)1 ∑=m k k S 若为简单电路若为复 杂电路:: 利用阻抗、导纳串并联等 效,结合KCL 、KVL 求解。 应用网孔法、节奌法、等 效电源定理求解。

电路 第9章习题2 正弦稳态电路的分析

9-001、 已知图示正弦电路中,电压表的读数为V 1 :6V ;V 2 :2V ; U S =10V 。求: (1)、图中电压表V 3、V 4的读数; (2)、若A I 1.0=,求电路的等效复阻抗; (3)、该电路呈何性质 答案 (1)V U U U 32.62 2 214=+= V 4的读数为 ; 2322 1)(U U U U S -+= 64)(212 232=-=-U U U U s 832±=-U U 取 V U 10823=+=,所以V 3的读数为10 V 。 (2)、A I 1.0=,电路的等效复阻抗: Ω===1001 .010I U Z ?-=-=-=1.536 8 arctan arctan 132U U U ? Ω-=?-+?=)8060()1.53sin(1.53cos 100j j Z (3)、由于复阻抗虚部为负值,故该电路呈电容性。 9-002、 答案 V 1 - R V 3 L u V 2 + C V 4

9-003、 求图示电路的等效阻抗,已知ω=105 rad/s 。 例9 — 3 图解:感抗和容抗为: 所以电路的等效阻抗为 9-004、 例9-4图示电路对外呈现感性还是容性 例9 — 4 图解:图示电路的等效阻抗为:

所以 电路对外呈现容性。 9-005、3-9日光灯电源电压为V 220,频率为Hz 50,灯管相当于Ω300的电阻,与灯管串联的镇流器(电阻忽略不计)的感抗为Ω500,试求灯管两端电压与工作电流的有效值。 解:电路的总阻抗为 Ω≈+=58350030022Z 此时电路中流过的电流: A Z U I 377.0583 220=== 灯管两端电压为: V RI U R 113377.0300=?== 9-006、5、 与上题类似 今有一个40W 的日光灯,使用时灯管与镇流器(可近似把镇流器看作纯电感)串联在电压为220V ,频率为50Hz 的电源上。已知灯管工作时属于纯电阻负载,灯管两端的电压等于110V ,试求镇流器上的感抗和电感。这时电路的功率因数等于多少 解:∵P =40W U R =110(V) ω=314rad/s ∴36.0110 40=== =R L R U P I I (A) ∵U U U L R 2 22+= ∴5.1901102202222=-= -=U U U R L (V) ∴529 36.05.190=== I U X L L L (Ω) 69.1314 529 ===ωX L L (H) 这时电路的功率因数为: 5.0220 110 cos cos ===U U R ?

实验一 非正弦周期信号的分解与合成

实验一非正弦周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅里叶级数各项的频率与系数作比较; 2.观测基波和其谐波的合成。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台 2.PC 机(安装“THBCC-1”软件) 3.双踪慢扫描示波器1台(选配) 三、实验原理 1.任何电信号都是由各种不同频率、幅值和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波的频率为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅值相对大小是不同的。将被测方波信号加到分别调谐于其基波和各次奇谐波频率的电路上。从每一带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是50Hz 的方波。 2.实验装置的结构图 图4-1实验结构图 图4-1中LPF 为低通滤波器,可分解出非正弦周期信号的直流分量。BPF 1~BPF 6为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 3.各种不同波形及其傅氏级数表达式 方波: ?? ? ??++++ sin7ωt 71sin5ωt 51sin3ωt 31sin ωt π4Um U(t)= 三角波: ?? ? ??-+- sin5ωt 251sin3ωt 91sin ωt π8Um U(t)=2 半波 ??? ??+--+ cos4ωt 151cos ωt 31sin ωt 4π21π2Um U(t)= 全波 ?? ? ??+--- cos6ωt 351cos4ωt 151cos2ωt 3121π4Um U(t)= 矩形波 ?? ? ??++++ cos3ωt T 3τπsin 31cos2ωt T 2τπsin 21cos ωt T τπsin π2Um T τUm U(t)= 四、实验内容及步骤

