图像配准技术方法研究

图像配准技术方法研究
图像配准技术方法研究

图像配准技术方法研究

摘要随着信息技术的迅猛发展,图像配准技术已经在军事、遥感、医学、计算机视觉等多个领域得到了广泛的应用。图像配准技术是图像处理的一个基本问题,它是将不同时间、传感器或视角下获取的相同场景的多幅图像进行匹配的图像处理的过程。三类图像配准的方法大致如下:基于灰度的图像配准方法。基于变换域的图像配准方法。基于特征的图像配准方法。本文将应用这三种方法对图像配准进行研究。并重点研究基于特征的图像配准方法。

关键词图像配准,特征点匹配,灰度插值,控制点的提取

Abstract

The technology of image registration is being widely used in the military, remote sensing , medical, computer, visual and any other fields with the rapid development of information technology. The technology of image registration is a kind of process to match different pictures getting from different periods and different cameras but a same scene, it is a basic point to handle the pictures. There are three kinds of ways to do the image registration:According to the level of the color of gray getting from the pictures.According to transforming domains.According to the features The three kinds of ways will be used to discuss the image registration in the thesis, and the way according to the features will be discussed more in the thesis.

Key words: Image registration, Match feature points, Gray inerpolation ,Collect the control points

目录

1.绪论 (1)

1.1课题研究目的及意义 (1)

1.2国内外对本课题涉及问题的研究现状 (1)

2.研究方法与研究内容 (3)

2.1研究内容 (3)

2.2研究方法 (3)

3.图像配准的常用方法 (4)

3.1图像配准的定义 (4)

3.2基于灰度的图像配准方法 (5)

3.3基于变换域的图像配准方法 (6)

3.4基于特征的图像配准方法 (8)

3.4.1特征提取 (8)

3.4.2变换模型 (10)

3.4.3坐标变换与插值 (13)

3.4.4图像配准实现 (17)

4.实验设计及分析 (18)

4.1图像配准实验一 (18)

4.1.1研究对象 (18)

4.1.2 过程实现 (19)

4.2图像配准实验二 (24)

4.2.1研究对象 (24)

4.2.2过程实现 (25)

实验总结 (34)

参考文献 (35)

致谢 (36)

附录 (37)

1.绪论

1.1课题研究目的及意义

图像配准是遥感图像处理、目标识别、图像重建、机器人视觉等领域中的关键技术,是多传感图像融合的基础。军事、遥感、医学、计算机视觉等许多领域都需要图像配准,实际应用过程可能会有所不同,但其中关键的因素是类似的。经过多年的研究,图像配准技术已经取得了众多研究成果,但由于图像配准的输入数据来源的多样性,以及配准问题的复杂性,还有待于更进一步的发展。

图像配准是图像融合技术的基本环节和首要问题,只有经过配准后的图像才能进行有效的融合,目标定位,变化监测,高分辨率图像的重建等后续处理工作,处理结果的好坏将直接影响后续工作质量。

1.2国内外对本课题涉及问题的研究现状

国外从20世纪60年代就开始在图像配准领域进行研究,但直到1980年代才开始引起学者们的关注。到上世纪末,单模图像配准问题已基本解决,但多模图像配准由于涉及模式和领域的复杂性,仍需密切关注。国际上对图像配准技术曾做过调查,其结论是1990年代初技术文献明显增加。而国内从1990年代初才开始涉足此领域。

图像配准最早在美国七十年代从事的飞行器辅助导航系统、武器投射系统的末制导以及寻地等应用研究中提出。八十年代后,在很多

不同领域都有大量配准技术的研究,如遥感领域,模式识别,自动导航,医学诊断,计算机视觉等。

由此可见,图像配准技术经过多年研究,不论国内外,发展的都非常迅速,已经取得了许多研究成果。图像配准的高精度、图像配准算法的强鲁棒性、图像配准算法的配准速度以及图像配准的自动化一直以来都是图像配准领域所不断追求的目标。

2.研究方法与研究内容

2.1研究内容

本论文主要是对图像配准技术方法进行研究。讨论了图像配准技术的常用方法,包括基于灰度的图像配准方法,基于变换域的配准方法以及基于特征的图像配准方法,并通过一定的理论分析来了解每种图像配准技术的特点。除此之外,本文还重点就基于特征的图像配准方法展开的深入的讨论研究,并通过一系列的实验来具体实现不同图像的配准。

2.2研究方法

该论文主要是运用一系列图像处理手段,对待配准的图像进行一定的变换与处理,例如:投影变换,非线性变换,刚体变换,放射变换,傅里叶变换,坐标变换与插值等,从而实现不同图像间的高精度配准。

3.图像配准的常用方法

所有的图像配准方法都可以概括为两类,相对配准和绝对配准。相对配准指的是从多个图像中选择一张图像作为参考,而其他图像与之相配准,坐标任意。绝对配准指的是定义一个控制网络,其他图像都与之相配准,进而分别完成各个分量图像的几何校正,实现坐标系的统一。本论文主要研究图像的相对配准。

目前,根据图像配准中利用的图像的信息区别将配准方法分为三类:基于灰度的图像配准、基于变换域的图像配准和基于特征的图像配准。

3.1图像配准的定义

图像配准就是寻求图像之间一对一的映射的过程,即两幅图在空间和灰度上的映射[1]。假设给定尺寸的二维矩阵图像I1(x,y)和I2(x,y),分别表示相对位置(x,y)上的灰度值。图像配准的关键问题就是图像之间的空间和几何变换。I1(x,y)作为参考图像,而I2(x,y)作为待配准图像。令f表示一个二维空间的坐标变换,设变换后图像为I f(x,y),则参考图像I1(x,y)与变换后的图像I f(x,y)之间的关系为:

I f(x,y)=f(I1(x,y))

根据配准的定义,希望变换后的图像I1(x,y)与待配准图像I2(x,y)的对齐度最大。此时变换f是一个二维空间域坐标的几何变换,即为:(x’,y’)=f(x,y)

3.2 基于灰度的图像配准方法

基于灰度的配准方法通常不需要对图像进行复杂的预处理,而是利用图像的某些统计信息来作为度量图像的相似程度。主要的特点是实现较为简单,但应为的范围较窄,不能直接用于校正图像的非线性形变,并且在最优变换的搜寻过程中通常需要巨大的运算量。经过多年发展,人们提出了多种基于灰度的图像配准方法,主要分为三类:序贯相似检测算法、互相关算法、交互信息算法。 (1) 序贯相似检测算法

