仿真实验--三极管特性仿真实验

仿真实验--三极管特性仿真实验
仿真实验--三极管特性仿真实验

仿真实验二 三极管输入特性与输出特性仿真实验

1. 实验题目

三极管输入特性与输出特性仿真实验

2. 实验目的和要求

掌握Multisim 10的基本使用方法;

通过仿真,验证三极管的输入特性与输出特性及主要参数。

3. 实验平台

Multisim 10和Excel 软件

4. 实验内容

(1) 三极管输入特性 (2) 三极管输出特性

5. 实验原理

三极管的输入特性:()|B BE CE I f U U ==常数 三极管的输出特性:()|C CE B I f U I ==常数

6. 实验步骤

6.1 三极管输入特性

图1 三极管输入特性测试示意图

图2三极管输入特性测试仿真图

第1步:调节R2的值使得XM015显示接近2V ,改变R3的阻值(即百分比),将测得的B i 与BE V 填入表1。

第2步:调节R2的值使得XM015显示接近5V ,改变R3的阻值(即百分比),将测得的B i 与BE V 填入表1。

第3步:用Excel 对第1步和第2步中的数据进行曲给拟合,得到()|B BE CE I f U U ==常数的曲线图。

表1

6.2 三极管输出特性

图3三极管输出特性测试示意图

图4三极管输出特性测试仿真图

第1步:调节R1的电阻值,使0B i =;按表2中的电压值调节V1的输出电压值,并将测得的

C i 与CE V 填入表1中。

第2步:调节R1的电阻值,使20B i uA =;按表2中的电压值调节V1的输出电压值,并将测得的C i 与CE V 填入表1中。

第3步:调节R1的电阻值,使40B i uA =;按表2中的电压值调节V1的输出电压值,并将测

得的C i 与CE V 填入表1中。

第4步:调节R1的电阻值,使60B i uA =;按表2中的电压值调节V1的输出电压值,并将测得的C i 与CE V 填入表1中。

第5步:调节R1的电阻值,使80B i uA =;按表2中的电压值调节V1的输出电压值,并将测得的C i 与CE V 填入表1中。

第6步:调节R1的电阻值,使100B i uA =;按表2中的电压值调节V1的输出电压值,并将测得的C i 与CE V 填入表1中。

第7步:用Excel 对第1-6步中的数据进行曲给拟合,得到()|C CE B I f U I ==常数的曲线图。 第8步:对仿真结果进行总结分析,得出自己对此次实验的心得。

7.分析和讨论

对仿真结果进行总结分析,得出自己对此次实验的心得:

三极管输入输出特性测试(—)

电路分析实验报告 三极管输入输出特性测试(—) 一、实验摘要 通过对三极管输入回路和输出回路电压和电流的测量,得到三极管的输入特性和输出特性数据。 二、实验环境 三极管电阻电位器直流电源万用表 三、实验原理

三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。 四、实验步骤 在面包板上搭建电路 设定直流电源输入/输出电流和 5v 0.1A 0V/1V/2V 0.1A 电压 调节电位器改变分压 记录电压电流得到三极管特性曲线

五、实验数据 VCE=0V V/v 0.5 0.625 0.628 0.648 0.652 0.659 0.664 0.706 I/A 0.00337 0.04928 0.06074 0.1208 0.14025 0.17675 0.20929 0.84831 VCE=1V V/v 0.613 0.755 0.756 0.763 0.773 0.779 0.784 0.788 I/A 0.00709 0.5514 0.61795 0.6531 0.7683 0.7836 0.85145 1.14519

VCE=2V V/v 0.757 0.762 0.774 0.781 0.783 0.786 0.791 0.793 I/A 0.54868 0.58846 0.86204 0.9535 1.10292 1.55215 1.56623 2.48202 六、实验总结 在本次实验中了解到了三极管的输入特性和输出特性以及 三极管的特性曲线。但是自己数据取的不好,特性图画出来不是很好。

