分形几何的早期历史研究

分形几何的早期历史研究
分形几何的早期历史研究

分形几何的早期历史研究

分形几何学是20世纪70年代诞生的一门数学分支,它是继非欧几何创立之后几何学史上的又一次重大革命。作为大自然的几何学,它在现实生活中有着非常广泛的应用。

因此,研究分形几何的早期历史具有非常重要的意义。本文在研读原始文献及其相关研究文献的基础上,通过历史分析和文献考证的方法,以“为什么数学”为指导思想,全面系统地考察了分形几何早期历史的内容和思想,深入剖析了分形几何创立的原因。

取得的研究结果如下:1.全面考察了分析严格化的背景下,魏尔斯特拉斯函数、康托尔集和科赫曲线等早期经典分形集产生的背景、原因、过程和影响。魏尔斯特拉斯为了搞清函数的连续性和可微性之间的关系,构造了一条连续但处处不可微的病态函数。

康托尔在单位区间上构造了一个完备但处处不稠密的病态点集。科赫运用递归法的思想,构造了一条可以几何直观表示的连续但处处不可切的病态曲线。

这些病态的函数、曲线和集合的出现是推动分形几何创立的内因。2.系统梳理了分数维数概念的产生过程。

为了准确测量出康托尔集的大小,康托尔、波莱尔和勒贝格等数学家相继提出了解决问题的办法和思路,但得到的结果不令人满意。直到卡拉泰奥多里在q 维空间中定义了p维测度集,才使问题取得了一些进展。

豪斯多夫在卡拉泰奥多里工作的基础上,将维数的取值范围由整数推广到分数,解决了康托尔集的测量问题。贝西科维奇完善了豪斯多夫关于分数维数的定义,给出了分数维数的确切概念。

3.详细论述了贝西科维奇、布利冈和柯尔莫戈洛夫等数学家对分数维数理论的贡献。贝西科维奇研究了分数维数集的密度性质和微积分,在实数理论中探讨了分数维数集的具体应用。

盒维数是一种重要的分数维数,它的最初模型由布利冈建立,庞特里亚金和施尼勒尔曼定义了具有数学表达式的盒维数,但缺乏严格性;柯尔莫戈洛夫和契霍洛夫给出了严格的盒维数定义;法尔科内则定义了现代意义下的盒维数。4.详尽阐述了莱维、莫兰和芒德勃罗等数学家对自相似理论的贡献。

自相似思想最早可追溯至古希腊时代,德谟克利特、亚里士多德以及我国古代的数学、哲学和医学著作中也有关于自相似思想的论述,但尚未形成严格的理论体系。莱维引入了参数和阶数等一些基本数学概念,他是第一个对自相似性进行系统研究的数学家。

莫兰将集合论引入自相似理论的研究,定义了自相似集的概念,形成了自相似理论的雏形。芒德波罗将统计性融入自相似理论,描绘了统计自相似性,解决了长期困扰大家的海岸线长度问题。

