可加工微晶玻璃

可加工微晶玻璃
可加工微晶玻璃

微晶玻璃陶瓷性能指标

可加工微晶玻璃陶瓷是以合成云母为主晶相的氟金云母微晶玻璃,主要成分是氟金云母(Mg3K[AlF2O(SiO3)3]).和以二氧化硅为主要成分的玻璃组成。材料类似MACOR。性能基本一致。

可加工陶瓷性能表:(Machinable Glass Ceramic)

可加工陶瓷,其定义为:可以用对金属加工的工具和器械对其进行钻孔、车削、铣削、攻丝等加工并获得精密尺寸的陶瓷材料。

我公司生产的可加工陶瓷MACRE㊣是一种多晶复相材料,是以合成云母微晶为主晶相的微晶玻璃。该材料又叫微晶玻璃陶瓷。这种材料颜色洁白,组织致密。微晶量占总体积的50%以上,微晶颗粒在5ν—20μ之间。它是七十年代出现的新材料,有一系列优良特性,有广泛的用途。可加工陶瓷有较高的机械强度,优良的介电性质和热性能,良好的化学稳定性。可加工陶瓷的最突出的特点是良好的可加工性。它可采用通用的金属加工设备进行车、铣、刨、锯、磨、切、攻丝等加工成形状复杂的各种零件,且能达到相当高的加工精度。不需要特殊的刀具和设备。

可加工陶瓷材料有优良的电绝缘性能(电击穿达到40KV/A每毫米),较高的机械强度,耐急冷急热性(耐零下200度到800度急冷急热,在焊接夹具、光学玻璃成型模具等方面广泛使用)。其耐腐蚀性也优于普通陶瓷,其优良耐腐蚀性使其应用于各类化工设备中,相对聚四氟乙烯,它更耐腐蚀,不老化,使用寿命长。可加工陶瓷真空放气率极低(广泛应用于各类真空设备、光伏真空镀膜设备等),另可加工陶瓷在电磁方面也性能优良,现已大规模用做各类线圈骨架,典型应用在导弹陀螺仪器线圈骨架,我公司已为二炮提供各类导弹陀螺仪线圈骨架十多年。获得多家军工单位一致好评。

可加工陶瓷最突出的特点在于它的可加工性,能满足高精度技术要求,无需开模,直接加工成型,大大缩减设计及加工周期。可加工陶瓷能灵活的应用于各种需要形状复杂、精度要求高、成型难度大、(如各种陶瓷薄壁、陶瓷螺纹等)的结构陶瓷件之场合。

我公司能为您提供各种规格库存毛胚材料(棒料、板料、块料等),您可以直接购买毛胚材料,用现有设备像加工金属一样加工成所需的陶瓷零件,另我们也提供来图加工服务,我公司配有多台数控车床、平面磨床、加工中心,交货周期短。

可加工陶瓷应用范围

可加工陶瓷又称微晶玻璃陶瓷,是以合成云母为主晶相的云母微晶玻璃,可以用对金属加工的工具和器械对其进行钻孔、车削、铣削、攻丝等加工并获得精密尺寸的陶瓷材料。该材料具备了良好的加工性能、真空性能、电绝缘特性及耐热冲击、耐化学腐蚀等优良性能。

一. 可加工性的应用:可加工陶瓷MACRE㊣最突出的特点是可用普通金属加工工具和设备进行车、铣、刨、磨、钻、锯切和攻丝等加工手段加工成形状复杂的各种零件,且能达到相当高的加工精度。不需要特殊的刀具和设备。因此被加工成各种结构复杂的结构陶瓷。典型应用:各种机械设备上绝缘垫块、隔热垫块、绝缘支撑件、耐热支撑件。

二. 绝缘性能的应用:可加工陶瓷是一种优良的高温电绝缘材料,它每毫米电击穿强度可达40KV/A,在许多电器设备中都可以应用,典型应用:避雷针关键零件。

三. 耐热冲击性的应用:可加工陶瓷的使用范围在-200℃~+800℃。由于微晶玻璃陶瓷中的云母晶体具有一定的弹性,能制止微裂纹的延伸,因此它又具有较好的的抗热冲击性能。它的低热膨胀系数保证了工件的尺寸稳定,可进行气密封结。典型应用:焊接装夹具、光学玻璃二次成型模具等。

四. 超低真空放气率的应用:可加工陶瓷经过180℃烘烤,160℃保温1小时,真空老练8小时,放气率为极低仅为8.8×10-9 ml/s. cm2,因此广泛应用于各种真空设备真空腔内的支撑件。典型应用:真空设备、光伏行业真空镀膜支撑件。

五. 耐腐蚀性的应用:可加工陶瓷具有优良的耐腐蚀性能,它完全由无机材料组成,因此还有不老化不变形,对各种有机溶剂十分稳定及良好的耐酸碱腐蚀性能等。比普通陶瓷和聚四氟乙烯更耐酸碱腐蚀。相对聚四氟乙烯,它更耐腐蚀,不老化,使用寿命长。因此被应用于化工行业做各种关键部位。典型应用:原油脱盐电极引入棒、吊挂。

六. 电磁性能的应用:可加工陶瓷具有极好的电磁性能。典型应用:导弹陀螺仪线圈骨架。

七. 其它性能的应用:可加工陶瓷具有极好的自润滑性,再没有金属颗粒的情况下,像石墨一样具有自润滑性。它比重是普通钢材的1/3,比铝还轻,吸水率极低。典型应用:旋转式真空泵旋片。

总之:可加工陶瓷由于它具有各种优良综合性能,能满足高精度技术要求,无须模具设计及制作大大缩短研制周期,可以加速工程进展,节省研制费用,因此深受广大科研、教学和设计部门的欢迎。它特别适合汽车、军工、航空航天、精密仪器、医疗设备、电真空器件、电子束暴光机、纺织机械、传感器、质谱仪和能谱仪等仪器中广泛使用。对于一些薄壁的线圈骨架,精密仪器的绝缘支架,形状复杂等精度要求高的器件,微晶玻璃陶瓷更为适

用,它可加工成任意形状。它比氮化硼强度高,放气率低,比聚四氟乙烯耐温度,不变形,不变质,经久耐用,比氧化铝瓷更好加工性好,生产周期短,合格率高,设计人员可任意制作所需尺寸的产品。

透明微晶玻璃、黑色微晶玻璃、耐高温微晶玻璃

透明微晶玻璃、黑色微晶玻璃、耐高温微晶玻璃 耐高温玻璃——透明微晶玻璃、黑色微晶玻璃(英文名Glass Ceramic,也称玻璃陶瓷) 材料提供:国产微晶玻璃,常规最大尺寸350*450*4mm,也可以选择进口微晶玻璃,常规最大尺寸1954*1100,2100*1266,厚度4\5。 透明微晶玻璃介绍: 由于其极低的热膨胀度,透明微晶玻璃不会受高温(760℃)的影响,也不受显著温度变化或温度差异的影响,且十分优越的耐热冲击性能。另外,透明微晶玻璃具有良好的热辐射,特别是短波红外辐射透过性。而正是在为火炉燃烧过程中释放的强烈热辐射为我们带了舒适暖意。 因此,微晶玻璃特别知合应用在既有高热能又需要良好透光性的场合,作为室内加热装置(如壁炉和火炉)的观察窗。 图 1 透明微晶玻璃 150 999 63668