实验三 光电三极管特性测试及其变换电路模板

西南交通大学光电专业实验报告 学号:2015114XXX 姓名:XXX 班级:光电X班组号:X 同组人(姓名/学号):实验名称:光电三极管特性测试及其变换电路本次实验是本学期你所做的第X 个实验实验日期:2018 年 6 月X 日讲指导教师/报告箱号:

极管C极对应组件上红色护套插座,已极对应组件上黑色护套插座。 (4)打开电源,缓慢调节光照度调节电位器,直到光照为3001x (约为环境光照),缓慢

光照3001x时的光电流。 (5)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。2、光电三极管光照特性测试 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将光源驱动及信号处理模块上J2与光通路组件光源接口使用彩排数据线相连。 (2)将开关S2拨到“静态”。 (3)按图3-3所示的电路连接电路图,直流电源选用0-15V可调直流电源,负载RL选择RL=1K欧。 (4)将“光照度调节”旋钮逆时针调节至最小值位置。打开电源,调节直流电源电位器,直到显示值为6V左右,顺时针调节该旋钮,增大光照度值,分别记下不同照度下对应的光生电流值、填入表1。若电流表或照度计显示为“1__”时说明超出量程,应改为合适的量程再测试。 (5)调节直流调节电位器到10V左右,重复述步骤(4),改变光照度值,将测试的电流值填入表2 (6)根据上面所测试的两组数据,在同一坐标轴中描绘光照特性曲线并进行分析。 (7)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。3、光电三极管伏安特性 实验装置原理框图如图3-4所示。 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将光源驱动及信号处理模块上J2与光通路组件光源接口使用彩排数据线相连。 (2)将开关S2拨到“静态”。 (3)按图3-4所示的电路连接电路图,直流电源选用0-15V可调直流电源,负载RL选择RL=2K欧。 (4)打开电源顺时针调节照度调节旋钮,使照度值为200Lx,保持光照度不变,调节电源电压电位器,使反向偏压为0V、IV、2V,4V、6V、8V、10V、12V时的电流表读数,填入表3,关闭电源。 (注意:直流电流不可调至高于30V,以免烧坏光电三极管) (5)根据上述实验结果,作出200Lx照度下的光电三极管伏安特性曲线。 (6)重复上述步骤。分别测量光电三极管在100Lx和500Lx照度下,不同偏压下的光生

光敏电阻特性测试实验

实验系列二、光敏电阻特性测试实验 光通路组件 图1-2 光敏电阻实验仪光通路组件 功能说明: 分光镜:50%透过50%反射镜,将平行光一半给照度计探头,一半给等测光器件,实验测试方便简单,照度计可实时检测出等测器件所接收的光照度。 1、实验之前,J4通过彩排线缆与光通路组件的光源接口相连,连接之后电路部分方可对光源对行控制。光照度计与照度计探头相连(颜色要相对应) 2、BM2拨向上时,光源发光为脉冲光,脉冲宽度由“脉冲宽度调节电位器”进行调节(用于做光敏电阻时间响应特性实验)。 一、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 二、实验内容 1、光敏电阻的暗电阻、暗电流测试实验 2、光敏电阻的亮电阻、亮电流测试实验 3、光敏电阻光电流测试实验; 4、光敏电阻的伏安特性测试实验 5、光敏电阻的光电特性测试实验 6、光敏电阻的光谱特性测试实验 7、光敏电阻的时间响应特性测试实验 8、精密的暗激发开关电路设计实验 三、实验仪器 1、光敏电阻综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、2#迭插头对(红色,50cm ) 10 根 5、2#迭插头对(黑色,50cm ) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台