5.细致探究了分形几何的创立过程,深入剖析了分形几何的创立原因。通过论文“英国的海岸线有多长”和著作《大自然的分形几何》,细致探究了分形几何的创立过程。

在原始文献和相关研究文献的基础上,指出病态函数、曲线和集合的激励,数学理论发展的推动,实际问题的鞭策,以及创立者自身的优势是分形几何创立的主要原因。

分形几何的早期历史研究

分形几何的早期历史研究 分形几何学是20世纪70年代诞生的一门数学分支,它是继非欧几何创立之后几何学史上的又一次重大革命。作为大自然的几何学,它在现实生活中有着非常广泛的应用。 因此,研究分形几何的早期历史具有非常重要的意义。本文在研读原始文献及其相关研究文献的基础上,通过历史分析和文献考证的方法,以“为什么数学”为指导思想,全面系统地考察了分形几何早期历史的内容和思想,深入剖析了分形几何创立的原因。 取得的研究结果如下:1.全面考察了分析严格化的背景下,魏尔斯特拉斯函数、康托尔集和科赫曲线等早期经典分形集产生的背景、原因、过程和影响。魏尔斯特拉斯为了搞清函数的连续性和可微性之间的关系,构造了一条连续但处处不可微的病态函数。 康托尔在单位区间上构造了一个完备但处处不稠密的病态点集。科赫运用递归法的思想,构造了一条可以几何直观表示的连续但处处不可切的病态曲线。 这些病态的函数、曲线和集合的出现是推动分形几何创立的内因。2.系统梳理了分数维数概念的产生过程。 为了准确测量出康托尔集的大小,康托尔、波莱尔和勒贝格等数学家相继提出了解决问题的办法和思路,但得到的结果不令人满意。直到卡拉泰奥多里在q 维空间中定义了p维测度集,才使问题取得了一些进展。 豪斯多夫在卡拉泰奥多里工作的基础上,将维数的取值范围由整数推广到分数,解决了康托尔集的测量问题。贝西科维奇完善了豪斯多夫关于分数维数的定义,给出了分数维数的确切概念。

3.详细论述了贝西科维奇、布利冈和柯尔莫戈洛夫等数学家对分数维数理论的贡献。贝西科维奇研究了分数维数集的密度性质和微积分,在实数理论中探讨了分数维数集的具体应用。 盒维数是一种重要的分数维数,它的最初模型由布利冈建立,庞特里亚金和施尼勒尔曼定义了具有数学表达式的盒维数,但缺乏严格性;柯尔莫戈洛夫和契霍洛夫给出了严格的盒维数定义;法尔科内则定义了现代意义下的盒维数。4.详尽阐述了莱维、莫兰和芒德勃罗等数学家对自相似理论的贡献。 自相似思想最早可追溯至古希腊时代,德谟克利特、亚里士多德以及我国古代的数学、哲学和医学著作中也有关于自相似思想的论述,但尚未形成严格的理论体系。莱维引入了参数和阶数等一些基本数学概念,他是第一个对自相似性进行系统研究的数学家。 莫兰将集合论引入自相似理论的研究,定义了自相似集的概念,形成了自相似理论的雏形。芒德波罗将统计性融入自相似理论,描绘了统计自相似性,解决了长期困扰大家的海岸线长度问题。 5.细致探究了分形几何的创立过程,深入剖析了分形几何的创立原因。通过论文“英国的海岸线有多长”和著作《大自然的分形几何》,细致探究了分形几何的创立过程。 在原始文献和相关研究文献的基础上,指出病态函数、曲线和集合的激励,数学理论发展的推动,实际问题的鞭策,以及创立者自身的优势是分形几何创立的主要原因。

