纯净钢冶炼技术-本科选修-2015-new

纯净钢冶炼技术-本科选修-2015-new
纯净钢冶炼技术-本科选修-2015-new

高强钢炼钢生产的工艺研究与应用

高强钢炼钢生产的工艺研究与应用 丁中刁承民张海民刘国刘建伟 (济南钢铁集团公司炼钢厂,济南 250101) 摘 要 本文研究了高强钢的生产工艺路线和关键控制因素,以及对操作进行的优化和改进。同时对生产过程的控制参数进行了研究和分析,优化了生产工艺流程,实现了低合金高强钢单线稳定、批量生产的目的。 关键词 高强钢夹杂物软吹氩脱氢 The Studies and Applications of High Strength Steel in the Steelmaking Plant Ding Zhong Diao Chengmin Zhang Haimin Liu Guo Liu Jianwei (Steelmaking Plant of Jinan Iron and Steel Group Corp, Jinan, 250101) Abstract The article introduced the high strength steel production process , key controlling factor , optimized and ameliorated of the operation. And studied and analyzed the parameters process controlling, optimizing the routing, realizing to producting stabile and in a large scale the high strength steel. Key words high strength steel, inclusion, soft bubbling, dehydrogenation 随着社会经济的发展,工程机械和煤机行业用高强钢向着高参数化、轻量化、大型化的方向发展,因此提高低合金产品强度和质量是钢铁企业发展的趋势,也是提高市场竞争力的必要手段。济钢210t转炉作业区充分利用现有装备的有利条件,在低合金高强钢的生产过程中通过工艺优化和技术改进获得了丰富的生产经验,并掌握了高强钢生产的关键技术,完善了设备的冶金功能,逐步实现了一系列低合金高强度钢批量生产的能力。 1 生产工艺 1.1生产设备状况简介 济钢炼钢厂210t转炉作业区于2009年12月26日建成投产,现有KR铁水脱硫、210t转炉、LF精炼炉、RH精炼炉各一座、DANIELI板坯连铸机一台,主要生产250mm厚度的铸坯,钢种包含船板钢、高强度钢、容器钢、管线钢以及其他一些特殊用钢,年产量150万吨左右。目前该区域已经实现了100%钢水精炼处理工艺,其中RH处理比率平均达到58%左右 1.2低合金高强钢的生产工艺 根据低合金高强度钢的轧制以及用户使用要求,实际生产中制定了相应的工艺路线,按照KR-转炉-LF-RH-CCM的生产工艺路线进行生产。 丁中,男,本科,工程师,从事炼钢、炉外精炼技术研究和管理工作,tinsion8888@https://www.360docs.net/doc/1613213597.html,

ASEA-SKF钢包精炼炉脱氧工艺研究(doc 9页)

ASEA-SKF钢包精炼炉脱氧工艺研究(doc 9页)

方案出钢/kg。t-1倒包/kg。t-1真空后净化搅拌/min 1 加铝0.6 加铝0.9 喂Ca-Si线1.5kg/t 吹氩,15 2 脱氧剂1.6 脱氧剂2.2 喂Al线Als=0.020% 吹氩,10 3 脱氧剂1.6 脱氧剂2.2 Al 0.25kg/t,Si-Al-Ba 1.5kg/t 电磁搅拌,5 注:表中脱氧剂指钙系脱氧剂 表2 脱氧材料成份(w) % 材料名称 C Ca Si Al Ba Ca-Si 28.4 55.6 钙系脱氧剂 20 37.2 16 Si-Al-Ba 36.24 19.79 12.76 3 几种脱氧材料的冶金特性 3.1 铝 铝主要用于钢液脱氧,其脱氧产物为固态的 Al 2O 3 ,反应式为: 2[Al]+3[O]=Al 2 O 3 ΔG°=1225000-393.8T (1) 由热力学计算可以看到铝的脱氧基本上在1873K高温下完成,即加铝后的片刻之内,绝大部分氧就由溶解态转变为氧化物而析出。文献资料[1]表明,含碳0.50%的钢,铝脱氧的二、三次脱氧产物占总量的22.5%~50.4%,这也说明铝脱氧速度很快,脱氧产物主要为一次生成。由式(1),若设[Al](w)为0.025%,钢液在1520℃~1600℃变化时,钢中溶解氧可以从3×10-6降至0.5×10-6。因此,在精炼条件下,脱氧过程是一个夹杂物去除过程,一般可将这样一个脱氧过程看成一个准一级反应,即: [O] t =[O] exp(-S/V。kt) (2) 式中[O] t ——精炼后t时间的含氧量/×10-6 V——钢液体积/m3 [O] o ——精炼初始时刻的含氧量/×10-6 k——钢液脱氧的传质系数/m。s-1 S——钢渣界面积/m2 t——脱氧时间/s

高温合金切削特点

切削特点 a、切削力大:比切削45号钢大2~3倍。 b、切削温度高:比切削45号钢高50%左右。 c、加工硬化严重:切削它时的加工表面和已加工表面的硬度比基体高50~100%。 d、刀具易磨损:切削时易粘结、扩散、氧化和沟纹磨损。 刀具材料 a、高速钢:应选用高钒、高碳、含铝高速钢。 b、硬质合金:应采用YG类硬质合金。最好采用含TaC或NbC的细颗粒和超细颗粒硬质合金。如YG8、YG6X、YG10H、YW4、YD15、YGRM、YS2、643、813、712、726等。 c、陶瓷:在切削铸造高温合金时,采用陶瓷刀具也有其独特的优越性。 刀具几何参数 变形高温合金(如锻造、热轧、冷拔)。刀具前角γ0为10°左右;铸造高温合金γ0为0°左右,一般不鐾负倒棱。刀具后角一般α=10°~15°。粗加工时刀倾角λs为-5°~-10°,精加工时λs =O~3°。主偏角κr为45°~75°。刀尖圆弧半径r为0.5~2mm,粗加工时,取大值。 切削用量 a、高速钢刀具:切削铸造高温合金切削速度Vc为3m/min左右,切削变形高温合金Vc=5~10m/min。 b、硬质合金刀具:切削变形高温合金Vc:40~60m/min;切削铸造高温合金Vc=7~10m/min。进给量f和切削深度αp均应大于0.1mm,以免刀具在硬化后的表面进行切削,而加剧刀具磨损。 切削液 粗加工时,采用乳化液、极压乳化液。精加工时,采用极压乳化液或极压切削油。铰孔时,采用硫化油85~90%+煤油10~15%,或硫化油(或猪油)+CCl4。高温合金攻丝十分困难,除适当加大底孔直径外,应采用白铅油+机械油,或氯化石蜡用煤油稀释,或用MoS2油膏。 高温合金钻孔