产品应用: ?室内加热/取暖器的视窗面板(燃油/燃气室内取暖器/炉、传 统燃料的室内取暖器/炉) ?红外辐射加热/取暖器的面板 ?加热电暖炉的盖板玻璃 ?反光杯和高性能泛光照明灯的盖板 ?红外烘干器的盖板 ?投影仪的保护盖片 ?隔紫外线护罩 ?烤肉/烧烤设备的面板 ?大功率泛光灯和反射器上耐高温的面板 加工:①切割、②倒角、③钻孔、④丝印、⑤镀膜 黑色微晶玻璃面板说明: 由特殊微晶玻璃制成,该材料的最大特点是:可耐高达750℃的急剧升温。微晶玻璃面板非常环保,不含砷、锑等有毒重金属。它的主要原料是石英,这种原料在自然界取之不尽、用之不竭。 黑色微晶玻璃灶具面板非常坚固、耐受冲击,经久耐用。灶具面板横向热传导低,靠近烹调区的地方温度相对较低,热量会直接传导至烹饪锅具。 图 2 黑色微晶玻璃 150 999 63668

微晶玻璃成分

微晶玻璃的化学组成 微晶玻璃的化学组成包括基础玻璃成分和成核剂两部分.为了满足玻璃的形成和工艺要求,基础玻璃成分一般都含有一定量的SiO2、B2O3、P2O5和以【AlO4】形式存在的Al2O3等玻璃网络形成体,以【AlO6】形式存在的Al2O3和ZnO等玻璃网络中间体及包括碱金属与碱土金属氧化物在内的玻璃网络调整体。而为了获得无气泡的基础玻璃,通常在基础玻璃组分中引入一定量的澄清剂(如Na2SO4/C、Sb2O3、Na2SiF6等)。此外,为了诱导或促进基础玻璃在热处理过程中的晶核形成,促进玻璃的整体晶化,通常需要引入成核剂。根据基础玻璃成分,可将微晶玻璃分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐和磷酸五大系统。成核剂可以分成三大类:一类是Au、Ag、Cu、Pt、Ru等贵金属盐类物质,当这里物质与玻璃配合料一起熔融时,贵金属元素在高温时以离子状态存在,而在低温下则分解还原成贵金属原子,这些原子经过一定的热处理将在玻璃结构中形成高度分散的金属晶体颗粒,从而实现诱导析晶。另一类是阳离子电荷高、场强大、积聚作用强的氧化物,如ZrO2、TiO2、P2O5等,这三种物质对玻璃的成核作用有所不同。一般认为,ZrO2的成核作用是先从母体玻璃中析出富含锆氧的微不均匀区,进而诱导母体玻璃成核;TiO2的成核作用是先从母体玻璃中析出富含钛酸盐相(无定形态),在一定条件下,这种液相将转变成结晶相,进而使母体玻璃形成晶核;P2O5与前两种成核剂的作用机制不同,由于P5+的场强比Si4+大,有加速硅酸盐玻璃分相的作用,从而促使玻璃核化。ZrO2、TiO2与P2O5是制备微晶玻璃最常用的三种成核剂,除此之外,Cr2O3、Fe2O3等也可作为成核剂使用,但由于它们能使玻璃着色,故很少采用。还有一类成核剂是氟化钙(CaF2)、冰晶石(Na2AlF6)、氟硅酸钠(Na2SiF-6)和氟化镁(MgF2)等氧化物。一般认为氟的加入起减弱玻璃结构的作用,用F-取代O2-造成硅氧网络结构的断裂,这是氟化物诱导玻璃成核的主要原因。另外,当氟含量大于2%~4%时,氟化物就会在冷却(或热处理)过程中从熔体中分离出来,形成细结晶状的沉淀物而引起玻璃乳浊(分相),从而促使玻璃成核。

微晶玻璃 第一章

1 绪论 1.1 微晶玻璃的定义 1.1.1 定义及特性 微晶玻璃(glass-ceramic)又称玻璃陶瓷,是将特定组成的基础玻璃,在加热过程中通过控制晶化而制得的一类含有大量微晶相及玻璃相的多晶固体材料。 玻璃是一种非晶态固体,从热力学观点看,它是一种亚稳态,较之晶态具有较高的内能,在一定的条件下,可转变为结晶态。从动力学观点看,玻璃熔体在冷却过程中,黏度的快速增加抑制了晶核的形成和长大,使其难以转变为晶态。微晶玻璃就是人们充分利用玻璃在热力学上的有利条件而获得的新材料。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 尽管微晶玻璃的结构、性能及生产方法与玻璃和陶瓷都有一定的区别,但是微晶玻璃既有玻璃的基本性能,又具有陶瓷的多相特征,集中了玻璃和陶瓷的特点,成为一类独特的新型材料。 微晶玻璃具有很多优异的性能,其性能指标往往优于同类玻璃和陶瓷。如热膨胀系数可在很大范围内调整(甚至可以制得零膨胀甚至是负膨胀的微晶玻璃);机械强度高;硬度大,耐磨性能好;具有良好的化学稳定性和热稳定性,能适应恶劣的使用环境;软化温度高,即使在高温环境下也能保持较高的机械强度;电绝缘性能优良,介电损耗小、介电常数稳定;与相同力学性能的金属材料相比,其密度小但质地致密,不透水、不透气等。并且微晶玻璃还可以通过组成的设计来获取特殊的光学、电学、磁学、热学和生物等功能,从而可作为各种技术材料、结构材料或其他特殊材料而获得广泛的应用。 微晶玻璃的性能主要决定于微晶相的种类、晶粒尺寸和数量、残余玻璃相的性质和数量。以上诸因素,又取决于原始玻璃的组成及热处理制度。热处理制度不但决定微晶体的尺寸和数量,而且在某些系统中导致主晶相的变化,从而使材料性能发生显著变化。另外,晶核剂的使用是否适当,对玻璃的微晶化也起着关键作用。微晶玻璃的原始组成不同,其主晶相的种类不同,如硅灰石、β-石英、β-锂辉石、氟金云母、尖晶石等。因此通过调整基础玻璃成分和工艺制度,就可以制得各种符合性能要求的微晶玻璃。 1.1.2 微晶玻璃的种类 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等。表1-1列出了常用微晶玻璃的基础组成、主晶相及其主要特性。 表1-1常用微晶玻璃的组成、主晶相及主要特性