四、实验原理 1. 光敏电阻的结构与工作原理 它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性。无光照时,光敏电阻值很大,电路中电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值急剧减小,电路中电流迅速增大。 2. 光敏电阻的主要参数 光敏电阻的主要参数有: (1)光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的电流称为暗电流。 (2)光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。 (3)亮电流与暗电流之差称为光电流。 3. 光敏电阻的基本特性 (1) 伏安特性 在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。图2-2为硫化镉光敏电阻的伏安特性曲线。由图可见,光敏电阻在一定的电压范围内,其I-U 曲线为直线。 (2)光照特性 光敏电阻的光照特性是描述光电流I 和光照强度之间的关系,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。图2-3为硫化镉光敏电阻的光照特性。 (3) 光谱特性 光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。光敏电阻的相对光敏灵敏度与入射波长的关系称为光敏电阻的光谱特性,亦称为光谱响应。图2-4 为几种不同材料光敏电阻的光谱特性。 对应于不同波长,光敏电阻的灵敏度是不同的,而且不同材料的光敏电阻光谱响应曲线也不同。 五、实验步骤 1、光敏电阻的暗电阻、暗电流测试实验 (1)将光敏电阻完全置入黑暗环境中(将光敏电阻装入光通路组件,不通电即为完全黑暗),使用万用表测试光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R 暗。 (注:由于光敏电阻个性差异,某些暗电阻可能大于200M 欧,属于正常。) (2)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。 4030 2010 I / m A 10010001 x 500 mW 1001 x 200 101 x 0.05 0.100.150.200.250.300.350.40I / m A S r / (%) 20 40 60 80 100 0 1.53

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

光敏三极管特性测试

实验三光敏三极管特性测试 一:实验原理: 光敏三极管是具有NPN或PNP结构的半导体管,结构与普通三极管类似。但它的引出电极通常只有两个,入射光主要被面积做得较大的基区所吸收。光敏三极管的结构与工作电路如图(11)所示。集电极接正电压,发射极接负电压。 二:实验所需部件: 光敏三极管、稳压电源、各类光源、电压表(自备4 1/2位表)、微安表、负载电阻 三:实验步骤: 1、判断光敏三极管C、E极性,方法是用万用 表欧姆20M测试档,测得管阻小的时候红表 棒端触脚为C极,黑表棒为E极。 2、暗电流测试: 按图(11)接线,稳压电源用±12V,调整 负载电阻RL阻值,使光敏器件模板被遮光罩盖 住时微安表显示有电流,这即是光敏三极管的暗 电流,或是测得负载电阻RL上的压降V暗,暗 电流LCEO=V暗/RL。(如是硅光敏三极管,则 暗电流可能要小于10-9A,一般不易测出。 3、光电流测试: 取走遮光罩,即可测得光电流I光,通过实验比较可以看出,光敏三极管与光敏二极管相比能把光电流放大(1+HFE)倍,具有更高的灵敏度。 1、伏安特征测试: 光敏三极管在给定的光照强度与工作电压下,将所测得的工作电压Vce与工作电流记录,工作电压可从+4V~+12V变换,并作出一组V/I曲线。 2、光谱特性测试: 对于一定材料和工艺制成的光敏管,必须对应一定波长的入射光才有响应。按图(11)接好光敏三极管测试电路,参照光敏二极管的光谱特性测试方法,分别用各种光照射光敏三极管,测得光电流,并做出定性的结论。 3、光电特性测试:

图(12)光敏三极管的温度特性图(13)光敏三极管的光电特性曲线 在外加工作电压恒定的情况下,照射光通量与光电流的关系见图(13),用各种光源照射光敏三极管,记录光电流的变化。 4、温度特性测试: 光敏三极管的温度特性曲线如图(12)所示,试在图(11)的电路中,加热光敏三极管,观察光电流随温度升高的变化情况。 思考题:光敏三极管工作的原理与半导体三极管相似,为什么光敏三极管有两根引出电极就可以正常工作?