如何建立高效低成本洁净钢平台_刘浏

第45卷 第1期 2010年1月 钢铁 Iron and Steel Vo l.45,N o.1Januar y 2010 如何建立高效低成本洁净钢平台 刘 浏 (钢铁研究总院,北京100081) 摘 要:根据洁净钢的定义,阐明了建立洁净钢制造平台的重要意义,分析对比以铁水/三脱0预处理为基础的洁净钢生产新流程和以炉外精炼为主体的传统流程的技术指标。讨论了传统洁净钢流程中存在的炼钢回硫、低碳脱磷、脱氧与夹杂物控制和强还原精炼等4项基本矛盾,并讨论其对洁净钢生产成本和能耗的影响。在此基础上提出建立高效低成本洁净钢平台应重点研究解决全量铁水/三脱0预处理、少渣冶炼、高碳出钢和真空碳脱氧以及改变夹杂物上浮方式等4项关键技术。 关键词:洁净钢;转炉;铁水预处理;炉外精炼 中图分类号:T F 71 文献标志码:A 文章编号:0449-749X(2010)01-0001-09 A Proposal to Establish a Platform for Manufacturing High -Efficiency and Low -Cost Clean Steel LIU Liu (Cent ral Iro n and Steel Resear ch I nstit ute,Beijing 100081,China) Abstract:A cco rding to the definition of clean steel,a g r eat sig nificance in est ablishing a clean steel manufacturing platfor m is clarified.T he technical index of new pr oductio n pro cess of clean steel based on ho t meta l pr etreatment is analyzed and compared w it h that o f traditional pro cess of t aking seco ndar y refining as main body.I n tr aditio nal pr ocess,there are fo ur basic co ntr adict ions such as r esulfur izatio n,dephospho rization in melting lo w carbon steel,deox idizatio n and inclusion contro l,and stro ng reducing r ef ining ,w hich hav e an influence o n product ion cost and en -er gy co nsumption.T o so lve there pr oblems,a platfor m fo r manufacturing hig h -efficiency and low -co st clean steel should be established.T he plat form must focus on full hot met al pretr eatment,less -slag smelting ,high -carbon ta -ping,vacuum car bo n deox idization and chang e of inclusio n floating ,and so on.Key words:clean steel;convert er;ho t metal pretr eatment;seco ndary refining 作者简介:刘 浏(1951)),男,博士,教授; E -mail :liul@cis https://www.360docs.net/doc/1613213597.html, ; 收稿日期:2009-09-23 洁净化是现代钢铁材料发展的主要潮流,洁净钢生产是当代炼钢技术发展的重大方向。 欧美国家采用传统流程生产洁净钢,其特点是 以炉外精炼作为控制钢水洁净度的主要手段,采用铁水脱硫预处理)转炉冶炼)炉外精炼工艺。日本开发的洁净钢生产新流程强调采用全量铁水/三脱0预处理工艺,实现转炉少渣冶炼,通过铁水预处理控制钢水洁净度,达到降低成本和提高效率的目标。 目前,世界金融危机使全球钢铁业进入萧条时期,如何降低洁净钢制造成本、降低能耗和减少制造过程中的环境污染成为今后全球钢铁业市场竞争的焦点。为此,迫切需要建立起高效低成本洁净钢生产技术平台。 1 洁净钢与洁净钢制造平台 /洁净钢0最早由欧洲学者于20世纪60年代提 出,专指通过严格控制钢中夹杂物提高钢材强韧性和塑性的工艺方法。20世纪80年代日本学者进一步提出/纯净钢0的概念,将钢中夹杂物与杂质总量结合起来,并定义E w (S+P+N+T O+H )[100@10-6的钢为纯净钢,同时提出建立大批量、低成本、稳定生产纯净钢的技术平台。 必须指出,洁净钢或纯净钢并非特指某一类具体的钢种,而是代表实际生产过程中控制钢水洁净度所能达到的工艺水平。因此,洁净钢不是一个钢种的概念,而属于生产工艺范畴,反映出洁净钢具体的生产工艺和制造水平。 表1[1]给出日本学者20世纪80年代末和90年代初对21世纪国际洁净钢制造水平的预测及其现实所能达到的工艺水平。从表中可以看出,当时对钢水w ([C])的预测水平为(4?0.2)@10-6 ,而实际上已能稳定生产w ([C])[3@10-6 ,超出预测水平。这主要得益于真空精炼中进一步扩大界面反应