序贯相似检测算法(Sequential Similarity Detection Algorithms ,SSDAS )是由Barnea 等人提出来的,这种方法具有效率高,处理速度快的特点[6]。首先这个方法实际上是个误差绝对值的积累,在非匹配的图像位置,累加时E(a,b)增长较快,而在匹配图像位置上E(a,b)随累加次数增加而变得缓慢。如果先选择一个简单的固定门限T ,若在某点上计算两幅图像残差和的过程中,残差和大于该固定门限T ,就认为当前点不是匹配点,从而终止当前的残差和的计算,转向别的点去计算残差和,最后认为残差和增长最慢的点就是匹配点。这种方法就是固定门限的SSDA 算法。上述E(a,b)为一个在计算上更为简单的相似性度量准则:

(,)(,)(,)x

y

E a b T x y f x a y b =

---∑∑

(2) 互相关算法

互相关算法是最基本的基于灰度统计的图像配准的方法,它常常

被用在进行模板匹配和模式识别。通过计算模板图像和搜索窗口之间的互相关值大小来确定匹配程度,互相关值最大时的搜索窗口位置决定模板图像在待配准图像中的位置。

以上的相似准则方法都是传统基于灰度的相关运算。

(3)交互信息算法

Viola等人和Collignon等人于1995年分别把交互信息引入到图像配准领域,这是一个新的解决图像配准问题的方向,那就是基于信息理论的交互信息相似准则[2]。最初的目的是为了解决多模态医学图像的配准问题。交互信息用来比较两幅图像的统计依赖性。交互信息是建立在概率密度估计的基础上的,它要求的计算量很大,由此函数可能出现病态,并且会出现大量的局部极值。当两幅图达到最佳匹配时,它们对应的灰度互信息应该达到最大。

3.3 基于变换域的图像配准方法

变换域最主要的方法是傅氏变换方法。它具有以下优势:图像的平移,旋转,比例,仿射变换都能在傅里叶变换域中体现出来,利用变换域方法还有可能获得一定程度的抵抗噪声的鲁棒性[4]。由于傅里叶变换的成熟的快速算法和易于硬件体现,因而在算法实现中也有独特的优势。

相位相关技术是两幅图像配准的平移失配的基本傅里叶变换方法。相位相关依据的是傅里叶变换的平移特性。

源图像傅氏频谱

平移后的图像平移后傅氏频谱

旋转后的图像旋转后的傅氏频谱如上图所示,平移不影响傅氏变换的幅值,对应的幅值谱和原图像是一样的。旋转在傅氏变换中是小变量。根据傅氏变换的旋转特性,旋转一幅图,在频域相当于对这幅图的傅氏变换做相同的旋转。

在噪声的敏感性喝计算的复杂性上变换域配准方法有一定优势,但这一方法只限于傅氏变换的不变性,只适用于傅氏变换中旋转、平移的图像转换中,此时就需要基于特征的图像配准方法来解决[10]。

3.4基于特征的图像配准方法

基于特征的图像配准首先要对待配准图像提取图像信息的特征,然后再利用提取得到的特征完成两幅图像特征之间的匹配,并通过特征的匹配关系来建立图像间的配准映射关系。

对于基于特征的图像配准方法而言,它的一般配准步骤通常为:特征提取,变换模型,坐标变换与插值,图像配准实现等步骤。

3.4.1特征提取

对于大多数图像配准操作而言,在正式进行图像配准之前,对参考图像和带配准图像进行准确而有效的图像特征提取是十分必要的。因为该操作不仅能够提高图像匹配的准确性,还可以提高匹配速度,因此能否合理的进行图像特征提取就成为了图像匹配操作成功的一个关键。

那么我们通常所说的图像特征又表现在那些方面呢?事实上,所谓的图像特征大多是指图像中的、线、轮廓,区域或边缘等等。另一方面,根据具体特征的不同,可以将特征提取[3]。的方法分为:点特征提取和结构特征提取。

(1)点特征提取

点特征是配准中最常用到的图像特征之一。点特征表示和操作简单,同时也能反映图像的本质特征。所谓点特征提取即提取出图像中的显著点,通常我们将这些显著点称之为控制点[5]。在利用该方法进行图像配准时,首先选取待配准图像和参考图像的控制点,然后再以这些图像的控制点作为依托进行图像配准的后续操作。

可见,控制点的选取是非常重要的。一般情况下我们在选择图像控制点的时候应当考虑一下几个方面:

①控制点在图像中的分布是否均匀;

②所选择的控制点在待配准图像和参考图像中的位置是否一

致;

③控制点所处区域或其周围区域的特征是否独特;

此外,还需要注意的是特征点的数目是否合理。因为配准运算需要足够的特征点,但过多的特征点则阻碍配准的顺利进行。目前常用的控制点选取方法主要有两个,它们分别是:算法估计和用户自行选取。这两种方法我们在后文的实验中都会涉及到。

(2)结构特征提取

所谓的结构特征既是前面我们所提到的,区域,轮廓,表面等。而对结构特征的提取是在图像分析中非常重要的一个基本问题。其中,边缘是最为常用的结构特征。边缘变现了目标边界,因此对配准、分割和辨识场景中的目标都很有用。利用提取的边缘可以实现测量物体的面积及周长、识别出特定的物体、求两幅图像的对应点等操作。另一方面,边缘检测与提取的处理进而也可以作为更为复杂的图像识

别、图像理解的关键预处理来使用

事实上,对图像的边缘和区域边界的检测过程是具有一定难度的。我们都知道,由于图片在拍摄过程中所遇到的光线和摄影设备等问题,使得所要处理的目标图像具有一定的模糊性和不均匀性。此外,由于外界的不同强度及不同类型的干扰,使得所获图像产生了不同程度的噪声。而这些不可避免的噪声毫无疑问会给我们后续的边缘检测甚至是最后的图像配准操作带来不便。因此在进行图像的边缘检测之前需要首先对含有大量噪声问题的目标图像进行一定的预处理。

预处理的目的是增强图像中数据的可视化效果,在消除图像数据中的噪声的同时高图像的质量。于此同时,合理的对图像进行预处理还能够有效的增强图像的纹理效果,突出图像所要研究的主体部分。这也为图像的后续操作提供有利条件。目前,常见的预处理操作主要包括:灰度化,点处理,平滑滤波等操作。

3.4.2变换模型

所谓的变换模型是指根据参考图像和待配准图像之间所产生的的几何上的畸变,来选择可以拟合两图像之间的变化情况的最优几何模型。

常用的图像变换模型有:

图像的变换模型(●表示满足)

1刚体变换

刚性变换是两幅图像中的两点之间的距离变换后仍保持不变,这样的变换就称为刚性变换。刚性变换可以分解为3个步骤:平移、旋转和反转。

在二维空间中,点(x,y )经刚体变换到点(x ’,y ’)的变换公式:

''cos sin sin cos x y t x x t y y ????±????????=+??