实验报告-光敏电阻基本特性的测量

实验报告 姓名:班级:学号:实验成绩: 同组姓名:实验日期:08/4/14 指导老师:助教15 批阅日期: 光敏电阻基本特性的测量 【实验目的】 1.了解光敏电阻的工作原理及相关的特性。 2.了解非电量转化为电量进行动态测量的方法。 3.了解简单光路的调整原则和方法. 4.在一定照度下,测量光敏电阻的电压与光电流的关系。 5.在一定电压下,测量光敏电阻的照度与光电流的关系。 【实验原理】 1 光敏电阻的工作原理 在光照作用下能使物体的电导率改变的现象称为内光电效应。本实验所用的光敏电阻就是基于内光电效的光电元件。当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加。电导率的改变量为: (1) 式中e为电荷电量;为空穴浓度的改变量;为电子浓度的改变量;为空穴的迁移率;为电子的迁移率。当光敏电阻两端加上电压U后,光电流为 (2) 式中A为与电流垂直的截面积,d为电极间的距离。 用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料.目前生产的光敏电阻主要是硫化镉.光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,被广泛地用于自动化技术中.

本实验光敏电阻得到的光照由一对偏振片来控制。当两偏振片之间的夹角为时,光照为,其中:为不加偏振片时的光照,D为当量偏振片平行时的透明度。 2 光敏电阻的基本特性 光敏电阻的基本特性包括伏-安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。本实验主要研究光敏电阻的伏-安特性和光照特性。3.附上实验中的光路图: 【实验数据记录、实验结果计算】 1测量光敏电阻的电压与光电流的关系 在调整好光路后,就可以做这一个内容的实验了。下面附上这个实验内容的电路图:

影响光伏电池、组件输出特性的因素概要

由于光伏电池、组件的输出功率取决于太阳光照强度、太阳能光谱的分布和光伏电池的温度、阴影、晶体结构。因此光伏电池、组件的测量在标准条件下(STC进行,测量条件被欧洲委员会定义为101号标准,其条件是:光谱辐照度为1000瓦/平米;光谱 AM1.5;电池温度25摄氏度。 在该条件下,太阳能光伏、电池组件所输出的最大功率被称为峰值功率,其单位表示为瓦(Wp。在很多情况下,太阳能电池的光照、温度都是不断变化的,所以组件的峰值功率通常用模拟仪测定并和国际认证机构的标准化的光伏电池进行比较。 (1温度对光伏电池、组件输出特性的影响 大家都知道,光伏电池、组件温度较高时,工作效率下降。随着光伏电池温度的升高,开路电压减小,在20-100摄氏度范围,大约每升高1摄氏度,光伏电池的电压减小2mV;而光电流随温度的升高略有上升,大约每升高1摄氏度电池的光电流增加千分之一。总的来说,温度每升高1摄氏度,则功率减少0.35%。这就是温度系数的基本概念,不同的光伏电池,温度系数也不一样,所以温度系数是光伏电池性能的评判标准之一。 (2光照强度对光伏电池组建输出特性的影响 光照强度与光伏电池、组件的光电流成正比,在光强由100-1000瓦每平米范围内,光电流始终随光强的增长而线性增长;而光

照强度对电压的影响很小,在温度固定的条件下,当光照强度在400-1000哇每平米范围内变化,光伏电池、组件的开路电压基本保持不变。所以,光伏电池的功率与光强也基本保持成正比。 (3阴影对光伏电池、组件输出特性的影响 阴影对光伏电池、组件性能的影响不可低估,甚至光伏组件上的局部阴影也会引起输出功率的明显减少。所以要注意避免阴影的产生,及时清理组件表面,防止热斑效应的产生。一个单电池被完全遮挡时,太阳电池组件输出减少75%左右。虽然组件安装了二极管来减少阴影的影响,但如果低估局部阴影的影响,建成的光伏系统性能和投资收效都将大大降低。