分形几何

分形几何 一、欧氏几何的局限性 自公元前3世纪欧氏几何基本形成至今已有2000多年。尽管此间从数学的内在发展过程中产生了射影几何、微分几何等多种几何学,但与其他几何学相比,人们在生产、实践及科学研究中更多涉及到的是欧氏几何。欧氏几何的重要性可以从人类的文明史中得到证明。欧氏几何主要是基于中小尺度上,点线、面之间的关系.这种观念与特定时期人类的实践。认识水平是相适应的,数学的发展历史告诉我们,有什么样的认识水平就有什么样的几何学。当人们全神贯注于机械运动时,头脑中的囹象多是一些囫锥曲线、线段组合,受认识主。客体的限制,欧氏几何具有很强的“人为”特征。这样说并非要否定欧氏几何的辉煌历史,只是我们应当认识到欧氏几何是人们认识、把握客观世界的一种工具、但不是唯一的工具。 进入20世纪以后,科学的发展极为迅速。特别是~~战以后,大量的新理论、新技术以及新的研究领域不断涌现,同以往相比,人们对物质世界以及人类社会的看法有了很大的不同。其结果是,有些研究对象已经很难用欧氏几何来描述了,如对植物形态的描述,对晶体裂痕的研究,等等。 美国数学家B, Mandelbrot曾出这样一个著名的问题:英格兰的海岸线到底有多长?这个问题在数学上可以理解为:用折线段拟合任意不规则的连续曲线是否一定有效?这个问题的提出实际上是对以欧氏几何为核心的传统几何的挑战,此外,在湍流的研究。自然画面的描述等方面,人们发现传统几何依然是无能为力的。人类认识领域的开拓呼唤产生一种新的能够更好地描述自然图形的几何学,在此,不妨称其为自然几何。 二、分形的产生 一些数学家在深入研究实、复分析过程中讨论了一类很特殊的集合(图形),如Cantor集、Peano曲线、KoCh曲线等,这些在连续观念下的“病态”集合往往是以反例的形式出现在不同的场合。当时它们多被用于讨论定理条件的强弱性,其更深一层意义并没有被大多数人所认识。 1975年,Mandelbrot在其《自然界中的分形几何》一书中引入了分形(fractal)这一概念。从字面意义上讲, fractal是碎块、碎片的意思,然而这并不能概括Mandelbrot的分形概念,尽管目前还没有一个让各方都满意的分形定义,但在数学上大家都认为分形有以下凡个特点: (1)具有无限精细的结构; (2)比例自相似性; (3)一般它的分数维大子它的拓扑维数; (4)可以由非常简单的方法定义,并由递 归、迭代产生等。 (1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息.第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。图1中五条曲线自下而上,按图中所示的规律逼近Koch曲线。Koch曲线处处连续,但处处不可导,其长度为无穷大,以欧氏几何的眼光来看,这种曲线是被打入另类的,从逼近过程中每一条曲线的形态可以看出分形四条性质的种种表现。以分形的观念来考察前面提到的“病态”曲线,可以看出它们不过是各种分形。 我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何作一比较,可以得到这样的结论:欧氏几何是建立在公理之上的逻辑体系.其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范日主要是人造的物体。而分形的历史只有20来年,它由递归、迭代生成,主要

分形几何的应用

分形几何的应用 分形几何是法国数学家芒德布罗在1975年将具有分数维数的图形,例如科赫曲线,称为分形,建立了以这类自然界和非线性系统中出现的不光滑和不规则的几何形体为对象的数学新分支。分形几何作为一门新兴的学科已经开始逐渐发展,它的应用遍及哲学、数学、物理学、化学、地质学、水文学、气象学、天文学、地震科学、人口学、情报学、经济学、管理科学,甚至在电影、音乐、美术、书法等。下面介绍一些分形几何在当代社会中的应用。 在生命科学的研究中,科学家发现,细胞的分裂正是生物体分形的基础以及近几年来的研究表明,蛋白质的分子链具有分形特征,这就为揭开生命之谜提供了新的思维方法;而且分形在中医治病的病理中起着重要的作用,因为分形理论从人体分形着手进行分析,得出令人耳目一新的结论,以针灸为例,一个穴位是人体某一部分的缩影,是一个分形元,当人体的某一器官或部位有病时,就必然要在相应的穴位上表现出来,在穴位上产生对痛刺激敏感,皮肤电阻降低等病理生理反映,因此,对特定穴位施加刺激,就会产生治疗效果,这就是中医治病的病理分形性。 在实际工程问题中,如石油开采就可以利用分形理论进行研究则有可能大幅度地增产石油;而且分形理论为化学家深化对高分子地认识提供了有利的工具使得对凝胶形成的机理、凝胶点的确定、凝胶的生成的控制都有很好的作用。 芒德布罗经过研究不仅计算出英国西海岸线、澳大利亚海岸线、