??????????????

其中?为旋转角度,x y t t ??

????

为平移量。

2仿射变换

仿射变换可以分为:

(1) 对坐标进行缩放、平移、旋转后得到新坐标的值; (2) 经过对坐标轴的缩放、平移、旋转后原坐标在新坐标领域中的值。仿射变换形式为:f(x)=Hx+k

其中H 是变形矩阵,k 是平移矢量。在二维空间中,H 可以按照以下4步进行分解:平移、缩放、扭曲、旋转。 ①平移 0,00s

s H

s s

??

=≥ ???

②缩放

100,00t

t s s H H H t st ????

== ? ?????

③扭曲 1,0

10

u u t s u s stu H H H H st ????

==

? ?????

④旋转

cos sin ,02sin cos cos cos sin sin sin cos u t s H s stu H H H H s stu θ

θθθθπθθθ

θθθ

θθ-??

=≤≤

???

-??=

?

+??

变换后的矩阵为

''cos cos sin ,0sin sin cos x s stu x y s stu y θθθθπ

θ

θθ-??????

=?≤≤ ? ?

?+????

??

下图为图像经过仿射变换。

a.源图像

b.仿射后图像

图 仿射变换

(3) 投影变换

投影变换是将图像像素点的坐标变换为另一种图像像素点的坐标的过程。用笛卡尔坐标表示是平面的分式线性变换,形式如下:

'

111213313233

a a y a x a x a y a ++=

++

'

212223313233a x a y a y a x a y a ++=

++且

11

1213

21222331

32

33

0a a a a a a a a a ≠

下图为源图像经过投影变换

a.源图像

b.投影变换后图像

图 投影变换

3.4.3坐标变换与插值

在进行图像的缩放、旋转和复合变换等。源图像的像素坐标为整数,而变换后图像的坐标不一定是整数,相反也是如此。因此,在图像的几何变换中,除了要进行几何变换运算外,还要进行灰度插值除

理。常用的灰度插值方法有三种:最近邻插值法、双线性插值法和三次内插法。 1. 最近邻插值法

最近邻插值法是将(x 0,y 0)点最近的整数坐标(x,y )点的灰度值取为(x 0,y 0)点的灰度值。在(x 0,y 0)点各个相邻像素间灰度变化较小时,这是一种简单快捷的方法,但当(x 0,y 0)点相邻像素间灰度差很大时,这种灰度估值方法会产生较大的误差[11]。

2. 双线性插值法

双线性插值法是对最近邻法的改进,即用线性内插的方法,根据点00(,)P x y 的四个相邻灰度值,插值计算出灰度值00(,)f x y ,具体计算过程如下: (1) 计算α和β。

00x x y y αβ=-??=-?

(2) 先根据(,)f x y ,(1,)f x y +插值求0(,)f x y 。

[]0(,)(,)(1,)(,)f x y f x y f x y f x y α

=++-

(3)在根据0(,1)f x y +,(1,)f x y +插值求0(,1)f x y +

[]0(,1)(,1)(1,1)(,1)f x y f x y f x y f x y α

+=++++-+

(4)最后根据0(,)f x y 及0(,1)f x y +插值求00(,)f x y 。

[]00000(,)(,)(,1)(,)f x y f x y f x y f x y β

=++-

(1)(1)(,)(1)(1,)f x y f x y αβαβ=--+-+

(1)(,)(1,1)f x y f x y αββα+-+++

(,)[(1,)(,)][(,1)f x y f x y f x y f x y αβ=++-++-

(,)[(1,1)(,)(,1)(1,)]f x y f x y f x y f x y f x y βα++++-+-+

其中[][]00;x x y y ==。

此方法考虑了00(,)x y 点的直接邻点对它的影响,因此一般可以得到令人满意的插值效果[9]。但这种方法具有低通滤波性质,使高频分量受到损失,图像轮廓模糊。在某些应用里,双线性插值的斜率不连续还可能会产生一些理想的结果。

3. 三次内插值法

三次内插值法不仅考虑00(,)x y 点的直接邻点对它的影响,还要考虑到该点周围16个邻点的灰度值对它的影响。根据连续信号采样定理可得,若采样值用插值函数()sin()/()S x x x ππ=插值,当采样频率不低于信号谱最高频率的两倍时可以准确地恢复原信号,并可以准确得到采样点间的任意点的值。此方法计算量很大,但更为精确,能保证较好的图像边缘[9]。插值特性如图:

()sin()/()S x x x ππ=可以采用以下三次多项式近似。

23

23

121

()4852102

x x x S x x x x

x x ?-+>??

-+->≥??≥??

3.4.4图像配准实现

基于特征的配准方法在图像配准中最为常见,对于不同特性的图像,选择图像中容易提取,并能在一定程度上代表待配准图像相似性的特征作为配准依据。基于特征的配准方法具有最强的适应性。

医学图像配准

《数字医学图像》报告 内容:图像配准专题 专业: 2012级信息管理与信息系统班级:信管一班 小组成员: 20120701020 韩望欣 20120701008 毕卓帅 20120701005 胡庆 指导老师:彭瑜 完成日期: 2015 年 10月 25日