商用电磁炉为什么要用微晶玻璃

商用电磁炉为什么要用微晶玻璃 目前大部分的商用电磁炉,都需要用到微晶玻璃,微晶玻璃对于商用电磁炉又有什么特别作用呢? 微晶玻璃又称微晶玉石或陶瓷玻璃。主要应用在商用电磁炉,大功率电磁炉等产品上面。是综合玻璃,它的学名叫做玻璃陶瓷。将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化处理,成为具有微晶体和玻璃相均匀分布的复合材料。 微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以说,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。 商用电磁灶面板采用微晶玻璃的主要原因是:微晶玻璃性能机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高。平面微晶玻璃目前广泛应用到商用电磁炉上,凹面微晶玻璃即是指形状呈凹型,类似锅的现状的微晶玻璃。该微晶玻璃板主要用途目前以大功率商用电磁炉上用为主。 随着煤气,物价的上升,饮食行业的成本骤增,以及人们对无明火烹饪的理解,商用炉灶用户的增加。凹型微晶玻璃需求也会相应增加。常用厚度12~20mm 商用炉灶采用的平面微晶玻璃板常规尺寸为:250×250mm、300×300mm、350×350mm、450×450mm、500×500mm、600×600mm等。商用电磁炉采用的凹面微晶玻璃常规尺寸为:直径200mm、直径300mm、直径400mm、直径500mm等。 微晶玻璃原来有这么大的不同,您知道了吗?对于商用电磁炉产品上面有任何疑问,您可以在沁鑫商用电磁炉官网咨询: 沁鑫官网:https://www.360docs.net/doc/1211726266.html, 阿里巴巴官网:https://https://www.360docs.net/doc/1211726266.html,

微晶玻璃的制备方法与应用

X X X X 大学 材料制备原理课程论文 题目微晶玻璃的制备方法与应用 学院材料科学与工程学院 专业班级无机072 学生姓名 2010 年 6 月11 日

微晶玻璃的制备方法与应用 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。本文来主要介绍微晶玻璃的制备方法及其应用。 关键词:微晶玻璃;制备;应用 1.引言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 2.制备方法 微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。 2.1 熔融法 熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。热处理制度的确定是微晶玻璃生产的关键技术。作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。通常是25℃~50℃。微晶玻璃的理想热处理制度见图1。 图1 微晶玻璃的理想热处理制度 常用的晶核剂有TiO2,P2O5,ZrO2,CaO,CaF2,Cr2O3、硫化物、氟化物。晶核剂的选择与基础玻璃化学组成有关,也与期望析出的晶相种类有关。Stooky指出,良好的晶核剂应具备如下性能:(1)在玻璃熔融成形温度下,应具有良好的溶解性,在热处理时应具有较小的溶解性,并能降低成核的活化能。(2) 晶核剂质点扩散的活化能要尽量小,使之在玻

电磁炉微晶玻璃面板市场分析要点

近年来,随着电磁炉市场的发展,微晶玻璃面板供求也较为紧俏,但是从2006年开始,由于多方面原因,电磁炉微晶玻璃面板的开始供大于求,从而也导致了2007年上半年电磁炉微晶玻璃面板价格暴跌。未来,电磁炉微晶玻璃面板市场又将如何呢? 市场需求及供应状况 从2000年开始,电磁炉市场以每年70%以上的市场增长率高速增长,从刚开始的100余万台猛增到了2005年的近4000万台。中怡康统计资料显示,2005年电磁炉市场零售量增长55.85%,市场零售额增长51.67%。当时,电磁炉市场被业界一致看好,预测在2006年市场容量将接近6000万台。 在电磁炉市场高速发展的同时,上游原材料特别是微晶玻璃面板也处于供不应求的状态。2004年和2005年,中国微晶玻璃面板行业有限的产能遇到电磁炉井喷式的市场增长,供应十分紧张,特别是到了每年9月份的市场旺季,购买微晶玻璃,甚至一板难求。当时,微晶玻璃面板市场出现了专业的“倒板户”,而且经济效益十分可观。 出于整个电磁炉行业的乐观估计,微晶玻璃行业开始了大规模的产能扩张。据不完全统计,2006年,中国微晶玻璃企业已经超过10家,窑炉数量37个,不算其他正在上马的企业,仅37个窑炉的年产能就超过1亿片。 “在2006年9月电磁炉的旺季前,大多数电磁炉企业对市场充满期待,制订了宏大的发展规划,同时为防止货源不足,还采购了大量的原材料,大量囤积微晶玻璃面板。”浙江湖州岱兴电器制品有限公司一位产品经理回忆一年前的场景时说。 但是,预期火爆的电磁炉市场却没有如期而至。2006年10月,重新审视市场后的电磁炉企业开始减少或者停止采购微晶玻璃面板,有的小电磁炉企业为了防止资金链断裂,开始低价抛售之前储备的原材料。于是,从2006年底到2007年上半年,在供应量加大、市场需求速度减缓、低价抛售、竞争激烈等多方面因素的影响下,电磁炉微晶玻璃面板的供求形势发生逆转。图1显示了2004年至今电磁炉用微晶玻璃面板的价格走势,与2006年10月相比,如今每片微晶玻璃面板每片的价格都有大幅度下降。 广东东莞市金业电子科技有限公司生活电器部项目经理邱明勇介绍说,随着微晶玻璃面板价格在2007年上半年降到最低点,一些小型或者新进入的面板行业的企业开始退出这个市场。 “经历了一次洗牌以后,微晶玻璃面板企业也开始理性对待市场。一些企业开始关停部分生产线,力求让整个行业供求得到平衡。”邱明勇称,2007年下半年微晶玻璃面板的单价开始止跌回升,上涨到20元左右。同时,曾经困扰微晶玻璃面板生产企业的原材料问题也得到了缓解,也减轻了微晶玻璃面板企业的经营压力。据了解,生产微晶玻璃的主要原材料之一碳酸锂曾经出现断货,令微晶玻璃面板企业颇为苦恼。作为电池材料、特种玻璃、陶瓷添加剂及各种锂化合物原料,碳酸锂需求量大,中国本地产能有限,需要从智利和澳大利亚等国进口。供不应求的形势使碳酸锂的价格节节攀升,2004年每吨为3万元,2006年1 月涨到每吨4万元,5月更是达到每吨6万元。不仅是价格上涨,而且供应严重不足,不少