南非海岸线、西班牙与葡萄牙的国界线的分形维数分别是1.25、1.13、1.02、1.14,还将分形应用于经济学,他测定出美国60年的棉花价格随时间变化的分形维数;在矿业应用方面,中国工程院院士谢和平教授将分形理论应用于岩石损伤力学的研究,提出了演示损伤的分形模型及演化机理;国际上的一些学者将分形应用于情报学,语言学和证券的变化进行深入的研究,得出了相应的分形维数,有了这些分形维数,专家们就可以预测出在该方面的一些结果,这有利于人类的进步。 近二十年来,国外许多大公司组织了大批科学家致力于分形的应用研究,取得了一批富有价值的成果,例如:根据分形几何原理合成了保温性能最佳的人造羽绒。分形在影视事业中也大有发展前途。20世纪80年代初,A.Fournier 将分形图形推向好莱坞影视业,致使分形在电影特技制作上大显身手,用于创作出效果奇佳的地球、宇宙中某特定地域、空间的“实景”或人世间从未有过的绚丽多彩、奇妙无比的景象。 由于分形通常是以非常简单的递归方式无穷次迭代而生成的,因此各种分形可以借助微型电子计算机编制一定的程序实现。分形的这种微机图形显示进一步帮助人们推开分形艺术宫殿的大门。 这些实例足以说明分形有强大的生命力,它对于人们认识自然界和人类社会中的某些现象的真实面貌是一个有利的数学工具。

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

分形几何学

2 分形几何学的基本概念 本章讨论分形几何学的一些基本内容,其中:第1节讨论自相似性与分形几何学的创立;第2节讨论分形几何学的数学量度,即三种不同的维数计算方法;第3节讨论应用分形几何方法所实现的对自然有机体的模拟。 2.1自相似性与分形几何学 无论人们通过怎样的方式把欧几里得几何学的形体与自然界关联起来,欧氏几何在表达自然的本性时总是会遇到一个难题:即它无法表现自然在不同尺度层次上的无穷无尽的细节。欧氏几何形体在局部放大后呈现为直线或光滑的曲线,而自然界的形体(如山脉、河流、云朵等)则在局部放大后仍呈现出与整体特征相关的丰富的细节(图版2-1图1),这种细节特征与整体特征的相关性就是我们现在所说的自相似性。

自相似性是隐含在自然界的不同尺度层次之间的一种广义的对称性,它使自然造化的微小局部能够体现较大局部的特征,进而也能体现其整体的特征。它也是自然界能够实现多样性和秩序性的有机统一的基础。一根树枝的形状看起来和一棵大树的形状差不多;一朵白云在放大若干倍以后,也可以代表它所处的云团的形象;而一段苏格兰的海岸线在经过数次局部放大后,竟与放大前的形状惊人地相似(图版2-1图2)。这些形象原本都是自然界不可琢磨的形状,但在自相似性这一规律被发现后,它们都成为可以通过理性来认识和控制的了。显然,欧氏几何学在表达自相似性方面是无能为力了,为此,我们需要一种新的几何学来更明确地揭示自然的这一规律。这就是分形几何学产生的基础。

1977年,曼德布罗特(Benoit Mandelbrot)出版了《自然的分形几何学》(The Fractal Geometry of Nature)一书,自此分形几何学得以建立,并动摇了欧氏几何学在人们形态思维方面的统治地位。分形几何学的研究对象是具有如下特性的几何形体:它们能够在不断的放大过程中,不停地展现出自相似的、不规则变化着的细节(图2-1图3)。这些几何形状不同于欧氏几何形体的一维、二维或三维形状,它们的维数不是简单的1、2或3,而是处于它们之间或之外的分数。 科赫曲线(Koch Curve)是分形几何学基本形体中的一个典型实例,它是由这样一种规律逐次形成的:用一根线段做为操作对象,对其三等分,把中间一段向侧面旋转60度,并增加另一段与之长度相同的线段把原来的三条线段连接为一体,这四条线段组成的形状就是第一代的科赫曲线;分别对它的每一条线段重复上述的操作,将形成第二代科赫曲线;再对其每一条线段进行上述操作,可得第三代,等等;如此迭代下去(图版2-1图4)。显然,对每一代的构成元素的同样操作决定了自相似性的代代传递,使形成的科赫曲线已经明确地具有了自然的特征。如果再进一步在操作中增加一点随机成分的话,那么所得的随机科赫曲线的自然性就更强列了。[回本章页首] 2.2维数计算:分形几何学的数学量度 既然分形几何学是一种严格的数学,那么它一定有自身的数学量度。分形几何学的数学量度是分形几何形体的维数。如前所述,分形几何形体的维数不是整数而是分数,它的计算是分形几何的创立者们在总结归纳的基础上产生的。 分形几何体的维数计算的数学推导是复杂的,也不是我们所关心的内容。但维数计算所代表的形象意义却值得我们关注。如前所述,分形几何形体的本质属性是自相似性,而这一自相似性一定是在同一形体的不同层次之间(不论是对自然形体的不同程度的放大,还是对人工形体迭代操作所得到的不同代)得以体现的。因而,分形几何形的维数正是在形状的不同层次的比较之间所反映出来的规律。这一规律所代表的是分形几何形状在空间中的扩张趋势。维数越大,就表明它在空间的扩张趋势越强,形状本身的变化可能性也越丰富。