纯净钢生产工艺及其应用

纯净钢生产工艺及其应用 由于更广义的纯净钢是脱除了不希望有的溶质元素的钢种,这类代表性钢种要求的这类溶质元素的含量及其生产流程。重点是有害氧化物夹杂的纯净化。纯净钢生产工艺的基础理念是控制夹杂物的数量、尺寸、分布和种类,求得所希望的产品性能。 主要技术来自氧气冶炼,脱氧和二次精炼,通过合理设计和采用磁场控制中间包和结晶器内流场,也采用各种措施防止外来夹杂,如防止炉渣进入大包,防止炉渣、保护渣、耐火材料使钢水二次氧化。然后根据IISI的纯净钢工作小组最近的报告总结了世界纯净钢生产的概况。最后讨论了纯净钢的特性、使用效果和钢中夹杂物物化性能的关系和经济可行性。 广义的纯净钢也包括脱除了碳、氮、氢、磷和硫的钢种。脱氧产物是内在氧化物。来自耐火材料、炉渣、保护渣及由它们造成的二次氧化产物属外来夹杂物。这些夹杂物的不良作用必须消除,以求所需的钢材性能。 1纯净钢生产工艺的基础理念 为了达到钢材性能,可以用氧含量代表的氧化物夹杂总量和夹杂物的尺寸必须控制。轴承钢和弹簧钢的总氧含量影响其疲劳寿命。在DI罐生产过程中,大颗粒夹杂会造成开裂,降低深冲性。汽车板生产过程中,板坯的皮下夹杂物和针孔必须消除,不然会在板材表面造成起皮。对钢丝的拔制性讲,生产轮胎钢丝(子午线)或不锈钢钢丝的小方坯中夹杂物必须控制其化学成分使其可以变形。这些就是纯净钢生产工艺的基础理念。 2纯净钢生产的主要技术和应用这些技术后纯净钢的物化特性 2.1降低氧化物夹杂总量 在精炼领域,与顶吹相比,采用顶底复吹转炉在相同脱碳量时氧含量更低。这是因为底吹强化了碳的传输。采用RH和DH真空脱气,在相同碳含量时可降低氧含量。可用无渣出钢和钢水脱氧后用铝或铝粒降低炉渣的氧位,尽量减少大包内顶渣造成的二次氧化。连铸方面用电磁方法AMEPA,在大包钢渣开始进入中间包时就检测出来并关闭塞棒就可减少钢渣进入中间包的量。在中间包上采用保护措施可减少顶渣造成的二次氧化。中间包和结晶器保护渣应防止钢水与空气直接接触。 2.2减少大颗粒夹杂 如60t的大容量中间包和H形中间包,前者可促进大颗粒夹杂长时间逗留,而后者则在浅熔池情况下使夹杂物向顶渣上浮而被除去。直弯型连铸机与弧型相比也更有利于大颗粒夹杂在结晶器内脱除。在板坯厚度方向上采用静态磁场,即所谓LMF(液面磁场),使浸入式水口两个孔的钢流出口速度下降,结晶器窄面的下降钢流减弱,使下降钢流的终点位于更浅的位置,结果使大颗粒夹杂上浮至洁净器顶渣的几率增加,不然就会造成内部缺陷。控制结晶器液面,选择最佳的结晶器保护渣和控制结晶器内流场可最大程度减少结晶器保护渣的卷入。 2.3降低板坯表面及皮下夹杂物 采用结晶器电磁搅拌(EMS)就感应形成平行于板坯表面的水平钢流。这种钢流向夹杂物施加Safman力,使夹杂物与生长的初始坯壳分离。当粘性拉力与Saf man力共同作用,最终使夹杂物速度大于初始坯壳的生长速度时,夹杂物就不可能为生长的坯壳所捕获,即EMS 感生的钢流把夹杂物洗刷出去了。直径100μm的夹杂物可用速度为0.3m/s的水平钢流洗刷掉。 在电磁连铸中(EMC),在结晶器外水平绕一线圈,并通以交流电。垂直磁场和铸件内感生的水平方向的次级电流相互作用产生的劳伦兹(Lorenz)力即使交流电流方向改变也总是向内的。这样,对初始坯壳总形成一个束紧的力,并支撑着坯壳,初始坯壳与结晶器表面间的间隙就增大,从结晶器吸收的热量下降,实现了缓冷。由于较低的冷却速度,初始坯壳不会在弯月

(新)耐热钢及高温合金_

耐热钢及高温合金 耐热钢及高温合金 各种动力机械,加热电站中的锅炉和蒸汽轮机、航空和舰艇用的燃汽轮机以及原子反应堆工程等结构中的许多结构件是在高温状态下工作的。工作温度的升高,一方面影响钢的化学稳定性;另一方面降低钢的强度。为此,要求钢在高温下应具有 (1)抗蠕变、抗热松弛和热疲劳性能及抗氧化能力 (2)在一定介质中耐腐蚀的能力以及足够的韧性 (3)具有良好的加工性能及焊接检 (4)按照不同用途有合理的组织稳定性。 耐热钢是指在高温下工作并具有一定强度和抗氧化耐腐蚀能力的钢种,耐热钢包括热稳定钢和热强钢。热稳定钢是指在高温下抗氧化或执高温介质腐蚀而不破坏的钢种,如炉底板、炉栅等。它们工作时的主要失效形式是高温氧化。而单位面积上承受的载荷并不大。热强钢是指在高温下有一定抗氧化能力并具有足够强度而不产生大量变

形或 断裂的钢种,如高温螺栓、涡轮叶片等。它们工作时要求承受较大的载荷,失效的主要原因是高温下强度不够。 1 钢的热稳定性和热稳定钢 一、钢的抗氧化性能及其提高途径 工件与高温空气、蒸汽或燃气相接肽表面要发生高温氧化或腐蚀破坏。因此,要求工件必须具备较好的热稳定性。 除了加入合金元素方法外,目前还采用渗金属的方法,如渗Cr、渗Al或渗Si,以提高钢的抗氧化性能。 二、热稳定钢 热稳定钢(又称抗氧化钢广泛用于工业锅炉中的构件,如炉底板、马弗罐、辐射管等这种用途的热稳定钢有铁素体F型热稳定钢和奥氏体A型热稳定钢两类。 F型热稳定钢是在F不锈钢的基础上进行抗氧化合金化而形成的钢种、具有单相F基体,表面容易获得连续的保护性氧化膜。根据使用