图像配准专题 简介:图像配准是对取自不同时间,不同传感器或不同视角的同一场景的两幅图像或者多幅图像匹配的过程。图像配准广泛用于多模态图像分析,是医学图像处理的一个重要分支,也是遥感图像处理,目标识别,图像重建,机器人视觉等领域中的关键技术之一,也是图像融合中要预处理的问题,待融合图像之间往往存在偏移、旋转、比例等空间变换关系,图像配准就是将这些图像变换到同一坐标系下,以供融合使用。 一:图像配准方法国内外进展情况 图像配准最早在美国七十年代的飞行器辅助导航系统、武器投射系统的末端制导以及寻地等应用研究中提出,并得到军方的大力支持与赞助。经过长达二十多年的研究,最终成功地用于中程导弹及战斧式巡航导弹上,使其弹着点平均圆误差半径不超过十几米,从而大大提高了导弹的命中率。八十年代后,在很多领域都有大量配准技术的应用,如遥感领域,模式识别,自动导航,医学诊断,计算机视觉等。各个领域的配准技术都是对各自具体的应用背景结合实际情况量身订制的技术。但是不同领域的配准技术之间在理论方法上又具有很大的相似性,从而使得在某领域的配准技术很容易移植到其它相关领域。目前国内外研究图像配准技术比较多的应用领域有红外图像处理、遥感图像处理、数字地图定位和医学图像处理等领域。 二、图像配准在医学领域的应用 20世纪以来随着计算机技术的不断发展,医学成像技术得到了快速的发展。尖端的新型医疗影像设备层出不穷,如计算机线摄影、数字减影等等,这些已经成为现代医学诊断必不可少的医学数字成像手段。由于这些医学数字成像设备有不同的灵敏度和分辨率,它们有各自的使用范围和局限性。多种模式图像的结合能充分利用图像自身的特点并做到信息互补。近几十年以来,图像配准在医学上的应用日益受到医学界和工程界的重视,己在世界范围广泛展开,在相关文献中己经提出了很多种医学图像配准的方法,这些研究成果广泛地运用到医学领域中。图像配准在医学中的应用领域主要有以下几方面: ?组织切片图像的处理与显微结构三维重建 ?疾病诊断及其发展和消退的过程检测 ?神经外科手术可视化、神经外科手术一计划及术前评估 ?感觉运动和认知过程的神经功能解剖学研究 ?神经解剖变异性的形态测量分析学 ?放射治疗和立体定向放射外科治疗计划 三、图像配准的定义 对于二维图像配准可定义为两幅图像在空间和灰度上的映射,如果给定尺寸的二维矩阵F 1和F2代表两幅图像F1(X,Y)和F2(X,Y)分别表示相应位置(X,Y)上的灰度值。则图像间的映射可表示为:F (X,Y)=G(F (H(X,Y))),式中H表示一个二维空间坐标变换,即(X’,Y’)=H(X,Y),且G是一维灰度变换。 四、图像配准方法的分类 1、维数 主要是根据待配准图像的空间维数及时间维数来划分的。图像仅含空间维数或者是图像的时间序列中带有空间数,其配准可根据图像的空间维数分2D/2D,2D/3D,3D/3D,4D/4D

图像配准技术方法研究

图像配准技术方法研究 摘要随着信息技术的迅猛发展,图像配准技术已经在军事、遥感、医学、计算机视觉等多个领域得到了广泛的应用。图像配准技术是图像处理的一个基本问题,它是将不同时间、传感器或视角下获取的相同场景的多幅图像进行匹配的图像处理的过程。三类图像配准的方法大致如下:基于灰度的图像配准方法。基于变换域的图像配准方法。基于特征的图像配准方法。本文将应用这三种方法对图像配准进行研究。并重点研究基于特征的图像配准方法。 关键词图像配准,特征点匹配,灰度插值,控制点的提取 Abstract The technology of image registration is being widely used in the military, remote sensing , medical, computer, visual and any other fields with the rapid development of information technology. The technology of image registration is a kind of process to match different pictures getting from different periods and different cameras but a same scene, it is a basic point to handle the pictures. There are three kinds of ways to do the image registration:According to the level of the color of gray getting from the pictures.According to transforming domains.According to the features The three kinds of ways will be used to discuss the image registration in the thesis, and the way according to the features will be discussed more in the thesis.

医学图像配准技术 综述

医学图像配准技术 A Survey of Medical Image Registration 张剑戈综述,潘家普审校 (上海第二医科大学生物医学工程教研室,上海 200025) 利用CT、MRI、SPECT及PET等成像设备能获取人体内部形态和功能的图像信息,为临床诊断和治疗提供了可靠的依据。不同成像模式具有高度的特异性,例如CT通过从多角度的方向上检测X线经过人体后的衰减量,用数学的方法重建出身体的断层图像,清楚地显示出体内脏器、骨骼的解剖结构,但不能显示功能信息。PET是一种无创性的探测生理性放射核素在机体内分布的断层显象技术,是对活机体的生物化学显象,反映了机体的功能信息,但是图像模糊,不能清楚地反映形态结构。将不同模式的图像,通过空间变换映射到同一坐标系中,使相应器官的影像在空间中的位置一致,可以同时反映形态和功能信息。而求解空间变换参数的过程就是图像配准,也是一个多参数优化过程。图像配准在病灶定位、PACS系统、放射治疗计划、指导神经手术以及检查治疗效果上有着重要的应用价值。 图像配准算法 可以从不同的角度对图像配准算法进行分类[1]:同/异模式图像配准,2D/3D图像配准,刚体/非刚体配准。本文根据算法的出发点,将配准算法分为基于图像特征(feature-based)和基于像素密度(intensity-based)两类。 基于特征的配准算法 这类算法利用从待配准图像中提取的特征,计算出空间变换参数。根据特征由人体自身结构中提取或是由外部引入,分为内部特征(internal feature)和外部特征(external feature)。

【作者简介】张剑戈(1972-),男,山东济南人,讲师,硕士 1. 外部特征 在物体表面人为地放置一些可以显像的标记物(外标记,external marker)作为基准,根据同一标记在不同图像空间中的坐标,通过矩阵运算求解出空间变换参数。外标记分为植入性和非植入性[2]:立体框架定位、在颅骨上固定螺栓和在表皮加上可显像的标记。Andre G[3]等将该方法用于机器人辅助手术,对于股骨移植,位移误差小于1.5mm,角度误差小于3°,由于计算量小,可以实现实时配准。但是标记物必须事先被固定好,不能用于回顾性配准,而且该方法只适用刚体配准。 2. 内部特征 从医学影像中可以提取出点、线和面:血管的交点、血管、胸腹之间的横膈膜等,这些特征作为内标记点(internal marker) ,利用其空间位置同样可以求解出空间变换参数。Hill DL[4]用11个形态点对脑部配准,误差<1mm,方差为1.73mm。Meyer CR[5]除了血管树的交点,还使用了左右脑之间的间隔等特征。Maurer CR[6,7]赋予点、线、面等几何特征不同的权重(weighted geometrical features, WGF),进一步改进了算法。内标记点配准是一种交互性的方法,将3D图像配准简化为点、线和面的匹配,可以进行回顾性研究,不会造成患者的不适。但是医生对特征位置的判断影响到配准精度,为了克服人为误差,需要多次重复操作,以平均值作为最终结果。 表面匹配算法也利用了内部特征[8]:进行图像分割,提取出轮廓曲线、物体表面等内部特征,使2D/3D图像配准简化为2D曲线和3D曲面的匹配,不再考虑物体内部像素。典型的应用是刚体配准的“头帽”算法[9],从头部的3D图像中分割出表面轮廓,分别作为头模型和帽模型。配准的目标函数是头表面和帽表面之间的均方距离,该距离是空间变换参数的函数。表面匹配算法是一种自动算法,在物体表面轮廓相似并且清晰的情况下,配准效果很好。其不足之处在于:准确地进行图像分割很困难;不同模式的图像,如CT/PET图像,由于器官的轮廓差异较大,难于精确地匹配。 3. 在非刚体配准中的应用 进行非刚体配准前要确定物理模型,常见有弹性模型、粘稠液体模型、生物力学模型。通过在感兴趣区域中提取参考点、2D或是3D轮廓线,使待配准图像