土孔隙的分形几何研究_王清

土孔隙的分形几何研究* A Study on fractal of porosity in the soils 王 清 王剑平 (长春科技大学环境与建设工程学院,长春,130026) (南京水利科学研究院土工所,南京,210024) 中图法分类号 P 642.1 文献标识码 A 文章编号 1000-4548(2000)04-0496-03作者简介 王 清,女,1959年生,教授,从事红土、黄土及软土等土体的工程地质及岩土工程研究工作。 1 前 言 土中孔隙是土的重要性质之一[1],无论土体变形、土坡稳定性,还是地基承载力等都将直接或间接由土 的孔隙来表示。由于土体的多相性和不均匀性等,使测定各级孔隙及划分各级孔隙的研究极其复杂 [2] ,为 了更有效地研究土孔隙特征,本文采用了压汞测试法进行孔隙测定,并应用非线性理论之一———分形几何 的观点来完成资料处理 。 图1 黄土和黄土状土的孔隙分布特征图Fig .1 Pore size distribution of loess and loessial soil 2 试验方法 压汞试验是将已制好的土样通过不同压力将水银压入土体孔隙中,根据不同压力及所对应的进汞量(以汞饱和度计)绘制关系曲线(图1),了解不同孔隙大小(喉道半径)以及所占总孔隙体积的比例关系(表1)。 根据压汞曲线的特点,总结前人的研究经验[2~5], 按照在一定范围内的孔隙具有相似的特性,通常将孔隙划分为大孔隙(d >4μm )、中孔隙(0.4μm

第6讲分形几何学

实用标准文案 第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分

分形几何的高层建筑设计研究

分形几何的高层建筑设计研究 分形几何的含义及性质 分形的含义是一个零散的或者粗糙的几何图形,能够将其分为多个不同部分,并且每一个部分都是整体进行缩小之后的样子,就是有着自相似的性质。分形由曼德布罗特创造,其来源自拉丁文,有着零散以及破碎的含义。从数学的方面讲,分形的产生是依靠一个不断更新的方程公式,就是依靠递归出现的一种反馈体系。分形几何具有一些比较明显的特征,首先,其具有任意的小的比例,结构比较精细。其次,其是整体与局部都不是规则图形,不能够使用以往的几何话语进行描述。还有一般有近似的或者是自相似的结构形式。并且分形的维数一般超过它拓扑的维数,在大多数的情况下,能够使用简单的方法进行有效定义,能够由迭代生成。 2高层建筑设计中蕴含的分形思维 2.1建筑空间的自相似性 高层建筑的空间通常有着分形的特征,或者是能够通过外在的自然形态来表现出分形的思维,或者更多的能够通过对于自相似性进行使用来表现。在高层建筑设计中,不论是平面的设计还是立体的设计,都含有一定的自相似性思想。进行平面设计的时候,因为高层建筑自身的特殊性,时常会体现自相似的情况,进行立体设计的时候,自相似性的思维变得更为普遍,会发现有许多相同的划分手法使用在不同的尺度层级的自相似性中。这类型自相似构成规律对高层建筑的结构造型的变化以及内在的规律和谐统一起到了很大的作用。