温度,可分为Cr13型钢、Cr18型钢和Cr25型钢等。F型热稳定钢和F不锈钢一样,因为没有相变,所以晶粒较粗大,韧性较低,但抗氧化性很强。 A型热稳定钢是在A型不锈钢的基础上进一步经Si、Al抗氧化合金化而形成的钢种。A型热稳定钢比F型热稳定钢具有更好的工艺性能和热强性。但这类钢因消耗大量的Cr、Ni资源,故从50年代起研究了Fe-Al-Mn系和Cr-Mn-N系热稳定钢,并已取得了一定进展。 2 金属的热强性 一、高温下金属材料力学性能特点 在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性。热强性系指耐热钢在高温和载荷共同作用下抵抗塑性变形和破坏的能力。由此可见在评定高温条件下材料的力学性能时,必须用热强性来评定。热强性包括材料高温条件下的瞬时性能和长时性能。 瞬时性能是指在高温条件下进行常现力学性能试验所测得的性能指标。如高温拉伸、高温冲击和高温硬度等。其特点是高温、短时加载,一般说来瞬时性能P是钢热强性的一个侧面,所测得的性能指标一般

洁净钢新技术

洁净钢生产技术 摘要:钢的洁净度是反映钢的总体质量水平的重要标志,是钢的内在质量的保证指标。生产洁净钢,一是要提高钢的洁净度,二是严格控制钢中非金属夹杂物的数量和形态。文章总结了洁净钢的传统生产工艺以及部分的洁净钢生产新技术。 关键词:洁净钢;夹杂物;脱硫 洁净钢的概念是由Kiessling[1],在给英国钢铁学会的学术报告中首次提出的,泛指O,S,P,H,N及Pb,As,Cu,Zn 等杂质含量低的钢。一般意义上的洁净钢是指钢中五大杂质元素[S、P、H、N、O]含量很低,且对非金属夹杂物(泛指氧化物和硫化物)进行严格控制的钢种,而随着科学技术的发展,对钢材性能要求日益严格,对钢材质量要求不断提高,进一步减少钢中夹杂含量,提高钢的洁净度,是本世纪发展方向。 钢的洁净度是反映钢的总体质量水平的重要标志,是钢的内在质量的保证指标。钢的洁净度通常由钢中有害元素含量以及非金属夹杂物的数量、形态和尺寸来评价。为了获得“清洁和纯净” 的钢,常常要降低和控制钢的C、P、S、N、H 和T. O,因为这些元素的单一或综合作用的结果,可以大大地影响钢的性能,如抗拉强度、成型性、韧性、可焊性、抗裂纹和抗腐蚀性、各向异性、疲劳性能等[2]。因此,为了改善钢的性能,当今钢铁冶金技术特别注意降低钢中的P、S、N、H、T.O,并根据钢种需要降低和控制钢中C的含量。近半个世纪以来,特别是钢铁产品面临被新型工程材料如铝、塑料、玻璃等取代的巨大压力和挑战的今天,提高钢的洁净度越来越成为钢铁冶金技术研究的重要课题,也可以说提高钢的洁净度已成为每一个钢铁产品的任务。生产洁净钢,一是要提高钢的洁净度,二是严格控制钢中非金属夹杂物的数量和形态。不同钢种对洁净度的要求和对夹杂物的敏感性不同[3]。 1 传统生产工艺 1.1 铁水预处理 铁水预处理按处理任务不同可分为预脱硫、预脱磷和同时脱磷脱硫( 包括预脱硅) 。大规模工业生产,70年代采用KR机械搅拌法与喷吹法的预脱硫已能将铁水[S]降到0.001% ,80年代喷吹法预脱磷已能经济地将铁水[P]降到0.005% ~0.015% ,同时脱硫将[S]降到0.002% ~0.010%[4]。 20世纪80年代以来,铁水预处理已成为生产优质低磷、低硫钢必不可少的经济工序。其目标是将入转炉的铁水磷、硫含量脱至成品钢要求水平。欧美各国铁水预处理一般以预脱硫为主,而日本铁水“三脱” 预处理比例在90%以上[5]。目前,基于铁水预处理的转炉生产纯净钢工艺主要有两种流程:一种是基于铁水深度预脱硫,转炉强化脱磷,钢水炉外喷粉脱磷、脱硫、升温、真空精炼; 另一种是基于铁水三脱预处理,复吹转炉少渣吹炼,钢水炉外喷粉脱硫、真空精炼。后者具有生产效率高、石灰等造渣料消耗少、过程温降小、生产周期短、成本低等优点,经济效益显著高于前者,适宜于我国转炉钢厂采用。其中铁水三脱预处

纯净钢专题

纯净钢专题 摘要:本文从杂质元素对钢材机械性能的影响开始,引出纯净钢的概念,并分析了纯净钢的应用领域以及目前国内外先进的纯净钢生产技术和未来纯净钢的发展方向,最后列出纯净钢检测方法以期指导纯净钢生产实践。 关键词:纯净钢超纯净零非金属夹杂钢 引言:炼钢工业化的百年历史是沿着钢材纯净化和合金化的方向不断前进的。近年来随着钢铁材料在材料领域的广泛应用,外界对钢材的质量要求越来越高标准化。在关系国计民生的汽车、建筑、天然气、压力容器、电工材料等领域都要求钢材的优良机械性能和使用性能,纯净钢的发展适时的满足了这写领域的需要,但同时这些领域也为纯净钢发展提出了新的要求和方向。 一、钢中杂质元素对其机械性能的影响 硫:硫在钢中以硫化物(MnS、FeS、CaS等)形式存在,对力学性能的影响是::(1) 使钢材横向、厚度方向强度、塑性、韧性显著低于轧制方向(纵向),特别是钢板低温冲击性能; (2) 显著降低钢材抗氢致裂纹能力,因此用于海洋工程、铁道桥梁、高层建筑、大型储氢罐,钢板[ S] ≤50×10-6。硫还影响钢材抗腐蚀性能,用于输送含H2 S等酸性介质油气管线钢,[ S]降至(5~10)×10- 6。此外硫对钢材热加工性能、可焊性均发生不利影响。 磷:由于磷是表面活性杂质,在晶界及相界面偏析严重,往往达到平均浓度的数千倍,因此洁净钢要求[ P] ≤100×10- 6。 氮:氮对钢材的危害是:(1) 加重钢材时效;(2)降低钢材冷加工性能;(3) 使焊接热影响区脆化。 氧:钢中氧含量过高会引起角状夹杂物及宏观夹杂物增多,易于发生脆性断裂,而且非金属氧化物夹杂物含量过高也会影响钢表面质量。 钢中的碳含量直接影响钢中组织形态,对于不同钢种其标准不同。 表1钢中杂质元素对其机械性能的影响