2D3D医学图像配准研究

分类号:密级: UDC:学号: 010768 东 南 大 学 硕 士 学 位 论 文2D-3D 医学图像配准研究 研究生姓名:梁玮 导师姓名: 鲍旭东 教授 罗立民教授 申请学位级别工学硕士工程领域名称生物医学工程 论文提交日期 2004年 月 日论文答辩日期2004年月日学位授予单位东南大学学位授予日期2004年月日答辩委员会主席评阅人 二〇〇四年六月

2D-3D REGISTRATION OF MEDICAL IMAGE A Dissertation Submitted to Southeast University For the Academic Degree of Master of Engineering BY LIANG Wei Supervised by Prof. BAO Xudong And Prof. LUO Limin Department of Biomedical Engineering Southeast University June 2004

东 南 大 学 学 位 论 文 独 创 性 声 明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得东南大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 研究生签名:日期: 东 南 大 学 学 位 论 文 使 用 授 权 声 明 东南大学、中国科学技术信息研究所、国家图书馆有权保留本人所送交学位论文的复印件和电子文档,可以采用影印、缩印或其他复制手段保存论文。本人电子文档的内容和纸质论文的内容相一致。除在保密期内的保密论文外,允许论文被查阅和借阅,可以公布(包括刊登)论文的全部或部分内容。论文的公布(包括刊登)授权东南大学研究生院办理。 研究生签名: 导师签名:

图像配准技术研究进展

第14卷第6期2007年12月 电光与控制 EU£CTRONICSOPTICS&CONTROL V01.14№.6 Dee.2007 文章编号:1671—637X(2007)06—0099—07 图像配准技术研究进展 刘松涛,杨绍清 (海军大连舰艇学院信息与通信工程系,辽宁大连116018) 摘要:图像配堆是解决图像融合、图像镶嵌和变化检测等问题的必要前提。其应用遍及军事、遥感、医学和计算机视觉等多个领域。筒要回顾了图像配准技术的发展史和研究现状.重点阐述了当前的技术热点和应用趋势,最后展望了进一步的研究方向。 关键词:图像配准;信息论;非刚性配准;虚拟结构 中图分类号:V243.6文献标识码:A Progressinimageregistrationtechniques LIUSong—taa,YANGShao—qing (Oept.ofInformation&CommtmicdionEt,g泌rit,.g,DafianNavalAcademy,Dalian116018,舀白Ⅺ) Abstract:Imageregistrationisessentialforallimageanalysistaskslikeimagefusion,imagemosaicandchangedetection.Itisusedwidelyinmilitarysystem,medicalimaging,remotesensing,computervision,etc.Thehistoryandcurrentetatusofimageregistrationtechniquesfirereviewedkeflywithemphasisonitscurrenttechnicalhotspotsandapplicationtrends.Someinterestingaspectsforfurtherstudya”pointedoutintheend. Keywords:imageregistration;informationtheory;110n—rigidregistration;virtualstructUre 0引言 图像配准是许多应用问题必须的预处理步骤,比如:时序图像的变化检测或多模图像融合,这些问题遍及军事、遥感、医学、计算机视觉等多个领域。许多领域都需要图像配准,实际应用过程可能会有所不同,但其中关键的因素是类似的。概括地说,图像配准是对取自不同时间、不同传感器或者不同视角的同一场景的两橱或多幅图像进行最佳匹配的过程,包括像素灰度匹配和空间位置对齐。 配准方法的分类可以依据不同的准则。Bro.wn…依据变换模型的复杂程度对配准方法进行分类,并归纳了配准技术的实现步骤:特征空问、相似度测量、搜索空间和策略。Maintz”1等则提出了9 收稿日期:2006—03—09修回Et期:2006—05—15 基金项目:国防预研基金资助项目(51403030604JBl40I);国家自然科学基金资助项目(60572160) 一 作者简介:荆松涛(1978一),男,河南孟津人,博士,主要研究方向为图像融合、耳标识别、成像跟踪、DSP开发 等。条分类准则,依次为:图像维数、配准特征的来源、变换模型、坐标变换域、交互性、优化策略、成像模式、配准对象、配准目标的特点等。作者参考Brown和Mainlz的分类方法,将配准技术概括为8个方面,包括:配准对象、特征提取、特征匹配、变换模型、优化策略、坐标变换与插值、系统实现及算法评估,并考虑每项内容的技术特性进行细分,然后依据某一算法的创新点进行分类。囊括所有方法的分类准则是不存在的,所提方法侧重于从总体上对配准方法进行考察,是一种相对能反映配准方法本质特征的分类方法。依据新的分类准则,作者已对图像配准技术的8个子方向进行了系统研究uJ。 1发展史和研究现状 国外从20世纪60年代就开始在图像配准领域进行研究“】,但直到1980年代才开始引起学者们的关注。到上世纪末,单模图像配准问题已基本解决,但多模图像配准由于涉及模式和领域的复杂性.仍需密切关注。国际上对图像配准技术曾做过调查”】,其结论是1990年代初技术文献明显增加。而