微晶玻璃

二硅酸锂微晶玻璃材料综述 何志龙-3112007045 (金属材料强度国家重点实验室, 西安交通大学材料科学与工程学院,西安710049) 摘要:微晶玻璃以其优异的力学、化学、生物等性能,在国防、航空、建筑、电子、光学、化工、机械及医疗等领域作为结构材料、技术材料、光学材料、电绝缘材料等而获得广泛应用,吸引了许多研究者的关注。本文在参考学习了诸多相关文献的基础上,对微晶玻璃材料的制备、性能、应用及研究进展进行了论述,列举了人们在该领域取得的重要研究进展,以及微晶玻璃材料领域存在的研究难题。 关键词:晶化,微晶玻璃,综述,非均匀成核 1 研究背景与意义 自从1957年,美国康宁公司著名玻璃化学家S.D.Stookey研制出第一种微晶玻璃以来,微晶玻璃就凭借其组分广泛、性能优异、品种繁多而著称。由于析出的晶粒尺寸可控,与界面结合强度高,抗弯强度可以达到200MPa以上,大量微晶玻璃体系涌现出来,它们的形成机制也得到大量深入研究。 微晶玻璃又称玻璃陶瓷,它是将某些特定组成的基础玻璃,在一定温度下进行控制晶化,制得的一种同时含有微晶相和玻璃相的多晶固体材料。在热处理过程中,基础玻璃内部产生晶核及晶体长大,因为析出的晶体非常小,被称作微晶玻璃。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或易产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1-0.5μm)和残余玻璃组成的复相;而玻璃则是非晶态或无定形体。微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2 微晶玻璃分类 按照基础玻璃的组成,微晶玻璃主要有以下四大类: (1)硅酸盐类微晶玻璃 由碱金属、碱土金属的硅酸盐晶相组成,主晶相有:透辉石、顽辉石、硅灰石、二硅酸锂等,这些晶相的种类影响微晶玻璃的性能。其中,最早研究的矿渣微晶玻璃和光敏微晶玻璃属此类。

可加工微晶玻璃

微晶玻璃陶瓷性能指标 可加工微晶玻璃陶瓷是以合成云母为主晶相的氟金云母微晶玻璃,主要成分是氟金云母(Mg3K[AlF2O(SiO3)3]).和以二氧化硅为主要成分的玻璃组成。材料类似MACOR。性能基本一致。 可加工陶瓷性能表:(Machinable Glass Ceramic)

可加工陶瓷,其定义为:可以用对金属加工的工具和器械对其进行钻孔、车削、铣削、攻丝等加工并获得精密尺寸的陶瓷材料。 我公司生产的可加工陶瓷MACRE㊣是一种多晶复相材料,是以合成云母微晶为主晶相的微晶玻璃。该材料又叫微晶玻璃陶瓷。这种材料颜色洁白,组织致密。微晶量占总体积的50%以上,微晶颗粒在5ν—20μ之间。它是七十年代出现的新材料,有一系列优良特性,有广泛的用途。可加工陶瓷有较高的机械强度,优良的介电性质和热性能,良好的化学稳定性。可加工陶瓷的最突出的特点是良好的可加工性。它可采用通用的金属加工设备进行车、铣、刨、锯、磨、切、攻丝等加工成形状复杂的各种零件,且能达到相当高的加工精度。不需要特殊的刀具和设备。 可加工陶瓷材料有优良的电绝缘性能(电击穿达到40KV/A每毫米),较高的机械强度,耐急冷急热性(耐零下200度到800度急冷急热,在焊接夹具、光学玻璃成型模具等方面广泛使用)。其耐腐蚀性也优于普通陶瓷,其优良耐腐蚀性使其应用于各类化工设备中,相对聚四氟乙烯,它更耐腐蚀,不老化,使用寿命长。可加工陶瓷真空放气率极低(广泛应用于各类真空设备、光伏真空镀膜设备等),另可加工陶瓷在电磁方面也性能优良,现已大规模用做各类线圈骨架,典型应用在导弹陀螺仪器线圈骨架,我公司已为二炮提供各类导弹陀螺仪线圈骨架十多年。获得多家军工单位一致好评。 可加工陶瓷最突出的特点在于它的可加工性,能满足高精度技术要求,无需开模,直接加工成型,大大缩减设计及加工周期。可加工陶瓷能灵活的应用于各种需要形状复杂、精度要求高、成型难度大、(如各种陶瓷薄壁、陶瓷螺纹等)的结构陶瓷件之场合。

透明微晶玻璃的研究现状及展望

透明微晶玻璃的研究现状及展望 学院:材料科学与工程学院 班级:无机14-4班 人员:胡靖东(1402020407) 都大洋(1402020404) 滕宏远(1302020416)

李敬瑶(1302020409)

透明微晶玻璃的研究现状及展望 摘要 摘要透明微晶玻璃是一种具有优良热、力、光及化学性能的新型功能材料,在国防尖端技术、微电子技术和化学化工等领域有着广阔的应用前景。介绍了透明微晶玻璃的光学原理、制备条件、主要组成体系及其制备工艺、应用领域,并展望了透明微晶玻璃的发展前景。 透明微晶玻璃是通过对某些特定组成的基础玻璃在一定温度下进行受控晶化而得到的一类既含有大量微晶体又含有残余玻璃相的新型材料。它具有能透可见光、机械强度高、电绝缘性能优良、介电常数稳定、耐磨、耐腐蚀,热膨胀系数可调等特性,其性能指标优于同类玻璃和陶瓷。透明微晶玻璃是通过组成的设计来获取特殊的光学、电学、热学、磁学等功能,其优异的性能使这种材料在航空航天、电子、机械、化工、激光技术等领域得到广泛的应用,在今后相当长的时期内将成为材料科学与工程领域研究的热点之一。 关键词:透光率; 微晶玻璃; 光学原理; 玻璃

1 透明微晶玻璃的研究历史与现状 微晶玻璃的发展历史大致可以分为3个阶段:第1阶段为20世纪50年代末期至70年代中期,以低膨胀微晶玻璃的研究为主,并获得了透明微晶玻璃;第2阶段是20世纪70年代中期到80年代中期,开发了与金属类似的具有可切削加工的微晶玻璃;第3个阶段是20世纪80年代中期至今,结构更加复杂的多相微晶玻璃得到广泛研究。 对微晶玻璃的尝试性研究可以追溯到1739年,Reaumur从碳酸钙一石灰一氧化硅玻璃制得受表面晶化机制所支配的多晶材料,但因材料很脆而未能获得实际应用200多年后,美国康宁公司研制出光敏微晶玻璃,并申请了第1项微晶玻璃专利1925年Tamman对包括无机玻璃在内的过冷液体的晶化进行了研究,他认为成核速率与晶体长大速度是影响玻璃结晶的2个重要因素,选择最优的成核温度是生产微晶玻璃的重要措施20世纪50年代,Stookey对微晶玻璃进行了大量的研究,推出了以TiO2为晶核剂的范围很广的玻璃组成,发展了微晶玻璃理论[3],1967年Beall等研究出了一种有效控制析晶的方法,采用这种方法可在硅铝铿镁锌系统玻璃中析出尺寸小于100nm的价石英固熔体,且所制备的微晶玻璃具有很小的膨胀系数和很高的光学透过率。 20世纪70年代,美国通用电器公司制成了氧化忆透明陶瓷[4],氧化忆是立方晶系晶体,具有光学各向同性的性质山于氧化忆陶瓷在宽的频率范围内尤其是在红外区内具有很高的光学透光率,因此这种材料被作为各种检测窗口同时山于其具有高的耐火度,可用作高温炉的观察窗以及高温环境条件下所应用的透镜此外,氧化忆透明陶瓷还可用于红外发生器管、天线罩等该时期透明微晶玻璃的典型代表是德国Schott公司所研发的发热Zerodur透明微晶玻璃,其具有特别优异的