首钢“一级研发、多地分布”技术创新体系建设

首钢“一级研发、多地分布”技术创新体系建设 钢铁业作为国家重点要求推进兼并重组的行业,经过几年来的结构调整,其产业集中度逐步提高。兼并重组后的大型钢铁企业为解决大而不强的问题,不断加大研发投入,加强科技创新,以提高企业的自主创新能力和国际竞争力。大型企业集团形成跨地域分布的格局后,如何聚集技术源和技术资源,如何合理布局和高效利用科技资源,保证技术创新体系的科学构建和有效运行,成为大型企业科技创新过程中需要解决的突出问题。因此,建立适合跨地域大型企业的科研体系是各大型企业集团增强自主创新能力,保证快速发展的必然选择。首钢自主创建并日趋完善的“一级研发、多地分布”技术创新体系,为我国钢铁企业搬迁调整和跨地区兼并重组后技术资源的合理布局与高效利用,技术的快速转移与技术系统的有效管控,体制与机制的创新提供了借鉴和示范。 随着我国产业结构调整和优化升级,越来越多的大型企业逐步形成了跨地区的发展格局。现有的大型跨地区企业研发模式主要是“集中研发”和“分散研发”。“集中研发”有利于各地研发人员形成合力,保证新产品和工艺技术实验室研究的高效运行,但不可避免地会出现实验室研究与生产现场需求脱离、研发成果难以高效应用的问题。“分散研发”有利于研发工作与生产现场的紧密结合,保证研发成果快速向生产现场的转移,但不利于全公司范围的资源共享、产品研发和生产的统一管理。首钢在分析上述两种研发模式的基础上,结合自身实际,调整技术创新发展战略,创建了“一级研发、多地分布”技术创新体系。实践证明,这种科研体系实现了科技资源的合理布局和技术创新体系高效运行。 1 首钢技术创新体系建设的基本思路 按照有利于新建生产线尽快发挥效能、新产品快速开发、科技成果的快速培育、科技成果快速转化为生产力、集团技术创新能力的提高、建设创新型企业的指导思想,以科技资源的合理布局和技术系统的高效管控为原则,通过观念和组织模式的创新,派驻站的合理定位,科研管理的创新,技术管理一体化,对外合作的统一管理等措施,取得了明显成效,对国内大型钢铁集团技术创新体系的构建和优化具有借鉴和示范作用。 2 首钢技术创新体系建设的创新实践 2.1 观念及组织模式创新 作为首钢技术创新实施层核心的首钢技术研究院,担负着首钢工艺技术进步及新产品开发,对首钢集团技术系统的管控以及公司人才孵化培养的任务。随着钢铁业“一业多地”的形成,首钢产品结构开始由长材向板材转型,由于缺乏板材生产经验和理解,高品质板材产品技术积累不足,使科研开发工作面临巨大挑战。针对实际问题,首钢采取两项举措:一是充分利用社会优势资源,解决技术源的问题,建立了汽车板、电工钢、宽厚板三个长期长效实体式的产学研合作平台;二是为充分利用技术研究院的技术资源,采取科研重心向生产线下移的方式,在首秦、迁钢、顺义冷轧、京唐建立派驻工作站,把科研人员放到生产一线。 在这一框架下,技术研究院、派驻工作站及生产基地技术力量的职能和任务进行了新的分工。技术研究院主要按照四地生产和研发的需要,统一规划和组织相关的科技研发和技术管理工作,为四地提供技术支持,主要针对多地的共性关键工艺技术、用户技术和重大产品开发开展科研攻关。生产基地不再设立研发机构,其技术力量主要配合新产品开发和生产线的技术措施和技术改造的实施及其技术管理。派驻工作站一方面把研究院共性工艺技术和产品开发的研究任务带到现场,结合各生产线实际积累技术,丰富经验,攻克难关,把取得的科研成果及时应用到生产上,服务于生产实际,另一方面把一些前沿的、需要深入研究和分析的问题,带回技术研究院总部,充分利用总部的设备和人才库,进一步深入研究。 派驻工作站作为公司科研和技术管理与生产基地融合的纽带、科研人员贴近现场的工作平台、现场产品开发的一支重要力量以及复合型人才的培养基地,实现了科技资源的合理布

ASEA-SKF钢包精炼炉脱氧工艺研究

注:表中脱氧剂指钙系脱氧剂 表2 脱氧材料成份(w) % 3 几种脱氧材料的冶金特性 3.1 铝 铝主要用于钢液脱氧,其脱氧产物为固态的 Al 2O 3 ,反应式为: 2[Al]+3[O]=Al 2 O 3 ΔG°=1225000-393.8T (1) 由热力学计算可以看到铝的脱氧基本上在1873K高温下完成,即加铝后的片刻之内,绝大部分氧就由溶解态转变为氧化物而析出。文献资料[1]表明,含碳0.50%的钢,铝脱氧的二、三次脱氧产物占总量的22.5%~50.4%,这也说明铝脱氧速度很快,脱氧产物主要为一次生成。由式(1),若设[Al](w)为0.025%,钢液在1520℃~1600℃变化时,钢中溶解氧可以从3×10-6降至0.5×10-6。因此,在精炼条件下,脱氧过程是一个夹杂物去除过程,一般可将这样一个脱氧过程看成一个准一级反应,即: [O] t =[O] exp(-S/V。kt) (2) 式中[O] t ——精炼后t时间的含氧量/×10-6 V——钢液体积/m3 [O] o ——精炼初始时刻的含氧量/×10-6 k——钢液脱氧的传质系数/m。s-1 S——钢渣界面积/m2 t——脱氧时间/s 由(2)可见,精炼时间越长,钢中氧含量越低,即通过有效的搅拌和足