光敏二极管的检测方法

1.电阻测量法用黑纸或黑布遮住光敏二极管的光信号接收窗口,然后用万用表R×1k档测量光敏二极管的正、反向电阻值。正常时,正向电阻值在10~20kΩ之间,反向电阻值为∞(无穷大)。若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路损坏。 再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向电阻值的变化。正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。 2.电压测量法将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。正常时应有0.2~0.4V电压(其电压与光照强度成正比)。 3.电流测量法将万用表置于50μA或500μA电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。 1.光敏二极管的简易判别方法 (1)电阻测量法 用万用表1k档,测正向电阻约10kΩ左右。在无光照情况下,反向电阻应为∞,反向电阻不是∞,说明漏电流大;有光照时,反向电阻应随光照增强而减小,阻值小至几kΩ或1kΩ以下。 (2)电压测量法 用万用表1V档(无1V档可用1.5V或3V档),红表笔接光敏二极管的“十”极,黑表笔接“-”极,在光照情况下,其电压应与光照度成比例,一般可达0.2~0.4V。 (3)短路电流测量法 用万用表50mA或500mA电流档,红表笔接光敏二极管的“十”极,黑表笔接“-”极,在白炽灯下(不能用日光灯),应随光照的增强,其电流随之增加。短路电流,可达数十mA~数百mA。 光敏二极管的主要特性参数 ①最高反向工作电压VRM:是指光敏二极管在无光照的条件下,反向漏电流不大于0.1μA时所能承受的最高反向电压值。 ②暗电流ID:是指光敏二极管在无光照及最高反向工作电压条件下的漏电流。暗电流越小,光

光电传感器实验

光电传感器实验研究 电气信息学院 摘要:本实验通过研究光敏电阻、光敏二极管、光敏三极管、硅光电池的伏安特性和光照特性曲线和光纤通讯基本原理,从而掌握光电传感器的原理。这样可以丰富自己的物理知识,使自己感受物理的魅力,并学会运用物理知识解决生活中的实际问题。 关键词:光敏电阻,光敏二极管,光敏三极管,硅光电池,光纤 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点。光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性以及光纤传感器基本特性和光纤通讯基本原理。本实验目的:1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。2、了解光敏二极管的基本特性,测出它的伏安特性和光照特性曲线。3、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。4、了解光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。 5、了解光纤传感器基本特性和光纤通讯基本原理。 一、光敏传感器的基本特性及实验原理 1、伏安特性 光敏传感器在一定的入射光强照度下,光敏元件的电流I与所加电压U之间的关系称为光敏器件的伏安特性。改变照度则可以得到一组伏安特性曲线,它是传感器应用设计时选择电参数的重要依据。某种光敏电阻、硅光电池、光敏二极管、光敏三极管的伏安特性曲线如图1、图2、图3、图4所示。

实验10(光敏电阻)实验报告

实验十-光敏电阻及光敏二极管的特性实验 实验1:光敏电阻的特性实验 一、实验目的 了解光敏电阻的光照特性和伏安特性。 二、实验原理 在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照愈强,器件自身的电阻愈小。基于这种效应的光电器件称光敏电阻。光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。实验原理图如图10-1。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流 表、电压表;光电器件实验(一)模板、光敏电阻、发光二极管、庶光筒。 四、实验接线图 五、实验数据记录和数据处理 1:亮电阻和暗电阻测量

实验数据如下: 2:光照特性测量 实验数据如下: 实验数据拟合图像如下: 3:伏安特性测量 实验数据如下: 实验数据拟合图像如下: 六、实验思考题

1:为什么测光敏电阻亮阻和暗阻要经过10 秒钟后读数,这是光敏电阻的缺点,只能应用于什么状态? 答:稳定态 实验2:光敏二极管的特性实验 一、实验目的 了解光敏二极管工作原理及特性。 二、实验原理 当入射光子在本征半导体的p-n 结及其附近产生电子—空穴对时,光生载流子受势垒区电场作用,电子漂移到n 区,空穴漂移到p 区。电子和空穴分别在n 区和p 区积累,两端便产生电动势,这称为光生伏特效应,简称光伏效应。光敏二极管基于这一原理。如果在外电路中把p-n 短接,就产生反向的短路电流,光照时反向电流会增加,并且光电流和照度基本成线性关系。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流表、电压表;光电器件实验(一)模板、光敏二极管、发光二极管、庶光筒 四、实验接线图 将上图中的光敏电阻更换成光敏二极管(注意接线孔的颜色相对应即+、-极性),按上图安装接线,测量光敏二极管的暗电流和亮电流。 五、实验数据记录和数据处理 1:光照特性 亮电流测试实验数据如下: 实验数据拟合图像如下:

晶体管特性图示仪测试

XJ4810晶体管特性图示仪说明书 晶体管测量仪器是以通用电子测量仪器为技术基础,以半导体器件为测量对象的电子仪器。用它可以测试晶体三极管(NPN型和PNP型)的共发射极、共基极电路的输入特性、输出特性;测试各种反向饱和电流和击穿电压,还可以测量场效管、稳压管、二极管、单结晶体管、可控硅等器件的各种参数。下面以XJ4810型晶体特性图示仪为例介绍晶体管图示仪的使用方法。 图A-23 XJ4810型半导体管特性图示仪 7.1 XJ4810型晶体管特性图示仪面板功能介绍 XJ4810型晶体管特性图示仪面板如图A-23所示: 1. 集电极电源极性按钮,极性可按面板指示选择。 2. 集电极峰值电压保险丝:1.5A。 3. 峰值电压%:峰值电压可在0~10V、0~50V、0~100V、0~500V之连续可调,面板上的标称值是近似值,参考用。 4. 功耗限制电阻:它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。 5. 峰值电压围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A四挡。当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。 AC挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特性曲线。 6. 电容平衡:由于集电极电流输出端对地存在各种杂散电容,都将形成电容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。 7. 辅助电容平衡:是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。 8. 电源开关及辉度调节:旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮

光敏电阻伏安特性光敏二极管光照特性

光敏电阻伏安特性、光敏二极管光照特性(FB815型光敏传感器光电特性实验仪 ) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管、光敏三极管、硅光电池与光学纤维的光电传感特性及在某些领域中的应用。 【实验原理】 1(光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。

光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体结内部有自建电场。当光照射在结及其附近时,在能量PNPN 足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场的作用,电子漂移到区,空穴漂移EN到区。结果使区带负电荷,区带正电荷,产生附加电动势,此电动势称为光生电动PPN 势,此现象称为光生伏特效应。 2(光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。 伏安特性: 光敏传感器在一定的入射光照度下,光敏元件的电流与所加电压之间的关系称为IU光敏器件的伏安特性。改变照度则可以得到一族伏安特性曲线。它是传感器应用设计时的重要依据。 光照特性: 光敏传感器的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏传感器应用设计时选择参数的重要依据之一。

光照度实验分析

光照度实验 实验一发光二极管(光源)的照度标定实验 一、实验目的 了解发光二极管的工作原理;作出工作电流与光照度的对应关系及工作电压与光照度的对应关系曲线,为以后实验提供数据。 二、基本原理 半导体发光二极管筒称LED。它是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN 结。因此它具有一般二极管的正向导通;反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。其发光原理如图1-1 所示,当加上正向激励电压或电流时,在外电场作用下,在P-N 结附近产生导带电子和价带空穴,空穴由P 区注入N 区,进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。假设发光是在P 区中发生的,那么注入的电子与价带空穴直接复合而发 图1-1 发光二极管的工作原理 光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、价带中间附近)捕获,再与空穴复合,每次释放的能量不大,以热能的形式辐射出来。发光的复量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN 结面数μm 以内产生。发光二极管的发光颜色由制作二极管的半导体化合物决定。本实验使用纯白高亮发光二极管。 三、需用器件与单元 主机箱(0~20mA 可调恒流源、电流表、0~24V 可调电压源,照度表);照度计探头;发光二极管;通光筒。 四、实验步骤: 照度—电流对应值的测量; 1、按图1-2 配置接线,接线注意+、-极性。 2、检查接线无误后,合上主机箱电源开关。