正弦稳态电路分析

正弦稳态电路分析 一、正弦量及其三要素? 1. 初相位:时间t=0时所对应的相位; 2. 一般取正弦量的正最大值到正弦量计时零点(t=0)所对应的角度 为该正弦量的初相位 3. 正弦量的正最大值到向右的初相位为正。即φi>0;向左即为负; 4. 各种表示法 (1) F=a+jb; a=Ucos a b=Usin a (2)F=a+jb =|F|(cos a+jsin a ) =|F|e ja =|F| a (4)计算器使用 pol(-4.07,3.07)=5.09 RCL tan 二、电路元件的伏安关系及相量表示形式?

X L =wL,X C =1/wC jX L =jwL,jX C =j*1/wC=1/(-jwC) 三、阻抗、导纳及其串并联? 阻抗与导纳互为倒数关系 1. 复阻抗:不含独立电源的一端口网络的端电压相量与端电流相量 的比值 2. 的比值; 3. 电压三角形 O Z 4. 阻抗三角形

四、正弦量的相量表示法? 1.有向相量的长度(复数的模)代表正弦量的幅值(有效值); 2.复数的幅角代表正向量的初相位; 3.向量形式用大写字母表示并在字母上方加点; 五、阻抗和导纳的性质? 电感角大于电容角就呈感性,小于呈容性,等于呈阻性; 六、正弦稳态电路的分析? (1)画出电路的相量模型(电压、电流、各种阻抗) (2)选择适当方法(KVL 、KCL )列方程 (3)求出未知量 Q (4)写出电压电流的瞬时值 七、正弦稳态电路的功率? 1.有功功率:电阻所消耗;P=UIcosa 2.无功功率:电感、电容负载与电源进行能量交换的功率;Q=UIsina 3.视在功率:电源输出的功率;S=UI=上述两者平方和的算术平方根 4.复功率:S=P+jQ 八、功率因素的提高? 在电感两端并联电容的操作,使两者夹角减小 1)C=P/wU 2 (tan a1-tan a2); 2)Q C =-P(tan a1-tan a2) 九、最大功率传输? 当 Z L =R eq -jX eq =Z eq * 时, P MAX =U OC 2/4R eq

信号与系统实验报告(常用信号的分类与观察)

实验一:信号得时域分析 一、实验目得 1.观察常用信号得波形特点及产生方法 2.学会使用示波器对常用波形参数得测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性得研究,其中重要得一个方面就是研究它得输入输出关系,即在一特定得输入信号下,系统对应得输出响应信号.因而对信号得研究就是对系统研究得出发点,就是对系统特性观察得基本手段与方法.在本实验中,将对常用信号与特性进行分析、研究。 信号可以表示为一个或多个变量得函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同得a取值,其波形表现为不同得形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号得参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)就是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特得运用。其信号如下图所示: 图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示:

图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t—T),其中u(t)为单位阶跃函数。其信号如下图所示: f(t) ? ……??…… 0 t 图1-6脉冲信号 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t) ………… ?0?t 图1-7方波信号 四、实验内容及主要步骤 下列实验中信号产生器得工作模式为11 1、指数信号观察 通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。用示波器测量“信号A组”得输出信号。 输出波形为:

非正弦交流电路

第9章非正弦交流电路 学习指导与题解 一、基本要求 1.建立几个频率为整数倍的正弦波可以合成为一非正弦周期的概念。明确一个非正弦周期波可以分解为一系列频率为整数倍正弦波之和的概念(即谐波分析)、谐波中的基波与高次谐波的含义。了解谐波分析中傅里叶级数的应用。 2.掌握波形对称性与所含谐波分量的关系。能根据波形的特点判断所含谐波的情况。了解波形原点选择对所含谐波的影响。 3.掌握非正弦周期电压和电流的平均值(即直流分量)和有效值的计算。能根据给定波形计算出直流分量。能根据非正弦周期波的直流分量和各次谐波分量,计算出它的有效值。 4.掌握运用叠加定理和谐波分析计算非正弦交流电路中的电压和电流的方法。 5.建立同频率的正弦电压和电流才能形成平均功率的概念。掌握运用叠加定理和谐波分量计算非正弦交流电路中和平均功率。 二、学习指导 在电工技术中,电路除了激励和响应是直流和正弦交流电和情况外,也还遇到有非正弦周期函数电量的情况。如当电路中有几个不同频率的正弦量激励时,响应是非正弦周期函数;含有非线性元件的电路中,正弦激励下的响应也是非线性的;在电子、计算机等电路中应用的脉冲信号波形,都是非正弦周期函数。因此,研究非正弦交流电路的分析,具有重要和理论和实际意义。 本章的教学内容可分为如下三部分: 1.非正弦周期波由谐波合成的概念; 2.非正弦周期波的谐波分析; 3.非正弦交流电路的计算。 着重讨论非正弦周期波谐波分析的概念,非正弦周期量的有效值和运用叠加定理计算非正弦交流电路的方法。 现就教学内容中的几个问题分述如下。 (一)关于非正弦周期波的谐波的概念 非正弦周期波是随时间作周期性变化的非正弦函数。如周期性变化的方波、三角波等。这类波形,与正弦波相比,都有变化的周期T和频率f,不同的是波形而已。 f t,可 几个频率为整数倍的正弦波,合成是一个非正弦波。反之,一个非正弦周期波()

(完整word版)信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

正弦稳态电路的分析

x 第九章 正弦稳态电路 的分析 本章重点: 1. 阻抗,导纳及的概念 2. 正弦电路的分析方法 3. 正弦电路功率的计算 4. 谐振的概念及谐振的特点 本章难点:如何求电路的参数 主要内容 X arctg 为阻抗角(辐角); R 1 1 可见,当X.>0,即L 一时,Z 是感性; 当X<0,即卩L 一时,Z 呈容性。 c c (3)阻抗三角形: 1 ?阻抗 (1)复阻抗:Z § 9-1 阻抗和导纳 R jX R=Re[Z] Z cos z 称为电阻; X=Im[Z]= ⑵RLC 串联电路的阻抗: 称电抗。 Z sin z j( L j(X L 丄) c X C ) R jX 式中X L L 称为感抗;X C 称为容抗; X X L X C L — c 式中Z 为阻抗的模; Z R

2 ?导纳 x

1 (1)复导纳:丫 一 Z ⑵RLC 并联电路的导纳: (3)导纳三角形: 3.阻抗和导纳的等效互换 § 9-2 阻抗(导纳)的串联和并联 1. 阻抗串联: (1) 等效阻抗:Z e q 乙Z 2川Z n (2) 分压作用:U |K 互U, k 1,2,|||,n Z eq 2. 导纳并联 (1) 等效导纳:Y eq 丫1 丫2 |||Y n (2) 分流作用:|[ 丫M 〔, k 1,2,|||, n 3. 两个阻抗并联: 式中Y I 一 「.G 2 B 2称为导纳的模; B Y arCtan G 称为导纳角; G Re[Y] 丫 cos 丫称为电导; lm[Y] Y sin 丫称为电纳。 Y G jB 1 c 飞) j(B c B L ) G jB Y 式中B L —称为感纳; L L 可见,当B 0,即c —时, L B c C 称为容纳; B B c B L Y 呈容性;当B 0,即c 1 —,丫呈感性 (1)RLC 串联电路的等效导纳: ⑵RLC 并联电路的等效阻抗: Y R R 2 X 2 G j 一 G B G X J " R 2 X 2 B B B G Y

信号与系统实验报告

《信号与系统》 实验报告 湖南工业大学电气与信息工程学院 实验一用同时分析法观测50Hz非正弦周期信号的 分解与合成 一、实验目的 1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。 二、实验设备 1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型; 2、双踪示波器 三、实验原理 1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的 2、 3、 4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。 2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分, 3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示 Um 1 351/9 1/51/71/3 790ωωωωωω 图1-1 方波频谱图 表2-1 各种不同波形的傅立叶级数表达式 Um 0t T U 2τ方波 Um 0T U 2τ正弦整流全波