2.2连续的尺度层级 在高层建筑中,尺度层级具有十分重要的地位。结构较为复杂的高层建筑,是使用了不同的尺度层次进行整体结构的组成。具有变化性、设计感的高层建筑,伴随观察距离的变化,会存在下一个层级的细部构造。因此,进行高层建筑设计的时候,其体验感受能够有效引导空间组织设计,在设计的过程中,设计人员需要更加注意高层建筑实际的细节表达,通过创作,把有趣的细部表达出来。 2.3注重对于人性的关注 在高层建筑中,整体感和细节部分的设计常常会被人们记住,因此,具有吸引力的高层建筑,通常有着巧妙的细节设计以及显著的整体感。建筑的整体设计和人的骨骼脉络一样,细节就与肌肤血肉一样,细节能够展现气质和个性,在现代,有时太过注重抽象以及简单,大大降低了对于细节以及尺度层级的表现,使人们不能够产生舒适的感觉。但是基于分形几何,给实现建筑细部带来了可能。在分形的理论下,从高层建筑结构设计到建筑细部的构件设计,都体现了独特的尺度层级以及精细结构,形成具有特色的高层建筑的形式,使得建筑不管是整体还是细节,都有着精致的美感。 2.4注重和环境维度的契合 环境是人们进行生产生活不可或缺的条件。好的环境能够构建一个比较舒适并且愉快的氛围,使人们的生活得到放松,而坏的环境则会使人们感到紧张,不利于身心发展。使用高层建筑构建的人工环境,不断成为现今人们进行生产生活不可或缺的物质基础。因为高层建筑自身的体积

分形几何无处不在

分形几何无处不在 【摘要】本文详细阐述了“什么是分形几何”的问题。并举海岸线、地表、河流、人脑表面、植物、星球分布、收入分布、股票价格的变动分布等例说明大自然中分形无处不在。介绍了分形的非均匀性、自相似性、重尺度性三个性质,最后总结出分形具有良好的发展潜质。 【关键词】分形几何;比较;定义;自然;性质 一、什么是分形几何 曼德勃罗曾经为分形下过两个定义: (1)满足下式条件: ()dim() 的集合A,称为分形集。其中,() Dim A为集合A Dim A A 的Hausdoff维数(或分维数),dim()A为其拓扑维数。一般说来,() Dim A不是整数,而是分数。 (2)部分与整体以某种形式相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。 (i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。 (ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。 (v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。 二、分形几何的性质 分形几何形态有哪些性质呢?概括说来,通常有3个特性:1.非均匀性;2.自相似性;3.重尺度性。问题的关键是它改变了人们对物体的测度观。过去人们习惯于用欧氏测度研究图形,它研究的图形是能用圆规和规尺画的简单图形,这样的图形是光滑的牛顿以后,微积分学和几何学的结构,人们可以描述复杂的形状,但这些形状的重要特征是具有特征长度.是平滑的,可微分的。分形几何研究的是更为复杂的圆形,它没有特征长度,不平滑,不可微分。