微晶石各项指标

微晶石是新型的装饰建筑材料,其中复合微晶石称为微晶玻璃复合板材,是将一层3—5mm的微晶玻璃复合在陶瓷玻化石的表面,经二次烧结后完全融为一体的高科技产品。微晶石厚度在13—18mm,光泽度大于95。 特点 质感 微晶石是在与花岗岩形成条件类似的高温下,经烧结晶化而成的材料。在外观质感方面,其抛光板的表面光洁度远高于石材(光度可达90-120光泽度单位),更重要的特点是,其特殊的微晶结构,使得光线无论从任何角度射入,经过精细微晶微粒的漫反射,都能将光线均匀分布到任何角度(而不再是像镜面那样仅仅是集中在反射角度),使板材形成柔和的玉质感,比天然石材更为晶莹柔润,使建筑更加流光溢彩。 性能 比天然石更具理化优势:微晶石是在与花岗岩形成条件相似的高温状态下,通过特殊的工艺烧结而成,质地均匀,密度大、硬度高,抗压、抗弯、耐冲击等性能优于天然石材,经久耐磨,不易受损,更没有天然石材常见的细碎裂纹。 质地 板面光泽晶莹柔和:微晶石既有特殊的微晶结构,又有特殊的玻璃基质结构,质地细腻,板面晶莹亮丽,对于射入光线能产生扩散漫反射效果,使人感觉柔美和谐。 色彩 微晶石的制作工艺,可以根据使用需要生产出丰富多彩的色调系列(尤以水晶白、米黄、浅灰白麻四个色系最为时尚、流行),同时,又能弥补天然石材色差大的缺陷,产品广泛用于宾馆、写字楼、车站机场等内外装饰,更适宜家庭的高级装修,如墙面、地面、饰板、家具、台盆面板等。 耐酸碱度 微晶石作为化学性能稳定的无机质晶化材料,又包含玻璃基质结构,其耐酸碱度、抗腐蚀性能都甚于天然石材,尤其是耐候性更为突出,经受长期风吹日晒也不会褪光,更不会降低强度。

卓越的抗污染性,方便清洁维护 微晶石的吸水率极低,几乎为零,多种污秽浆泥、染色溶液不易侵入渗透,依附于表面的污物也很容易清除擦净,特别方便于建筑物的清洁维护。 异性 微晶石可用加热方法,制成顾客所需的各种弧形、曲面板,具有工艺简单、成本低的优点,避免了弧形石材加工大量切削、研磨、耗时、耗料、浪费资源等弊端。 不含放射 微晶石的制作已经人为的剔除了任何含辐射性的元素,不含像天然石材那样可能出现对人体的放射伤害,是现代最为安全的绿色环保型材料。 缺点 1、微晶石表面晶玉层莫氏硬度为5-6级,强度低于抛光砖的莫氏硬度6-7级。 2、微晶石表面光泽度高,可以达到90%,如果遇划痕会很容易显现出来。 3、微晶石表面有一定数量的针孔,遇到脏东西很容易显现。 鉴别 透明度 透明玻璃的光学性能就是具有透明的性质。企业正是利用它的这一性质,才将透明玻璃陶瓷印花砖复合板产品印制的精美艺术花纹得到充分的展现,并增加了这种花纹的立体感和光亮度。 微晶玻璃,除极个别的主微晶相极小品种外,其光学性质都是半透明到不透明的。这是微晶玻璃与玻璃之间最大的外观差异。 纹样 透明玻璃陶瓷印花砖复合板所呈现的艺术纹样是靠丝网印刷、胶辊印刷、喷墨打印等现代印刷工艺在陶瓷砖上实现的。表层覆盖的透明玻璃只是加强了这些花纹的立体和光亮的视觉效果,起到了画龙点睛或锦上添花的作用。这种产品的艺术装饰性主要靠印花的艺术纹样与色彩来提升,即需要在制版、色彩的选择、印刷设备等方面下功夫。从建筑陶瓷业界的技术水平与生产能力来说,研制和生产这种产品的技术门槛相对还是比较低的,技术含量也相对不高的。印花陶瓷砖几乎所有陶瓷厂都可以实现生产。

微晶石行业分析

微晶石行业分析 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

微晶石行业现状与前景分析 第一章微晶石概述 1.1微晶石的概念 微晶石是新型的装饰建筑材料,其中复合微晶石称为微晶玻璃复合板材,是将一层3—5mm的微晶玻璃复合在陶瓷玻化石的表面,经二次烧结后完全融为一体的高科技产品。 微晶石厚度在13—18mm,光泽度大于95。 1.2微晶石的生产工艺及技术方法 1.2.1 生产工艺 微晶石板材是由特定组份的玻璃颗粒在高温下烧结而成,其内部组织结构为玻璃相和结晶相共存,两者的比例决定了材料的理化性能和表面特性微晶石板材制造工艺流程。微晶石内部结晶相是从玻璃颗粒界面开始向中心生长,由于晶体生长方向各异及两种岩相组织共存,从而形成绚丽的表面花纹。由于微晶石是在高温下烧制而成,玻璃颗粒在高温下呈熔融状态,颗粒之间搭接空间所存在的空气以及颗粒内部原有的气泡被封闭在内无法排出从而在内部形成大量的气孔。这些气孔如出现在微晶石表面,即成为其表面缺陷,造成废品。与此同时,在熔融状态下,由于表面张力的作用,其表面形成一个“火抛光”表层,其厚度仅有几十微米,光泽度在70度以上。这层极薄的表层组织将内部气孔完全覆盖,从而确保了微晶石表面的装饰效果。故这层极薄的表层组织对微晶石表面质量极为重要。微晶石这种独特的组织结构,使之在磨抛和切割加工时具有独特的工艺性,不能简单套用天然石材的加工工艺相应的加工设备也应适应这种工艺变化。