实验一光敏电阻特性测量实验

光电子技术基础实验报告 实验题目光敏电阻特性测量实验日期2020.09.04 姓名组别04 班级18B 学号 【实验目的】 1、了解光敏电阻的工作原理和使用方法; 2、掌握光强与光敏电阻电流值关系测试方法; 3、掌握光敏电阻的光电特性及其测试方法; 4、掌握光敏电阻的伏安特性及其测试方法; 5、掌握光敏电阻的光谱响应特性及其测试方法; 6、掌握光敏电阻的时间响应特性及其测试方法。 【实验器材】 光电技术创新综合实验平台一台 特性测试实验模块一块 光源特性测试模块一块 连接导线若干 【实验原理】 光敏电阻在黑暗的室温条件下,由于热激发产生的载流子使它具有一定的电导,该电导称为暗电导,其倒数为暗电阻,一般的暗电导值都很小(或暗电阻阻值都很大)。当有光照射在光敏电阻上时,电导将变大,这时的电导称为光电导。电导随光照量变化越大的光敏电阻,其灵敏度就越高,这个特性就称为光敏电阻的光电特性,也可定义为光电流与照度的关系。 光敏电阻在弱辐射和强辐射作用下表现出不同的光电特性(线性和非线性),实际上,它的光电特性可用在“恒定电压”下流过光敏电阻的电流IP ,与作用到光敏电阻上的光照度 E 的关系曲线来描述,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。光敏电阻的本质是电阻,因此它具有与普通电阻相似的伏安特性。在一定的光照下,加到光敏电阻两端的电压与流过光敏电阻的亮电流之间的关系称为光敏电阻的伏安特性。 光敏电阻的符号和连接

【实验注意事项】 1、打开电源之前,将“电源调节”处旋钮逆时针调至底端; 2、实验操作中不要带电插拔导线,应该在熟悉原理后,按照电路图连接,检查无误后,方可打开电源进行实验; 3、若照度计、电流表或电压表显示为“1_”时说明超出量程,选择合适的量程再测量; 4、严禁将任何电源对地短路。 5、仪器通电测试前,一定要找老师检查后方可通电测试。 【主要实验步骤】 基础实验: 组装好光源、遮光筒和光探结构件,如下图所示: 1、打开台体电源,调节照度计“调零”旋钮,至照度计显示为“000.0”为止。 2、特性测试模块的 0-12V(J5)和 GND 连接到台体的 0-30V 可调电源的 Vout+和 Vout- 上。 3、J5连接电流表+极,电流表-极连接光敏电阻套筒黄色插孔,光敏电阻套筒蓝色插孔连接J6,电压表+极连接光敏电阻套筒黄色插孔,电压表-极连接光敏电阻套筒蓝色插孔。光敏电阻红黑插座与照度计红黑插座相连。(RP1的值可根据器件特性自行选取) 4、将光源特性测试模块+5V,-5V和GND连接到台体的+5V,-5V和GND1上,航空插座FLED-IN与全彩灯光源套筒相连接。打开光源特性测试模块电源开关K101,将S601,S602, S603开关向下拨(OFF档),使光照强度为0,即照度计显示为0。 5、将S601,S602,S603开关向上拨(ON档),将可调电源电压调为5V,光源颜色选为白光,按“照度加”或“照度减”,测量照度为100Lx、150Lx、200Lx、250Lx、300Lx、350Lx、400Lx、450Lx、500Lx、550Lx、600Lx电压表对应的电压值U,电流表对应的电流值I,光敏电阻值 RL=U/I。且将实验数据记录于表1-1中: 6、改变电源供电偏压,分别记录电压为 7V 和 9V 时,不同光照度下对应的电流值,并分别记录于表 1-2 及表 1-3 中: 7、保持照度为 100Lx 不变,调节电源供电偏压,使供电偏压为 1V、2V、3V、4V、5V、 6V、7V、8V、9V、10V,分别记录对应的电流值,并记录表 1-4 中: 8、按“照度加”,调节使光照为 200Lx、400Lx,记录同一光照不同电压下对应的电流值,并分别记录表 1-5 至表 1-9 中: 9、使可调电源偏压调为 5V 分别测量不同颜色光在 200 Lx 光照强度下,光敏电阻的电流值,将各个光源 200 lx 照度下光敏电阻的电流值记录在表 1-10 中: 10、将S601,S602,S603开关向下拨(OFF档),将可调电源电压调为5V。将光源特性测试模块的J701与光源特性测试模块的J601,J602,J603插座相连接。观察光源特性测试模块的J701点波形和特性测试模块J6点波形,分析光敏电阻的时间响应特性。 11、将“电源调节”旋钮逆时针旋至不可调位置,关闭实验台电源。