基于分形几何的高层建筑设计研究

基于分形几何的高层建筑设计研究 分形几何是在重复的自我相似内,对于自然规律进行数学方面的研究。分形几何,其不仅仅在几何方面具有十分重要的作用,它也可以应用在高层建筑的设计方面。分形几何原理在一定程度上引导了高层建筑设计的方向,在高层建筑设计内属于不容忽视的一个部分,基于分形几何,对于高层建筑设计进行相关研究,有着十分重要的意义。 标签:分形几何;高层建筑;设计;分析 分形几何,其属于古典数学不断发展到现今出现的结果,属于一种更具有真实形态、并且能够反映出内在结构真实的一种几何学科。因为分形几何具有真实性,所以其在实际的建筑工程中得到了有效的应用。在现今的高层建筑设计中,对于分形几何原理以及方法的使用,变得越来越广泛。怎样有效的在高层建筑设计内呈现出分形几何的特点,具有十分重要的意义。 1 分形几何的含义及性质 分形的含义是一个零散的或者粗糙的几何图形,能够将其分为多个不同部分,并且每一个部分都是整体进行缩小之后的样子,就是有着自相似的性质。分形由曼德布罗特创造,其来源自拉丁文,有着零散以及破碎的含义。从数学的方面讲,分形的产生是依靠一个不断更新的方程公式,就是依靠递归出现的一种反馈体系。 分形几何具有一些比较明显的特征,首先,其具有任意的小的比例,结构比较精细。其次,其是整体与局部都不是规则图形,不能够使用以往的几何话语进行描述。还有一般有近似的或者是自相似的结构形式。并且分形的维数一般超过它拓扑的维数,在大多数的情况下,能够使用简单的方法进行有效定义,能够由迭代生成。 2 高层建筑设计中蕴含的分形思维 2.1 建筑空间的自相似性 高层建筑的空间通常有着分形的特征,或者是能够通过外在的自然形态来表现出分形的思维,或者更多的能够通过对于自相似性进行使用来表现。在高层建筑设计中,不论是平面的设计还是立体的设计,都含有一定的自相似性思想。进行平面设计的时候,因为高层建筑自身的特殊性,时常会体现自相似的情况,进行立体设计的时候,自相似性的思维变得更为普遍,会发现有许多相同的划分手法使用在不同的尺度层级的自相似性中。这类型自相似构成规律对高层建筑的结构造型的变化以及内在的规律和谐统一起到了很大的作用。 2.2 连续的尺度层级

分形几何及其应用简介(精)

分形几何及其应用简介 课程号:06191280 课程名称:分形几何及其应用英文名称:Fractal Geometry and its Applications 周学时:3-0 学分:3 预修要求:实变函数,概率论 内容简介: 分形几何学是由法国数学家B.B.Mandelbrot在20世纪70 年代创立的。“分形(fractal)”一词,也是由他提出,它来源于拉丁语“fractus”,含有“不规则”或“破碎”之意。与描述规则形状的欧几里德几何不同,分形几何研究一类非规则的几何对象,并为研究这些对象提供了思想、方法、技巧等。作为应用,它可以构造从植物到星系的物理结构的精确模型,而这是传统几何无法做到的。可以说,分形几何是一种“新”的几何语言。 选用教材或参考书: 教材:《分形几何---数学基础与应用》,谢和平等编(重庆大学出版社) 参考书:K.J.Falconer, The Geometry of fractal sets, Cambridge Univ. Press, (1985) 《分形与图象压缩》,陈守吉等编(上海科技教育出版社)

《分形几何及其应用》教学大纲 一、课程的教学目的和基本要求 《分形几何及其应用》课程主要是面向数学系学生开设的一门选修课,总学时数为48,一个学期完成,学分3分。 通过本课程的教学,使学生掌握分形几何中的基本概念、基本方法并熟识基本理论;会应用基本理论考察自然现象的分形本质,计算分形维数,在图象压缩方面有初步的应用。 二、相关教学环节安排 1,每周布置作业,作业量2---3小时。 2,每章结束安排习题课,讲解习题。 三、课程主要内容及学时分配 每周3学时,上课时间共16周。 主要内容: (一)预备知识(3学时) 1,基本集合和测度理论 2,概率论知识 3,质量分布 (二)Hausdorff 测度与维数(6学时) 1,Hausdorff 测度 2,Hausdorff 维数 3,Hausdorff 维数计算的例子 4,Hausdorff 维数的等价定义 5,习题课 (三)维数的其他定义(6学时) 1,盒计数维数 2,盒计数维数的性质和问题 3,修正盒计数维数 4,另外一些维数定义 5,习题课 (四)维数计算方法(9学时) 1,基本方法 2,有限测度子集 3,位势理论方法 4,Fourier变换方法 5,习题课 (五)分形集的局部结构(6学时) 1,密度 2,1-集的结构 3,s-集的切线 4,习题课