Um 0T U 2τ三角波Um 0T 2τ 正弦 整流半波t t Um 0t T U 2 τ矩形波U 1、方波 ())7sin 715sin 513sin 31(sin 4Λ++++= t t t t u t u m ωωωωπ 2、三角波 ())5sin 2513sin 91(sin 82Λ++-=t t t u t u m ωωωπ 3、半波 ())4cos 1512cos 31sin 421(2Λ+--+= t t t u t u m ωωωππ 4、全波 ())6cos 3514cos 1512cos 3121(4Λ+---=t t t u t u m ωωωπ 5、 矩形波 ())3cos 3sin 312cos 2sin 21cos (sin 2Λ++++=t T t T t T U T U t u m m ωτπωτπωτππτ 实验装置的结构如图1-2所示 DC 20f f f f f f 3456图1-2信号分解于合成实验装置结构框图 图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。BPF 1-BPF 6为调

非正弦周期信号

第十三章非正弦周期电流电路和信号的频谱 重点: 1. 非正弦周期电流电路的电流、电压的有效值、平均值; 2. 非正弦周期电流电路的平均功率 3. 非正弦周期电流电路的计算方法 难点: 1. 叠加定理在非正弦周期电流电路中的应用 2. 非正弦周期电流电路功率的计算 与其它章节的联系: 叠加定理 RLC串联谐振 RLC并联谐振 数学知识:傅里叶分析

§13.1 非正弦周期信号 生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。 非正弦周期交流信号的特点: 1) 不是正弦波 2) 按周期规律变化,满足:(k=0,1,2…..) 式中T 为周期。图 13.1 为一些典型的非正弦周期信号。 图13.1(a)半波整流波形(b)锯齿波(c)方波 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。

§13.2 周期函数分解为傅里叶级数 电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式: 也可表示成: 以上两种表示式中系数之间关系为: 上述系数可按下列公式计算: (k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。 注意:非正弦周期电流、电压信号分解成傅里叶级数 的关键在于求出系数a0、ak、bk ,可以利用函数的某种 对称性判断它包含哪些谐波分量及不包含哪些谐波分量, 可使系数的确定简化,给计算和分析将带来很大的方便。图 13.2

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ; plot(t, xa) ; axis([0, max(t), min(xa), max(xa)]) ; xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ; line([0, max(t)], [0, 0]) ;

信号与系统MATLAB仿真题目

考核人数______ 考核班次_______________ 任课教员_________ 出题教员签名________ 任课教研室主任签名_______日期_______ 队别__________ 教学班次___________ 学号___________ 姓名____________ …………………………密………………………………封………………………………线……………………………………… 通信系统仿真题目 1.学习电路时已知LC 谐振电路具有选择频率的作用,当输入正弦信号频率与LC 电路的谐 振频率一致时,将产生较强的输出响应,而当输入信号频率适当偏离时,输出响应相对值很弱,几乎为零(相当于窄带通滤波器)。利用这一原理可以从非正弦周期信号中选择所需的正弦频率成分。题图所示RLC 并联电路和电流1()i t 都是理想模型。已知电路的谐振频率为 0100f kHz = =,100R k =Ω谐振电路品质因素Q 足够高(可滤除邻近频率成分) 1()i t 为周期矩形波,幅度为1 mA 当1()i t 的参数(,)T τ为下列情况时,粗略地画出输出电压 2()t υ的波形,并注明幅度值。 (1)510s T s τμμ== (2)1020s T s τμμ== (3)1530s T s τμμ== 2.设()x n 为一限长序列,当0n <和n N ≥时,()0x n =,且N 等于偶数。已知[()]DFT x n = ()X k ,试用()X k 表示以下各序列的DFT 。 (1)1()(1)x n x N n =-- (2)2()(1)()n x n x n =- (3) 3() (01)()()(21)0()x n n N x n x n N N n N n ≤≤-?? =-≤≤-??? 为其他值 (4) 4()()(01) ()2 2 () N N x n x n n x n n ?≠+≤≤ -? =???为其他值 (5) 5()(01)()0 (21)0() x n n N x n N n N n ≤≤-?? =≤≤-??? 为其他值 (6) 6() ()20()n x n x n n ??? ? ?=????? 为偶数为奇数 (DFT 有限长度取2N ,k 取偶数。) (7) 7()(2)x n x n =(DFT 有限长度取 2 N )。 3.已知三角脉冲1() f t 的傅里叶变换为21()24E F Sa τωτω??= ??? 试利用有关定理求210()cos()2f t f t t τω?? =- ??? 的傅里叶变换2()F ω。1()f t 、2()f t 的波形如下图所示。 4.求下图所示半波余弦信号的傅里叶级数。若E=10V ,f=10kHz ,大致画出幅度谱。 5.求下图所示()F ω的傅里叶逆变换()f t 。