够的精炼时间,可以使Al 2O 3上浮去除,从而降低钢中的氧含量。 3.2 硅铝钡 Si-Al 复合脱氧的产物可能是SiO 2,Al 2O 3,3Al 2O 3。2SiO 2及FeO 。 Al 2O 3,2FeO 。 SiO 2等,但在一般的炼钢过程中,钢液中[Si ]、[Al ]、[O ]都处于常规范围内,Si-Al 复合脱氧的产物主要为3Al 2O 3。2SiO 2或Al 2O 3。在钢液中[O ]含量较高时,脱氧产物主要是3Al 2O 3。2SiO 2,而随着氧含量的降低,脱氧产物以Al 2O 3为主。 Si-Al 复合脱氧反应式为: 6[Al ]+2[Si ]+13[O ]=3Al 2O 3。2SiO 2(s) ΔG°=-4679530.9+1506.14T (3) 1600K 时,K=[O ]13[Si ]2[Al ]6=1.29×10-52 在Si-Al 复合脱氧的基础上引入钡,形成硅铝钡复合脱氧剂,这种脱氧材料近几年在冶金中的应用越来越广。钡的高沸点是优于钙、镁的重要特性。钡对夹杂物的变性作用主要表现为降低夹杂物的熔点,改善夹杂物的形状和尺寸以及使杂物分布均匀化。因此,含钡合金应用于炼钢过程,除能减少铝的消耗外,还能改变钢中夹杂物的形态及结晶组织的弥散度和均匀性,减少钢中夹杂物的含量,净化钢液,从而提高钢材质量,优化使用性能。 3.3 钙 金属钙是很好的钢液净化剂,大多用于钢液的深脱氧和深脱硫。硅铝 脱氧的钢,钢中[O ]已很低,一般在5×10-6 左右,此时,钙直接脱氧反应不是主要的,但钙可以与大量存在于钢中的Al 2O 3发生反应,其反应式为: xCa+yAl 2O 3= {x(CaO)。(y-1/3x)Al 2O 3}+2/3xAl (4) 钙在这些Al 2O 3夹杂颗粒中扩散,使钙连续地进入铝的位置,置换出来的铝进入钢液。随着钙的扩散,在Al 2O 3夹杂表面CaO 含量升高,当CaO >25%时,钙铝酸盐呈液态,这种含CaO 量高的液态钙铝酸盐夹杂物大部分浮出钢液,进入渣层,从而降低钢中的全氧。 钙也是一种很好的深脱硫剂,其反应式为: Ca (g)+[S ]=CaS (s) ΔG°=-136380+40.94T (5) 近年来,许多厂家采用了一种新型的钙系脱氧剂,其主要成分为碳化

洁净钢生产前沿技术

洁净钢生产前沿技术 1前言 钢的洁净度是反映钢的总体质量水平的重要标志,是钢的内在质量的保证指标。钢的洁净度通常由钢中有害元素含量以及非金属夹杂物的数量、形态和尺寸来评价。为了获得“清洁和纯净”的钢,常常要降低和控制钢的C、P、S、N、H和T.O,因为这些元素的单一或综合作用的结果,可以大大地影响钢的性能,如抗拉强度、成型性、韧性、可焊性、抗裂纹和抗腐蚀性、各向异性、疲劳性能等。因此,为了改善钢的性能,当今钢铁冶金技术特别注意降低钢中的P、S、N、H、T.O,并根据钢种需要降低和控制钢中C的含量。近半个世纪以来,特别是钢铁产品面临被新型工程材料如铝、塑料、玻璃等取代的巨大压力和挑战的今天,提高钢的洁净度越来越成为钢铁冶金技术研究的重要课题,也可以说提高钢的洁净度已成为每一个钢铁产品的任务。生产纯净钢,一是要提高钢的纯净度,二是严格控制钢中非金属夹杂物的数量和形态。不同钢种对纯净度的要求和对夹杂物的敏感性不同。表1是典型钢种的洁净度的要求。 表1 典型钢种的洁净度要求 因此,在激烈的市场竞争条件下,提高钢的洁净度,进一步减少钢中夹杂物的含量,是冶金企业提高产品竞争力的主要途径之一。

上述原因使纯净钢及其生产技术迅速发展。目前国内外许多钢厂已建立起大规模生产超纯净钢(钢中杂质总量:S+P+N+H+T.O≤100ppm)生产体制。本文力图对纯净钢及其生产工艺的发展进行综述,以及分析洁净钢发展的前景。

2洁净钢的技术要求 2.1超低硫钢 硫在钢中以硫化物(MnS、FeS、CaS等)形式存在,对力学性能的影响是:(1)加大各向异性,使钢材横向、厚度方向强度、塑性、冲击等性能显著低于轧制方向(纵向),特别是钢板低温冲击性能;(2)显著降低钢材抗氢致裂纹能力,因此,用于海洋工程、铁道桥梁、高层建筑、大型储氢罐的钢板,硫的质量分数已控制在50ppm以下。硫还影响钢材抗腐蚀性能,用于输送含H2S等酸性介质油气管线钢,w[S]降至(5~10)ppm。此外硫对钢材热加工性能、可焊性均产生不利影响。 新日铁大分厂生产深冲钢板转炉流程:铁水沟脱硅—铁水喷粉深脱硫—LB/OB转炉脱碳—RH-PB循环脱气喷粉。用CaO+CaF2粉剂喷粉,脱硫率达80%,w[S]达10ppm。技术关键在于提高转炉铁水装入比,减少铁水带入渣。真空喷粉RH-PB或V-KIP可避免钢水翻腾、氧化与吸氮,但真空设备昂贵。 2.2低磷钢 磷对钢材延性、低温冲击、调质钢回火脆性有很大影响。由于磷是表面活性杂质,在晶界及相界面偏析严重,往往达到平均浓度的数千倍,因此在洁净钢要求w[P]≤100ppm,在超纯净钢如w[Ni]=9%、作低温储罐用钢,w[P]≤30ppm。 川崎水岛厂生产极低磷低温容器罐用钢,在鱼雷车内将[Si]脱除到w[Si]=0.15~0.20%,采用Fe2O3-CaO-CaF2系,碱度B=2.5~5.0的渣处理后w[P]为0.015%,在氧气转炉内继续脱磷,最后在RH-KPB深脱磷达w[P]≤20ppm。 对于含Cr高的不锈钢及耐热合金,采用氧化法脱磷会造成Cr烧损高,不经济,可用喂线法加入微量Mg和Ca形成Mg3P2和Ca3P2,实现还原脱磷。 2.3低氮钢 氮对钢材的危害是:(1)加重钢材时效;(2)降低钢材冷加工性能;(3)造成焊接热影响区脆。 新一代IF钢冷轧板w[N]≤25ppm。厚板为保证焊接热影响区韧性与塑性,w[N]应≤20 ppm。 高纯铁素体不锈钢Cr26Mo,在高铬条件下,钢液中N溶解度极高,仍要求钢中w[N]≤50 ppm。