多模图像配准融合

多模图像配准融合

浅析多模态医学图像的配准与融合技术 来源:本站原创作者:朱俊林发布时间:2009-06-07 1 医学图像的配准技术简介 医学图像的配准技术是90年代才发展起来的医学图像处理一个重要分支, 并且日益受到了医学界和工程界的重视。医学图像的配准是指对于一幅医学图 像寻求一种或者是一系列的空间变换,使两幅图像的对应点达到空间位置和解 剖结构的一致,这种一致是指人体上的同一解剖点在两张匹配的图像上有相同 的空间位置。简单地说医学图像配准就是解决两幅图像的严格对齐问题。配准 的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的解剖点及 手术感兴趣的点都达到匹配。 医学图像的配准按图像来源分为:单模态(mono-modality)与多模态配准(multi-modality)。单模态配准是指对来自同一成像设备的不同时刻或不同角 度的图像进行配准。但在实际临床应用中,单一模态的图像往往不能提供医生 所需要的足够信息,通常需要将不同模态的图像融合在一起得到更丰富的信息 量,从而作出准确的诊断,制订出合适的治疗方案。所谓多模态配准,是将来 自不同形式的医学图像进行空间上的对准,将对应的相同解剖位置标记出来以 实现图像融合和进一步后期处理。多模态图像之间的配准使用最频繁,主要应用在诊断方面,可分为解剖—解剖的配准和解剖—功能的配准两大类,前者将显示组织形态学不同方面的两幅图像混合,后者将组织的新陈代谢与它相对于解剖 结构的空间位置联系起来。目前,主要的研究工作重点是进行CT、MRI以及PET、fMRI等图像的配准。 2 医学图像融合技术简介 医学图像的融合是指将两幅(或两幅以上)来自不同成像设备或不同时刻获 取的已配准图像,采用某种算法,把各个图像的优点或互补性有机结合起来, 获得信息量更为丰富的新图像的技术。医学诊断往往要综合许多不同信息进行, 传统的方法是,临床医生利用灯箱分别观看这些胶片,综合对比,得到结果。 如果能够把这些互补信息以某种方式综合在一起作为一个整体作为医学诊断的 依据,使得临床医生只要在一张综合图像上就能看到不同原始图像的信息,那 么就能提供全方位的信息细节。 3 医学图像配准及融合的关系及意义 医学图像的配准和融合有着非常密切的关系,特别是对于多模态图像而 言,配准和融合是密不可分的。配准是融合的前提,也是决定图像融合技术发 展的关键技术,若事先不对待融合图像进行空间上的对准,那么融合后的图像 也是毫无意义的。融合是配准的目的,通过来自不同影像设备的图像融合,可 以得到更多的信息,提高影像数据的利用率。在多模态医学图像信息融合中, 是要把相对应的组织结构融合在一起,而待融合的图像往往来自不同的成像设 备,它们的成像方位、角度和分辨率等因素都是不同的,所以这些图像中相应 组织的位置、大小等都是有差异的,必须先进行配准处理,才能实现准确地融 合。

地的总结图像配准算法

图像配准定义为:对从不同传感器、不同时相、不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程[2]。图像配准需要分析各分量图像上的几何畸变,然后采用一种几何变换将图像归化到统一的坐标系统中。在配准过程中,通常取其中的一幅图像作为配准的标准,称之为参考图像;另一幅图像作为配准图像。 图1-1 图像配准的基本流程 图1-2 图像配准方法分类

根据配准使用的特征,图像配准的方法大致可分为三类: (1)基于图像灰度的配准算法。首先从参考图像中提取目标区作为配准的模板,然后用该模板在待配准图像中滑动,通过相似性度量(如相关系数法、差的平方和法、差的绝对值法、协方差法)来寻找最佳匹配点。 (2)基于图像特征的配准算法。该算法是以图像中某些显著特征(点、线、区域)为配准基元,算法过程分为两步:特征提取和特征匹配。首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集。然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。对于非特征像素点利用插值等方法作处理推算出对应匹配关系,从而实现两幅图像之间逐像素的配准。 (3)基于对图像的理解和解释的配准算法。这种配准算法不仅能自动识别相应像点,而且还可以由计算机自动识别各种目标的性质和相互关系,具有极高的可靠性和精度。这种基于理解和解释的图像配准涉及到诸如计算机视觉、模式识别、人工智能等许多领域。不仅依赖于这些领域中理论上的突破,而且有待于高速度并行处理计算机的研制。 从自动化角度来看,可以将配准过程分为自动、半自动和手动配准。 存在问题:如何提高图像的配准速度将是大范围遥感图像自动配准问题的要点;选取何种自动配准方案以保证图像的配准精度将是大范围遥感图像自动配准问题的另一要点。 2(,)[1((, f x y g f h x y 其中,h表示二维空间坐标变换。g表示灰度或辐射变换,描述因传感器类型的不同以及成像时气候等环境的影响所带来的图像灰度的变换。配准问题的实质就是要找到最优的空域变换h和灰度变换g,使得上述的等式成立,从而找到配准变换的参数 特征空间的选择通常要考虑以下几个因素:相似性;空间分布;唯一性。 在自动图像配准中对特征的理解可以分为两类。(1)基于灰度的方法:基于灰度的方法将重点放在特征匹配上,在其过程中并没有真正提取特征。一般所说的模板匹配法就是这种方法的代表。这种方法实际上将图像的灰度分布直接作为特征而构成匹配的基础。(2)基于特征的方法:基于特征的方法需要在图像中提取显著的特征:区域(森林、湖泊、农田等)、线(区域的边界、道路等)和点(区域的角

图像识别匹配技术原理

第1章绪论 1.1研究背景及意义 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以由许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。 图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 目前主要图像配准方法有基于互信息的配准方法,基于相关性的配准方法和基于梯度的配准方法。其中基于梯度的方法基本很少单独使用,而作为一个辅助

图像配准技术的应用与研究

图像配准技术的应用与研究 【摘要】数字图像配准技术在当今科学研究的各个领域都显示出了很高的利用价值,伴随着人们对匹配效果的不断增强,图像配准技术也受到人们越来越多的关注。本文主要介绍图像配准在各个领域中的应用以及图像配准算法的研究现状。 1.图像配准技术的应用 目前,在很多领域都运用到了图像配准技术,这些领域分布在很多学科,包括机器视觉、医疗图像鉴定[1]等,另外还有现代汽车工业上运用到的器件完整度检测,当前受到热捧的景物匹配技术也都利用了图像配准技术。图像配准早已是一个非常热点同时也非常前沿的技术,现在图像多源信息融合作为一门强势的基础学科,已被广泛运用于军工、民用、商业等领域[2][3]。 在计算机机器视觉中,图像配准技术也是其他延伸技术的基础,包括指纹识别、运动目标识别、人脸识别等当今非常热门的研究领域。图像配准技术既是基础,也是难点。当前有关视频监控、目标跟踪方面的研究已经很深入,且取得了很多辉煌的成就,但归根到底,所有的视频信息也都是由一帧一帧的图像所构成,因此要解决这类识别问题,同样依赖于图像配准技术的发展。 2.图像配准基本原理 在数字图像配准技术中,灰度相关处理是一种非常重要的算法。这类算法最大的特点就是算法的实现非常容易,但这类算法又有限制其发展的弱点,那就是该类算法的时间复杂度都非常高,计算机在进行处理的时候消耗的时间过长,实时性较差,使得这类算法在运用到实际中的时候,难以得到很好的效果。原因在于这类配准方法在对相似度进行计算时,基本上要对待配准区域的每一个像素点进行计算,这样的大量运算会直接增加配准搜索过程的时间,同时其受到图像尺度变化的影响非常大。还有一种方法是使用图像中的所有像素点的灰度信息来进行配准,再使用一种搜寻的方式把那些属于某一相似度的极值点找到,算法同样利用的是对整幅图像中的所有像素点。因其计算量太大,所以实际使用价值也不高。 图像进行特征提取的时候,使用的方法要根据实际的情况来做出不同的选择,因为不同图像的特征点有其所特有的性质。这些方法广泛的涉及到图形图像形态学,而且无法把这些模型有效的归纳到一起。针对图像的特征点提取,很多方法都运用了图像中那些对图像发生平移、尺度等变换时保持不变性的特征点,甚至某些点还能是在图像发生仿射变换时也保持不变性。通常数字图像中的特征做了图像全局特征和图像局部特征的划分。对于图像的全局特征,由于要考虑图像中所有像素点对当前点的贡献和影响,所以对图像信息的描述是非常复杂的,