光伏组件中电池遮挡与伏安特性曲线变化的关系

体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输 ... 配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 一、模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一下参数代替:n=1.96,I0=3.86X10-5(A),Rsh=15.29(Ω)。a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组建中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V 特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不大。结果是透过率越低,电流随着电压的升高下降越快。另一方面,开路电压基本上相同。由图可看出:测量结果与计算的结果相吻合。

光电二三极管特性测试实验报告分解

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

光敏电阻伏安特性、光敏二极管光照特性

光敏传感器的光电特性研究 (FB815型光敏传感器光电特性实验仪) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。 【实验原理】 1.光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体PN结内部有自建电场。当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P 区。结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。 2.光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。

光敏三极管的主要技术特性及参数

光敏三极管的主要技术特性及参数 1、光谱特性 光敏三极管由于使用的材料不同,分为错光敏三极管和硅光敏三极管,使用较多的是硅光敏三极管。光敏三极管的光谱特性与光敏二极管是相同的。 2、伏安特性 光敏三极管的伏安特性是指在给定的光照度下光敏三极管上的电压与光电流的关系。光敏三极管的伏安特性曲线如图下图所示。 3、光电特性 与光照度之间的关光敏三极管的光电特性反映了当外加电压恒定时,光电流I L 系。下图给出了光敏三极管的光电特性曲线光敏三极管的光电特性曲线的线性度不如光敏二极管好,且在弱光时光电流增加较慢。 4、温度特性 温度对光敏三极管的暗电流及光电流都有影响。由于光电流比暗电流大得多,在一定温度范围内温度对光电流的影响比对暗电流的影响要小。下两图中分别给出了光敏三极管的温度特性曲线及光敏三极管相对灵敏度和温度的关系曲线。

5、暗电流I D 在无光照的情况下,集电极与发射极间的电压为规定值时,流过集电极的反向漏电流称为光敏三极管的暗电流。 6、光电流I L 在规定光照下,当施加规定的工作电压时,流过光敏三极管的电流称为光电流,光电流越大,说明光敏三极管的灵敏度越高。 7、集电极一发射极击穿电压V CE 在无光照下,集电极电流IC为规定值时,集电极与发射极之间的电压降称为集电极一发射极击穿电压。 8、最高工作电压V RM 在无光照下,集电极电流Ie 为规定的允许值时,集电极与发射极之间的电压降称为最高工作电压。 9、最大功率P M 最大功率指光敏三极管在规定条件下能承受的最大功率。 10、峰值波长λp 当光敏三极管的光谱响应为最大时对应的波长叫做峰值波长。 11、光电灵敏度 在给定波长的入射光输入单位为光功率时,光敏三极管管芯单位面积输出光电流的强度称为光电灵敏度。 12、响应时间 响应时间指光敏三极管对入射光信号的反应速度,一般为1 X 10-3--- 1 X 10-7S 。 13、开关时间 1.脉冲上升时间t τ:光敏三极管在规定工作条件下调节输入的脉冲光,使光敏三极管输出相应的脉冲电流至规定值,以输出脉冲前沿幅度的10% - 90% 所需的时间。 2.脉冲下降时间t :以输出脉冲后沿幅度的90% - 10% 所需的时间。 t 3.脉冲延迟时间t :从输入光脉冲开始到输出电脉冲前沿的10% 所需的时间。 d 4.脉冲储存时间t :当输入光脉冲结束后,输出电脉冲下降到脉冲幅度的90% 所 s 需的时间。

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

相关文档
最新文档