二次精炼渣钢反应及成渣热对钢液温度的影响

二次精炼渣钢反应及成渣热对钢液温度的影响李晶傅杰王平黄成钢李铮易继松 摘要通过现场实验,分阶段定量分析了出钢至出VD过程,渣钢反应热及成渣热对钢液温度的影响。结果表明,这两种热对钢液温降的影响极小,完全可以忽略。 关键词LF VD 渣钢反应热成渣热 Effect of Slag-Steel Reacting Heat and Slag Forming Heat on Liquid Steel Temperature during Secondary Refining Li Jing, Fu Jie and Wang Ping (University of Science and Technology, Beijing 100083) Huang Chenggang, Li Zhen and Yi Jisong (Daye Special Steel Corp Ltd) Abstract Based on the experiment in practice, the slag-steel reacting heat and slag forming heat have been analyzed quantitatively at different stag from tapping to end of VD process. The results showed that the slag-steel reacting heat and slag forming heat could be ignored, of which the effect on liquid steel temperature decrease wasn't appreciable. Material Index Ladle Furnace, Vacuum Degassing, Slag-Steel Reaction Heat, Slag Forming Heat 钢液温度是保证工艺顺行及钢材质量的重要因素。尤其二次精炼的发展以及它在炼钢生产中的作用日益显著,钢液温度的控制越显其重要性。影响钢液温度的因素较多[1],但一般研究认为渣钢反应热及成渣热对钢液温度的影响较小而忽略。本文通过现场实验,分析了出钢至出VD 整个过程渣钢反应热及成渣热对钢液温度的影响,以定量了解渣钢反应热及成渣热对钢液温度的影响程度。 1 电炉钢生产工艺流程 目前电炉配LF/VD的生产工艺如下: 电炉出钢→钢包吹氩→入LF→送电加热→测温取样→钢液成分微调→加热升温→钢包停氩开出LF→入VD真空处理→真空结束→钢包吊至连铸台 2 现场实验及渣中氧化物、钢中元素的变化 进行了10多炉生产实验,各炉次不同阶段渣中氧化物及钢中元素含量的变化基本相同。如炉次7D2631,渣中各组份的变化(见图1),钢中

金属材料开题报告

金属材料开题报告 金属材料开题报告范文金属材料和社会、经济以及各种科学活动有着重大的影响和强大的动力,人类社会发展到今天,和金属材料的获得和研发都密不可分.随着现代社会的飞速发展,各种工业发展已经得到了强有力的推进,然而金属的替代品也在不断研发出,金属材料当前的发展现状和未来的前景需要有明确的认识.本文针对此进行精了简要的叙述和分析. 一、前言 社会的发展需要能源、信息和材料供应.而材料供应根据其特殊的材料可以分为金属材料、非金属材料等,金属材料是人类历史发展到现在为止最重要的材料.从古代打铁工艺、金子、银子等的制作和推广,金属材料都占据着人们的生活.金属材料根据其特点具有韧度高、硬度强度大等特点,而且金属材料容易获得,且不少金属制作简易.随着现代金属工艺的发展和推广、科学技术的发展壮大,金属材料在机械制作、国防领域、工业、农业、电子信息等行业,都有明显的性价比优势和广阔的发展前景市场. 二、金属材料当前发展现状 (一)钢铁材料发展现状 钢铁是整个国民紧急发展的基础,各种大楼的兴建、各

种器材的使用、汽车等工业的发展都离不开钢铁工业的发展.随着整个国民经济的发展和科技的进步,不锈钢工艺的不断提升,钢铁工业的发展,应当以不锈钢工艺为主要的发展方向,不锈钢是在常温或者其他特殊条件下,利用钢铁内部的特点能够生成钢材不生锈的情况,但当前不锈钢的发展工艺依然成本过高,可以推测不久的常来,不锈钢的工艺能取得更快的发展. 此外,钢铁材料的发展也带动着新需求和新技术的不断出现,特别是在航空航天、能源工业等都出现更多的需求.这些需求带动着更多新技术、新工艺的产生和发展.例如:当前较为流行的钢铁工艺为超纯净钢生产工艺.随着钢铁工艺技术的发展和生产设备的更新和发展.钢铁材料也从大体积生产逐渐转化成为小钢铁、微钢铁工艺的生产和开发. 为了实现上述的钢铁材料的需求,钢铁材料工艺可以预见将会采用更多新兴工艺方式来发展,例如:铁水预处理、全自动转炉吹炼、二次精炼、保护浇注和无缺陷连铸等重大新工艺技术等.总而言之,高性能、高精度连轧工艺技术轧钢工艺的发展就是围绕着整个“三高”的技术发展. 1.高性能:通过采用控轧控冷工艺,控制钢材的组织结构,提高钢材的性能,特别是强度、韧性指标; 2.高精度:除了精确控制轧材的尺寸精度外,进一步减小长型材的椭圆度和提高板材的板形控制精度及表面质量; 3.高效率:包括进