分形拓扑几何学

欧几里德几何学、分形拓扑几何学与设计 经典几何学对自然界形体的描述是概括的,不近似的,不精确的。它把复杂的山型近似为圆锥,把复杂的树冠近似为圆锥,把复杂的人头近似为球形等等。然后以这些基本形(方、圆、锥、柱、环等)为基础,通过它们的叠加与组合,来描述更复杂的自然界形体。 这种描述在不需要精确的领域是可以接受的,如果要求被描述的形体足够精确,采用这种方法就不能很好的满足要求了。另外,对于一些非常复杂的形状,如云形,雪花等,这种方法显得力不从心。 为了能够对复杂的自然形体进行比较精确的描述,Mandelbrote提出了分形的概念。分形的方法可以对自然形体比经典几何学进行更精确的描述。这种描述是动态的,是建立在自然形体是自相似原理基础上的。当然,分形的描述也不是与自然形体100%的符合。任何描述都具有概括或抽象的概念。 比较经典几何学与分形,发祥它们对自然形体描述的差别在于:经典几何学是以静态的方式来描述形态,这种描述方法具有数据量大的特点;分形几何学是以动态、生成的方式来描述形态,这种方式具有可以根据要求来不断提高被描述形态的精确度,数据量比较小。 事实上,这两种对自然界形态描述的方式背后存在着基本观念的差异。经典几何学认为世界是构成的,因此可以将世界分解成很多基本

几何要素,然后根据一定的规律建构起来;分形几何学认为世界是生成的,复杂的世界形态是在时间的流逝中不断演化生成的。 建立在构成论的基础上的数学,是静态的描述数学;建立在生成论的基础上的数学,是动态的描述数学。 静态的数学中,没有时间变量;动态的数学中,存在时间变量,尽管有时它不是以时间的含义出现(比如迭代的次数,在本质上,就是时间变量)。 分形对形态的描述精度,是通过单位面积中留下的间隙或密度来衡量的。如果留下的间隙越小或密度越大,则描述的精确度越高。 经典几何学是通过距离来描述精确度的。距离越小,精确度越高。 在经典几何学下,艺术家创造形体的方式是描绘式的,不论是通过一点透视,还是通过多点透视的方法来画出的画面,本质上都是描述式的。不论再现式的绘画(以对自然的如实描写为主,通过具体的形象来表达艺术家内心的情感),还是表现式的绘画(不是以对自然的如实描写为主,而是以表现内心情感的为主,通过抽象的、随意的形象来表达),都是一种建构画面的表达方式。在分形几何学下,艺术家

数学分支之分形几何

数学分支之分形几何 普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。 分形几何的产生 客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。 客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特鞒ざ取;褂械氖挛锩挥刑卣鞒叨龋?捅匦胪?笨悸谴有〉酱蟮男硇矶喽喑叨龋ɑ蛘呓斜甓龋??饨 凶?SPANlang=EN-US“无标度性”的问题。 如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。

在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题这依赖于测量时 所使用的尺度。 如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。 数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。 这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。电子计算机图形显示协助了人们推开分形几何的大门。这座

第6讲分形几何学

第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数

(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分数维描述的几何对象,都具有自相似性。 (2)自相似性与无标度区 所谓自相似性(self-similarity),是指事物或现象中局部与整体在形态、功能和信息等方面具有统计意义上的相似性。自然界中的许多客体,如云朵、山脉、海岸线、树、肺脏,甚至描述经济现象的图形,都具有“自相似性”,即局部与整体的形状相似,局部的局部也与整体相似。例如,一段用放大的比例尺画出来的海岸线与整条海岸线形状是相似的;一棵树干分为二支,每支又分为二支——这棵树的局部与整体的形状相似。事实上,地质体大多具有自相似性,一条断层可能以不同比例尺存在,而其外表却十分相像。因此,地质学家长期以来凭直觉认识到了这一基本事实,从而形成了一个不言而喻却是不可改变的原则,即任何地质体的照片必须附上一个比例尺参照物,在野外拍摄的地质照片中通常附上已知尺寸的某种普通物品,例如铅笔、地质锤或人体。 自然界事物自相似性只在一定尺度范围内才能出现,这个具有自相似性的范围叫做无标度区。在无标度区内,放大或缩小几何对象的尺寸,整个结构并不改变,即其形状与标度无关。在无标度区外,自相似现象不存在。

相关文档
最新文档