1.2.2 技术方法 (1)烧结法:是将一定组分的配合料,投入到玻璃熔窑内,在高温下使配合料熔化、澄清、均化、冷却,然后,将合格的玻璃液导入冷水中,使其水淬成一定颗粒大小的玻璃颗粒,根据产品要求以一定级配铺在耐火材料模框内,送至隧道窑或梭式晶化窑中进行烧结晶化退火处理。 (2)压延法:是将已经混合好的配合料投入玻璃熔窑内进行熔制、澄清、均化,经压延机压制成型,进入晶化退火窑中进行核化、晶化及退火,按产品要求切裁、打磨、抛光。 (3)浮法:是一种新型生产工艺,是微晶材料生产技术的重要发展方向,较之目前市场上广泛采用的压延法和烧结法生产工艺,建筑微晶材料的浮法生产工艺使得板材通过锡液面浮抛成型。 1.3微晶石的分类 微晶石作为,逐渐走入人们的家庭,根据微晶石的原材料及制作工艺,可以把微晶石为三类:无孔微晶石、通体微晶石、复合微晶石。 1.3.1无孔石 无孔微晶石也称人造汉白玉,是一种多项理化指标均优于普通微晶石、天然石的新型高级环保石材,其最大的特点是通体无气孔、无杂斑点、光泽度高、吸水率为零、可打磨翻新,适用于外墙、内墙、地面、圆柱、洗手盆、台面等高级装修场所。 无孔微晶石生产车间 1.3.2 通体石

微晶玻璃

海南大学2012-2013学年度第2学期《功能材料学》论文 题目:微晶玻璃的光学应用 姓名: 学号: 20100607310014 学院:材料与化工学院 专业班级: 10理科实验班

微晶玻璃的光学应用 刘涛 20100607310014 摘要:微晶玻璃也叫做玻璃陶瓷,是玻璃经过晶化处理得到的部分结晶态的物质,它兼具玻璃和陶瓷的优良性质,比陶瓷的亮度高,比玻璃韧性强,因而广泛用于建筑、航天等各个领域。中国稀土资源丰富,由于稀土离子特殊的4f电子层结构使其具有许多优越的性能,目前稀土发光材料引起了全世界的广泛关注。微晶玻璃的高透过性和优越的机械性能使其能够做为稀土元素的良好基质,制成的稀土掺杂发光微晶玻璃广泛应用于荧光设备、激光、波导激光、上转换材料等领域,具有重要的现实意义。 关键词:微晶玻璃稀土元素光学应用 一、固体发光过程 发光是物体不经过热阶段而将其内部以某种方式吸收的能量直接转换为非平衡辐射的现象。当物质受到外界能量(如光照、外加电场或电子束轰击等)的激发后,吸收外界能量而处于激发态,它在跃迁返回基态的过程中,吸收的能量会通过光或热的形式释放出来,如果这部分能量以光的电磁波形式辐射出来,即为发光。图1所示即为发光的过程[1]: 图1:发光的过程示意图 激活剂A吸收激发光的能量被激发(EXC),由基态A变为激发态A*,然后又回到基态(R),并发出光(EM)[2]。 二、发光材料的应用及稀土掺杂微晶玻璃的优点

发光材料在人们日常生活中有着重要的应用,从照明、显像到医学、放射学等领域,无不存在着发光材料的身影。在发光材料的发展中,稀土掺杂的发光材料格外引人注目,由于稀土离子特殊的4f电子层结构,决定其具有许多优越的性能:物理化学性质稳定、耐高温、可承受大功率电子束、高能辐射和强紫外光的作用;荧光寿命宽泛,可以跨越纳秒到毫秒6个数量级;发光颜色度纯、转换效率高、发射波长分布区域宽等。这些优异的性能使得稀土发光材料广泛应用于荧光设备、激光、波导激光、上转换材料等领域[3]。 稀土掺杂的基质材料一般为晶体,也可以是非晶态玻璃材料,晶体和玻璃作为稀土掺杂发光材料的基质各有优缺点,发光玻璃保证了发光光材料的稳定性,但是与同组成的晶体材料相比,发光玻璃的发光强度弱,转换效率也比较低[4],而微晶玻璃作为一种晶态和非晶态共存的材料,兼具了晶体发光材料优异的发光性能及玻璃材料的优异特性,其内部晶相能够保持发光晶体材料原有的发光性能,其熔制时的液体状态亦能够保证其均匀性,微晶玻璃亦具有良好的稳定性及可加工性,具有重要的研究价值。 三、微晶玻璃的分类、制备及显微结构 1、微晶玻璃的分类 按照玻璃陶瓷的化学组成来讲,玻璃陶瓷分为四大类:硅酸盐玻璃陶瓷、铝硅酸盐玻璃陶瓷、氟硅酸盐玻璃陶瓷、磷酸盐玻璃陶瓷[12] 。 1.1 硅酸盐玻璃陶瓷 硅酸盐玻璃陶瓷主要是由碱金属和碱土金属两部分组成,主晶相为硅酸盐,晶相可以决定玻璃陶瓷的性能[13]。硅酸盐玻璃陶瓷可分为两种:光敏玻璃陶瓷和 矿渣玻璃陶瓷。光敏玻璃陶瓷是以二硅酸锂(Li 2Si 2 O 5 )为主晶相的,这种晶体是 一种骨架结构[14],形貌像树枝,因为它的晶体生长方向是沿某些晶面,或者晶格 方向。而矿渣玻璃陶瓷主晶相则为硅灰石(CaSiO 3)和透辉石[Ca Mg(SiO 3 ) 2 ]。透 辉石因为其结构的特殊性,比硅灰石更加耐磨,耐腐烛,强度也更高。 1.2 铝硅酸盐玻璃陶瓷 铝硅酸盐玻璃陶瓷包括Li 2O—Al 2 O 3 —SiO 2 系统、MgO—Al 2 O 3 —SiO 2 系统、Na 2 O

微晶玻璃简述

微晶玻璃简要概述 刘帅聪 (无机非金属材料工程1301班,湖南工学院材料与化学工程学院 湖南衡阳 421002) 摘要 微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。 关键词微晶玻璃特点制备工艺应用发展 Brief Introduction of Glass - Ceramics Shuai Cong Liu (Inorganic Nonmetallic Materials Engineering1301class,Hunan Institute of TechnologyDepartment of Material and Chemical Engineering Hunan Hengyang 421002) Abstract: Crystalline glass is a composite solid material containing a large amount of microcrystals and vitreous bodies obtained by controlling crystallization during the heating process by the base glass or other materials. Because of its high mechanical strength, adjustable thermal expansion, good thermal shock resistance, chemical resistance, low dielectric loss, good electrical insulation properties such as superior performance, has been widely used in many fields. Key words: glass - ceramics, characteristics, preparation technology, application development