洁净钢的成分控制

洁净钢的成分控制 在钢铁冶炼过程中,一部分杂质元素可以去除,但仍有一部分将残留在钢中,这些残余元素的存在是钢材质量产生不稳定的主要因素之一。在这些元素中,某些残余元素由于易于偏析,即使其含量很低,也对钢材性能产生很强的有害影响。因此正确认识钢铁产品中残余元素问题,建立洁净钢的概念及其工艺控制是保证现代钢铁工业生产优质钢材的重要前提。 提高钢的洁净度,可以明显改善钢材的机械性能和加工性能。 主要表现在: (1) 洁净度对钢材机械性能的影响 降低钢中的S、P、N等的杂质含量,可以明显提高钢材的强度和韧性,如当钢中的[S]≤0.004%时,NiCrMo钢的冲击韧性明显提高;对于AIST4340钢,[P]从0.03%下降到0.003%,室温C型缺口冲击能约提高20%,而对于含B钢,控制[N]≤20ppm,可以获得很高的强度和低温韧性。 对于轴承钢,降低钢中的全氧含量,可以明显提高轴承的寿命。因此,高质量的轴承钢,要求钢中T[O]≤10×10-4%。同时,钢中夹杂物的尺寸、分布与性质对钢材的疲劳极限也有很大的影响。降低钢中夹杂物,有利于提高钢材的疲劳强度。 对于硅钢(Si=3%),降低钢中的S和T[O]的含量([S] ≤20ppm,T[O] ≤15ppm),可以使无取向硅钢片的铁芯损失降低到2.3w/kg以下。而降低钢中的[C]和[N]含量,可以提高硅钢片的最大导磁率,降低矫顽力。 (2) 洁净度对钢材加工性能的影响 焊接性能是钢材最重要的使用性能之一,降低钢中的含C量或降低钢的碳当量,有利于改善钢的焊接性能。 汽车板、家用电器和DI罐用钢等钢材,不仅要求一定的强度,还要求要有良好的深冲性能,降低钢中C含量,可以明显改善钢的深冲性能。汽车用高质量 IF钢,要求钢中C+N≤50ppm。此外,生产热轧薄板,必须严格控制钢中大型Al 2O 3 夹杂物的数量,才能避免轧制过程中产生裂纹,获得良好的表面质量。如生产0.3mmDI罐用钢板的关键技术是彻底杜绝30~40mm的大型脆性夹杂的出现。 钢中夹杂物的数量与类型对切削刀具寿命有明显的影响,这是由于钢种的脆性夹杂增大了工件与刀具间的摩擦阻力,不利于钢材的切削性能。因此,尽量降低钢中的脆性夹杂物的含量,有利于改善钢材的切削性能。 钢中的脆性夹杂物对耐磨性有着极坏的影响,对于钢轨钢和轴承钢,钢中 Al 2O 3 等脆性夹杂往往造成钢材表面剥落、腐蚀。因此,严格控制钢中Al2O3近 似等于零,可以解决表面磨损的问题,提高钢材的耐磨性能。N和C一样,是间隙型杂质。低温时,容易在Fe原子晶格内扩散,引起时效,使钢材低温锻造性能下降。对于0.35%的碳钢,如果控制钢中的固溶N含量≤50ppm,可以明显降低钢材冷锻时裂纹的产生率。

炉外精炼复习题答案完整版

1 概述 1 名词解释:长流程短流程炉外精炼 长流程:以氧气转炉炼钢工艺为中心的钢铁联合企业生产流程 短流程:以电炉炼钢工艺为中心的小钢厂生产流程 炉外精炼:凡是在熔炼炉(如转炉、电炉)以外进行的,旨在进一步扩大品种提高钢的质量、降低钢的成本所采用的冶金过程统称为炉外精炼。 2 转炉炼钢和电弧炉炼钢的不足之处有哪些?(07级A) 电炉炼钢的不足 (1)还原渣有较强的脱硫能力,但炉内渣钢接触面积太小,脱硫能力不能充分利用。氧化期出钢[S]0.02%~0.04% (2)在氧化期H降低到2.5~3ppm,在还原期又回升至5~7ppm (3)在还原期O≤80ppm,终脱氧后O≤30ppm,出钢过程100~200ppm (4)不能充分发挥超高功率电弧炉的作用 转炉炼钢的不足 (1)温度成分不均匀 (2)一般出钢[C]≥0.04%,很难将[C]控制在≤0.02%下出钢 (3)一般出钢[O]≥500ppm,出钢合金化后[O]≥100ppm (4)脱硫率为30%左右; 若铁水[S]≤0.03%,出钢[S]≤0.02%; 若铁水[S]0.002-0.005%,出钢[S]0.004-0.007% (5)脱磷率≥90%,终点[P]0.005-0.015%,出钢过程中回磷 (6)氧化性渣FeO≥15% 3 炉外精炼的作用和地位?经济合理性有哪些? 作用和地位: 1 提高质量扩大品种的主要手段 2 优化冶金生产流程,提高生产效率节能降耗降低成本主要方法 3 炼钢-炉外精炼-连铸-热装轧制工序衔接 炉外精炼的经济合理性 1 提高初炼炉的生产率 2 缩短生产周期 3 降低产品成本 4 产品质量提高 炉外精炼的任务?炉外精炼的三个特点? 对精炼手段的有哪些要求?(07级A 炉外精炼的任务 1 钢水成分和温度的均匀化 2 精确控制钢水成分和温度 3 脱氧脱硫脱磷脱碳 4 去除钢中气体(氢氮)及夹杂物 5 夹杂物形态控制 炉外精炼的三个特点 1 二次精炼 2 创造较好的冶金反应的动力学条件 3 二次精炼的容器具有浇注的功能

相关文档
最新文档