基于视频序列的图像配准算法研究与应用

工学硕士学位论文 基于视频序列的图像配准算法研究与应用 王帅 哈尔滨工业大学 2007年7月

国内图书分类号:TP391.4 国际图书分类号:681.39 工学硕士学位论文 基于视频序列的图像配准算法研究与应用 硕士研究生:王帅 导师:承恒达 教授 申请学位:工学硕士 学科、专业:计算机科学与技术 所在单位:计算机科学与技术学院 答辩日期:2007年7月 授予学位单位:哈尔滨工业大学

Classified Index: TP391.4 U.D.C: 681.39 Dissertation for the Master Degree in Engineering RESEARCH AND APPLICATION OF IMAGE REGISTRATION BASED ON VIDEO SEQUENCE Candidate:Wang Shuai Supervisor:Prof. Cheng Hengda Academic Degree Applied for:Master of Engineering Specialty:Computer Science and Technology Affiliation:School of Computer Science and Technology Date of Defence:July, 2007 Degree-Conferring-Institution:Harbin Institute of Technology

哈尔滨工业大学工学硕士学位论文 摘要 随着数字技术的不断发展,视频图像的分析与处理越来越受到人们的关注。数字化图像序列可以通过摄像机等光学设备获得,是真实世界在不同时间向成像平面的一系列投影。图像帧之间具有较大的相关性和信息冗余,找到并描述图像序列间的内在联系成为研究的关键所在。图像配准技术可以有效地解决这类问题。 图像配准问题是图像处理里的一个基本问题,是将不同时间、不同传感器、不同视角及不同拍摄条件下获取的图像对齐或匹配,消除存在的几何畸变。图像配准在计算机视觉、模式识别、医学图像处理和遥感信息处理方面有着广泛的应用。 本文提出了基于自适应聚类的特征匹配方法,满足大量图像配准的需求,提高匹配的速度,该方法基于正确匹配点对间形成矢量的一致性,对匹配点对进行自适应聚类,实验证明该方法在保证正确匹配不丢失的同时,可有效剔除绝大多数错误匹配,为进一步进行RANSAC匹配提供方便,且有效地提高了整个匹配过程的速度。 本文提出一种简单有效的图像合成方法。该方法针对摄像机固定位置,水平旋转拍摄的视频序列的特点,选取图像序列中部分帧,通过H矩阵确定重叠区域,再利用线性插值进行图像融合。实验证明在转角小于180 时,合成效果较好。 本文成功运用图像配准技术完成运动员滑行数据的测量,利用图像配准技术估计图像间摄像机运动,进而消除摄像机运动的影响,得到运动员的真实运动数据。根据这一原理,首先对冰场进行合理化建模,并确定相应的视频拍摄方案,设计了运动员冰场定位算法,利用帧间的H矩阵估计摄像机旋转角度,进而估计运动员的旋转角度完成滑行数据的测量。 关键词图像配准;特征点匹配;自适应聚类 - -I

图像配准的方法

图像配准的方法 迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准 研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围 的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位 系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其 所采用的算法称之为图像相关等等。 图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择 多图像中的一张图像作为参考图像,将其它的相关图像与之配准,其坐标系统 是任意的。绝对配准是指先定义一个控制网格,所有的图像相对于这个网格来 进行配准,也就是分别完成各分量图像的几何校正来实现坐标系的统一。本文 主要研究大幅面多图像的相对配准,因此如何确定多图像之间的配准函数映射 关系是图像配准的关键。通常通过一个适当的多项式来拟合两图像之间的平移、旋转和仿射变换,由此将图像配准函数映射关系转化为如何确定多项式的系数,最终转化为如何确定配准控制点(RCP)。目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配准方法分为三个主要类别:基于灰度信 息法、变换域法和基于特征法[25],其中基于特征法又可以根据所用的特征属 性的不同而细分为若干类别。以下将根据这一分类原则来讨论目前已经报道的 各种图像配准方法和原理。 1基于灰度信息的图像配准方法 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而 是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是 实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变 换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多 基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 (1)互相关法

图像配准算法综述

杭州电子科技大学 毕业设计(论文)文献综述 毕业设计题目SIFT特征研究及应用 文献综述题目图像配准算法综述学院生命信息及仪器工程学院 专业电子信息技术及仪器 姓名 班级 学号 指导教师