第6节 非正弦周期电流电路分析

第6章 非正弦周期电流电路分析 主要内容 1. 信号的基本概念和分类。 2. 信号的基本运算。 3. 常用非正弦周期信号。 4. 非正弦周期信号的傅里叶级数分解。 5. 周期信号的频谱。 6. 非正弦周期电流电路分析。 6.1信号 6.1.1 信号的基本概念 宇宙万物都处在不停的运动中,物质的一切运动或状态的变化,从广义上讲都是信号(Signal ),即信号是物质运动的表现形式。例如,钟鼓楼的报时钟声和轮船的汽笛声是声信号;烽火台的烽火和交通路口的红绿灯信号是光信号;电路中的电流和无线电基站发射的电磁波是电信号。在社会活动和日常生活中,人们总要使用语言、文字、数据、图像等多种媒体来传递消息(Message ),消息是这些语言、文字、数据、图像等信号所代表的具体内容。通信的目的在于通过各种消息的传递,使人们获取不同的信息(Information ),信息就是指具有新内容、新知识的消息。为了有效地传输和利用消息,通常需要将消息转换成各种便于传输和处理的信号。可见,信号是消息的载体,消息是信号的具体内容。 信号通常表现为某种随时间变化的物理量,在各种信号中,电信号最便于传输、控制和处理。因此,在实际应用中通常将各种非电信号(如声音、图像、温度、压力、位移、转矩、流量等)通过适当的传感器转换成电信号。 6.1.2 信号的描述和分类 电信号通常表现为电压信号和电流信号,它们都是时间的函数,可分别用u (t )和i (t )表示,或一般地表示为f (t )、y (t )等。信号的描述方法通常包括函数表达式法、波形图法、频谱图法和数据列表法。信号的变化规律是多种多样的,可以从不同的研究角度进行分类。 1.确定信号与随机信号 若信号随时间的变化表现为某种确定的规律,能用确定的函数表达式来描述,或者说对于任意一个确定的时刻,信号都有确定的函数值,这种信号称为确定信号。例如,正弦信号就是典型的确定信号。相反,如果信号的取值在不同时刻随机变化,事先无法预知它的变化规律,不能用确定的函数表达式来描述,这种信号称为不确定信号或随机信号。例如,噪声信号就是典型的随机信号。图6-1所示为几种常用信号的波形图,其中(a )~(e )是确定信号,(f )是随机信号。 由于信号在传输过程中不可避免地要受到各种噪声和干扰的影响,所以在实际应用中,理想的确定信号并不存在。但作为科学的抽象,研究确定信号仍然十分重要,它是研究随机信号的基础。 2.周期信号与非周期信号 周期信号是按某一固定周期重复出现的信号,它可以表示为 f (t )= f (t+nT ) n =0,±1,±2,… (6-1) 式中,T 称为信号的周期。周期信号的特点在于只要给定任意一个周期内信号的变化规律,就可以确定它在其他时间内的变化规律,如图6-1(c )所示。 非周期信号不具有周期性,它通常有两种表现方式:一种是仅在某些时间区间存在的信号,如图 6-1(a )、(b )、(d )、(e )、(f ) 所示;另一种是拟周期信号(概周期信号),例如)2sin(sin )(t t t f +=,它的两个正弦分量频率之比为无理数。另外,通常也可以将非周期信号看作是周期为无穷大的周期信号。

相关文档
最新文档