当前玻璃行业出口的探究

当前玻璃行业出口的探究 1引言 玻璃行业是个传统的工业品行业,但其对于社会和经济的发展仍然起着很大的作用,从建筑用的建筑幕墙和门窗玻璃、艺术装饰玻璃,到电子仪表玻璃,再到玻璃器械和玻璃制品。以上各种以玻璃为材料的产品均要受到玻璃原片行业的制约,对于玻璃原片行业的定义根据不同的标准有不同的分类,国内市场习惯划分为玻璃原片、浮法玻璃、平板玻璃、格法玻璃、压延玻璃、超薄玻璃、超白玻璃、白玻、茶玻、蓝玻、灰玻、绿玻、玉石玻璃、黑玻等。 为了便于采集对外贸易的数据,本文采用的是根据海关合作理事会(CCC)制定的《商品名称和编码协调制度》(HS2002)中7001,7002,7003,7004和7005五个产品种类,其中包含了16小类,名称及具体编码可见表1。 2衡量中国玻璃原片行业的国际竞争力的指标 对于产业国际竞争力如何定义,不同的学者和机构之间存在着较大的争议。从国际贸易的角度出发,定义为出口份额及其增长;从过程的角度出发,定义为创新能力;从效率的角度出发,定义为生产率。本文认为产业国际竞争力是生产率、销售能力、价格、质量等诸多方面的综合能力。国内学者对于产业竞争力评价体系进行了大量的研究,但在产业国际竞

争力的实证分析中引用较多的是1995年中国社会科学院工业研究所金碚研究员领导的课题组所做的相关研究。本文力图在此基础上对中国玻璃原片行业的国际竞争力作详细的实证分析,相关产业竞争力评价指标简要介绍如下。 1贸易竞争指数 贸易竞争指数是指某一产业或产品的净出口与其进出口总额之比,用公式表示为TSC=(Ei-Ii)/(Ei+Ii)。其中Ei为产品i的出口总额;Ii为产品i的进口总额。贸易竞争指数表明一个国家的i类产品是净进口国,还是净出口国,以及净进口或净出口的相对规模。贸易竞争指数为正,表明该国i产品的生产效率高于国际水平,对于世界市场来说,该国是i类产品的净供应国,具有较强的出口竞争力;贸易竞争指数为负则表明该国i类产品的生产效率低于国际水平,出口竞争力较弱;如果指数为零,则说明该国i类产品的生产效率与国际水平相当,其进出口纯属与国际间进行品种交换。 2市场占有率 国际市场占有率的定义为:i国a产品的国际市场占有率=i国a产品出口额/世界a产品出口总额。其是用来比较若干个国家或地区某类产品在国际市场上的竞争力大小,占有率越高表示竞争力越强。3质量与附加值(进出口价格比) 同类产品出口价格与进口价格比较,可以间接地反映一国产品在质量(附加价值)上与国际市场产品的差别。用公式

微晶玻璃

微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。 现在,我们做一个微晶玻璃与天然石材的对比实验。我们把墨水分别倒在大理石和微晶玻璃上,稍等片刻,微晶玻璃上的墨汁可以轻易的擦掉,而大理石上的墨迹却留了下来。这是为什么呢?大理石、花岗岩等天然石材表面粗糙,可以藏污纳垢,微晶玻璃就没有这种问题。大家都知道,大理石的主要成分是碳酸钙,用它做成建筑物,很容易与空气中的水和二氧化碳发生化学反应,这就是大理石建筑物日久变色的原因,而微晶玻璃几乎不与空气发生反应,所以可以历久长新。专家介 微晶玻璃陶瓷复合板材[1] 绍说,这项发明的突破点主要有两个,分别是原料的配比和工艺的设计。其中,工艺的设计是技术的关键。置备微晶玻璃首先要把原材料按照比例配好,放到窑炉里烧熔,等全部融化之后,把熔液倒在冰冷的铁板上,这叫做淬火,淬火之后,原料已经变成了一块晶莹的玻璃,这一步是烧结的过程。现在,我们把玻璃捣碎,装入模具,抹平,再次放入窑炉,这次煅烧使它的原子排列规则化,是从普通玻璃到微晶玻璃的过程。 一般的废渣土中都含有制作微晶玻璃的大多数成分,我们通过电脑检测,确定现有原料的化学组成,添加所缺部分,大大降低了成本。微晶玻璃利用废渣、废土做原材料,有利于环境治理,可以变废为宝,与各地环保工作同步进行。 低膨胀系数的微晶玻璃可用于激光导航陀螺、光学望远镜等重要科技领域,我国目前生产激光导航陀螺所用微晶玻璃基本依赖进口,日前,厦门航空工业有限公司称已研制出可适用激光导航陀螺的微晶玻璃,质量可与德国等进口玻璃相媲美。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 目前建筑用微晶玻璃均采用烧结法,而且不加入晶核剂。它的基本原理是,玻璃是一种非晶态固体,从热力学观点看,它处于一种亚稳状态,较之晶体有较高的内能,所以在一定条件下,可以转化为结晶态。从动力学观点来看,玻璃熔体在

微晶玻璃 第四章

4性能 如前所述,玻璃是一种具有无规则结构的非晶态固体,或称玻璃态物质,从热力学观点出发,它是一种亚稳态,较之晶态具有较高的内能,在一定条件下可转变为结晶态(多晶体)。对玻璃控制晶化而制得的微晶玻璃具有突破的力学、热学及电学性能。 材料的外在性能取决于它的内在结构。微晶玻璃也不例外,微晶玻璃的结构取决于晶相和玻璃相的组成、晶体的种类、晶粒的尺寸的大小、晶相的多少以及残留玻璃相的种类及数量。值得注意的是这种残留玻璃相的组成,通常和它的母体玻璃组成并不一样,因为它缺少了那些参与晶相形成所需的氧化物。 微晶玻璃结构的一个显著特征是拥有极细的晶粒尺寸和致密的结构,并且晶相是均匀分布和杂乱取向的。可以说微晶玻璃具有几乎是理想的多晶固体结构。其中晶相和残留玻璃相的比例可以有很大不同,当晶相的体积分数较小时,微晶玻璃为含孤立晶体的连续玻璃基体结构,此时玻璃相的性质将强烈地影响微晶玻璃的性质;当晶相的体积分数与玻璃相大致相等时,就会形成网络结构;当晶相的体积分数较大时,玻璃即在相邻晶体间形成薄膜层,这时微晶玻璃的性质主要取决于主晶相的物理化学性质。 因此微晶玻璃性能既取决于晶相和玻璃相的化学组成、形貌以及其相界面的性质,又取决于它们的晶化工艺。因为晶体的种类由原始玻璃组成决定,而晶化工艺亦即热处理制度却在很大程度上影响着析出晶体的数量和晶粒尺寸的大小。 ①主晶相的种类不同主晶相的微晶玻璃,其性能差别很大。如主晶相为堇青石(2Mg O·2Al2O3·5SiO2)的微晶玻璃具有优良的介电性、热稳定性和抗热震性以及高强度和绝缘性;主晶相为β-石英固溶体的微晶玻璃具有热膨胀系数低和透明及半透明性能;主晶相为霞石(NaAlSiO4)的微晶玻璃具有高的热膨胀系数,在其表面喷涂低膨胀微晶玻璃釉料后,可以作为强化材料。通过选取不同的原始玻璃组成及热处理制度,可以得到不同的主晶相,得到不同性能的微晶玻璃,满足不同的需要。 ②晶粒尺寸的大小微晶玻璃的光学性质、力学性质,是随晶粒尺寸大小的变化而变化的。如Li2O-Al2O3-SiO2系统微晶玻璃可分为超低膨胀透明微晶玻璃和不透明微晶玻璃,以及中、低膨胀的微晶玻璃三种,其透明度主要与晶粒尺寸的大小有关。 ③晶相、玻璃相的数量微晶玻璃中晶相的含量变化时,会影响到玻璃的各种性质,如力学性质、电学性质、热学性质等。又如微晶玻璃的密度,由于析出晶体的种类及最终结晶相与玻璃相的比例不同,可以在2.3~6.0g/cm3很大范围内变动;再比如微晶玻璃的热膨胀系数会随着微晶玻璃的晶相含量的增加而降低。 4.1密度 密度是物质单位体积所具有的质量。微晶玻璃的密度主要取决于构成晶相和玻璃相的原子的质量,也与原子堆积紧密程度以及配位数有关,是表征微晶玻璃结构的一个标志。微晶玻璃的密度是其中晶相和玻璃相密度共同作用的结果。然而,通常大多数微晶玻璃的密度还是由主晶相的密度所决定的。所以,不同类型的微晶玻璃材料其密度值也不相同。 4.1.1玻璃、陶瓷与微晶玻璃密度的比较 微晶玻璃的密度和玻璃或陶瓷的密度都在大致相同的范围内,如表4-1所示。但是基础玻璃和微晶玻璃的密度还是有很大的差别的,这是因为玻璃的热处理的过程中通常会产生体积变化,这些改变有正向的、负向的或基本不变,但这种体积的改变一般不会超过3%。微晶玻璃的密度是其中所含的各种晶相以及玻璃相密度的综合体现。 表4-1 玻璃、陶瓷与微晶玻璃三种材料的密度

微晶玻璃花岗岩石材装饰板介绍

微晶玻璃花岗岩石材装饰板介绍 微晶玻璃花岗岩装饰板是目前际上开始流行的高级建筑装饰材料,较天然花岗岩石材更能进行灵活设计,而且装饰效果更佳。是21世纪的绿色建材,是内、外墙及地面的理想装饰材料。 微晶玻璃花岗岩是应用受控晶化新技术生产的新型装饰材料,其结构致密、高强、耐磨、耐蚀,在外观上纹理清晰、色彩鲜艳、无色差、不褪色。是天然花岗岩石材最理想的替代产品,与天然花岗岩比,具有以下优点。 (1)色泽可根据要求生产各种色彩、色调和混合色的各种装饰材料,颜色有白、绿、灰、黄、红、蓝、黑等,而且装饰效果更佳。 (2)材质微晶玻璃花岗岩装饰板的成分与天然花岗岩相同,均属硅酸盐质,在材料内部结构中,生长有硅灰石的主晶相,所以耐磨、耐蚀、强度上均优于天然花岗岩石材。 (3)环保微晶玻璃花岗岩板材无任何类型的放射性物质,符合环保要求,有益人体。 (4)规格可生产各种厚度、尺寸的平板,,弧形板。另外还可生产30多种混合色和多种规格异型微晶玻璃花岗岩装饰板。是机场、银行、地铁、宾馆、酒楼、别墅及居室的首选理想装饰材料。 一、绪言

优质花岗岩饰面材料具有优异的硬度和耐磨性、并具优美的外观花纹,一直是人们首选的建筑饰面材料。然而,天然花岗岩因:(1)含有一定量地放射性元素---氡,长期接触会对人身体造成一定伤害,国外一些发达国家及国内很多大城市都已明令禁止有放射性地天然石材用于室内装饰。(2)内部组成与结构的原因,机械强度和化学稳定性较差,造成抗风化能力和耐久性较差。(3)一些优质石材蕴藏量有限,价格昂贵。(4)天然石材的颜色花纹变化较大,整体装饰效果较差等本身固有的原因。市场迫切需要开发天然石材代用品。特别是近几年人们环境保护意识的增强,人们更加迫切地需要不含放射性物质的天然石材替代品。近二十年来,各科研单位及生产企业纷纷研制开发了许多种仿大理石、花岗岩产品,如:无机胶凝和有机胶结的“仿大理石”,陶瓷仿大理石釉面砖和渗花砖,等等。所有这些虽然有一些具有大理石或花岗岩的花纹,但质感和性能却远远不及天然石材。 本世纪六十年代后期,微晶玻璃的研究取得突破性进展,各种具优异性能的微晶玻璃制品开始工业化生产,一些国家的科学家开始研究开发微晶玻璃饰面材料,如前苏联开发成功地“矿渣微晶玻璃”、捷克斯洛伐克以玄武岩作原料生产地“人造玄武岩”和美国开发成功地“人造蛋白石”等等。所有这些制品其理化性能都远优于天然石材,但没有天然石材那漂亮的外观花纹。很难作为天然石材的理想替代品。 到了七十年代,日本电器硝子株式会社的科学家率先突破技术难关,研制出了具天然大理石外观、且性能远优于天然石材的“结晶化玻璃大理石”,并于 1974年开始工业化生产,商品名为“新型玻璃大理石(Neoparies)”。 我们于1982年开始研究“结晶化玻璃大理石”,次年就研究成功了具花岗岩外观的“微晶玻璃花岗岩”,但在进行工业化试生产过程中,因气泡和变形缺陷无法解决,成品率极低,技术推广和产品商品化就此搁浅了。 直到1994年南方某厂投资近亿元人民币建成了年产40万平米的生产线,他们经过近半年试生产,也同样遇到了气泡问题无法解决而造成成品率极低,委托我们帮助解决;为此我们对过去的技术资料进行了认真分析讨论,认为气泡的来源主要有以下三点: 1.玻璃融化不完全,残存有未排除之气泡,在二次烧结过程中膨胀形成。 2.玻璃料水淬及淬碎料处理过程中混入的吸附水及杂质所为。 3.由于热传递温度梯度的存在,烧结过程中板材表面先受热熔融,将气体封 接在板材中,随着温度地升高,玻璃料黏度的降低,气泡浮向表面造成 缺陷。 在后来我们借助高温显微镜证实气泡也确实是由上述第二、三点原因造成地,遂产生了这样一个设想:如果我们研究这样一种添加剂即或者具有吸收气体的作用或者具较小黏度和表面张力能在烧结过程中使气泡顺利排出。问题不就解决了吗? 1994年我们成立专门地技术开发课题小组,集中对以下技术课题深入地研究开发并取得了突破性进展: 1.研制出了微晶玻璃花岗岩消泡剂,基本彻底地解决了气泡问题。

相关文档
最新文档