图像配准算法综述 一.前言 图像配准是指找出场景中同一物体表面的结构点在不同图像上的投影像素点之间的对应关系,是图像信息处理领域中一项非常重要的技术,同时也是其它一些图像分析技术,如立体视觉、运动分析、数据融合等的基础。 目前图像配准广泛应用于虚拟现实、视频压缩、图像复原、图像数据库检索等技术中。图像配准的研究是计算机视觉中最困难也是最重要的任务之一。不同的图像配准方法总是对应于某种适用的图像变换模型,其核心问题是提高配准的速度、精度和算法的稳健度。 随着科学技术的发展现在约40%的机器视觉应用中都会使用图像匹配技术,所涉及的领域有:工业检测,导弹的地形匹配,光学和雷达的图像跟踪,交通管理,工业流水线的自动监控、工业仪表的自动监控,医疗诊断,资源分析,气象预报,文字识别以及图像检索等。 图像匹配研究按其处理步骤可以分为样本采集、样本预处理、样本分割、样本的特征提取等,并且与计算机视觉、多维信号处理和数值计算方法等紧密结合。它也是其它一些图像分析技术,如立休视觉、运动分析、数据融合等的基础。正因为其应用的广泛性,新的应用和新的要求逐步产生,使得匹配算法的研究逐步走向深入,出现了快速、稳定、鲁棒性好的匹配算法。因此,研究图像的匹配算法对于如何提高实际工程中的图像处理质量和识别精度具有非常重要的意义。 本文主要分析图像匹配常用方法的优点和不足之处,讨论了图像匹配中需要进一步研究和解决的问题。 二.图像配准算法的研究现状 图像配准是立体视觉、运动分析、数掘融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域有重要的应用价值。国内外学者针对不同的图像配准应用问题进行了大量的研究工作,早在1992年英国剑桥大学的Lisa Gottesfeld Brown在文献[1]习中就总结了图像配准的主要理论及图像配准在各个领域的应用。当时他讨论的图像配准技术主要还是著眼于医学图像处理、遥感图像处理等传统应用领域。图像配准是图像镶嵌技术的核心问题。 微软研究院的Richard Szeliski在1996年SIGGRAPH上提出了基于运动模型的全景图拼接算法[7]。Szeliski采用了非线性优化的方法来最小化像素两幅图像的亮度差以确定变换参数。该方法使用了全部像素进行优化处理,所以配准精度较高,但是计算速度较慢,且稳健性不佳。 国内的赵向阳。杜立民在2004年提出了一种基于特征点匹配的图像自动拼接算法[2],其中使用了Harris算法[3]提取角点并进行匹配。赵的算法采用了鲁棒变换估计技术,在一定程度上提高配准算法的稳健性,但是计算速度依然较慢,且无法配准重

多模态医学图像非刚性配准算法研究综述

多模态医学图像非刚性配准算法研究综述 夏仁波 中国科学院沈阳自动化研究所 医学影像技术的高度发展给临床医学提供了X射线、超声、计算机断层成像(CT)、数字减影血管造影(DSA)、单光子发射断层成像(SPECT)、磁共振成像(MRI)、正电子发射断层成像(PET)等多种模态的影像信息。每种模态都有其优缺点,例如CT可以清楚地显示出体内脏器和骨骼的解剖结构,但不能显示功能信息。PET 是一种无创性的探测生理性放射核素在机体内分布的断层显像技术,是对活机体的生物化学显像,反映了机体的功能信息,但是图像模糊,不能清楚地反映形态结构。由于成像原理不同造成的图像信息局限性,使得单独使用某一类图像的效果并不理想,而多种图像的利用又必须借助于医生的空间想象力和推测去综合判定他们所要的信息,其准确性受到主观影响,更重要的是一些信息可能被忽视。解决这个问题的办法是通过空间变换将两幅图像映射到同一坐标系中,使相应器官的影像在空间中的位置一致,可以同时反映形态和功能信息。而求解空间变换参数的过程就是图像配准。在配准过程中,其中的一幅图像保持固定,称为参考图像(Reference Image),与参考图像进行匹配的图像称之为浮动图像(Floating Image)。医学图像配准是信息科学、计算机图像技术和当代医学等多学科交叉的一个研究领域,在病灶定位、PACS 系统、放射治疗计划、指导神经手术以及检查治疗效果上有着十分重要的应用价值。 按空间变换关系,图像配准可被归为两个大类: 刚性配准(Rigid Registration)和非刚性配准(Non-rigid Registration) 变换,非刚性配准包括仿射、射影和弹性变换等。刚性配准通常假设图像获取过程中目标组织的解剖和病理结构不发生变形或者扭曲,例如,由于受头颅的约束,同一病人的大脑图像被认为只存在刚性变换。“刚性”假设简化了配准的复杂度,经过几十年的发展,刚性配准算法已经比较成熟,但目前的算法对初值非常敏感。另一方面,虽然在一般情况下刚性配准足以描述两幅图像之间的空间变换,然而,许多时候并不能满足临床的需要,因为很多形变的性质是非刚体、非线性的。比如MRI 图像常常伴有组织磁化系数差异、非水分子的化学位移以及血液流动等因素导致的几何畸变以及由于磁场不均匀、磁场梯度非线性及涡流等导致的探测畸变。因此在放疗计划制定中,CT 与MRI 图像配准时,不能单纯地使用刚体配准。尤其对一些特殊部位,比如鼻咽部,由于软组织和空气的磁化系数差异大约为105,会引起10ppm 的磁场变化,从而导致大于5mm 的几何畸变。此时,为了得到满意的结果,必须使用非刚性配准。相对刚性配准,非刚性配准还是一个方兴未艾的课题。采用现有的非刚性算法配准两幅2D的医学图像,一般需要几十分钟,处理 3D图像时,更是多达几个小时。计算量过大已成为非刚性配准算法在临床应用中的最大障碍之一。此外,在处理噪声图像时,特别是处理局部

基于Demons算法的图像配准研究 5.10_修改

基于Demons算法的图像配准研究 摘要 图像配准实质上是评价两幅图或多幅图像的相似性以确定同名点的过程,其作为图像处理中的一个基本问题,同时也是众多图像分析和处理任务的关键步骤,被广泛应用于医学、军事、遥感、计算机视觉等众多领域,严格地说, 图像配准问题就是将位于不同坐标系下同一场景的二幅或多幅图像,寻找一种特定的最优几何变换,将两幅或多幅图像变换到同一坐标系的过程。图像配准算法则是设法建立两幅或多幅图像之间的对应关系,确定相应几何变换参数,对两幅图像中的一幅进行几何变换的方法,是图像配准最关键的技术,直接决定图像配准的准确性。本文在学习了解了现有的图像配准算法后,主要针对重要的图像配准算法—Demons算法,通过研究原始Demons算法、Active Demons算法和Symmetric Demons算法的基本原理和各自在图像配准中的应用,对三种算法的性能进行对比分析,确定三种算法的优缺点,进而找到影响图像配准结果的根本原因。 关键词:图像配准原始的Demons算法Active Demons算法Symmetric Demons算法 Abstract Image registration is to determine corresponding point evaluation two pictures or images virtually, as a basic problem of image processing, meanwhile, it is also the key steps of many image analysis and processing tasks. It is widely used in medical, military, remote sensing, computer machine vision fields. Strictly speaking, the problem of image registration is finding a certain optimal geometric transformation to make two or more images in different coordinate systems transform into the same coordinate system. Image registration algorithm is trying to establish the correspondence between two or more images, determining the corresponding geometric parameters. It is the key of image registration It also directly determines the accuracy of image registration. On the base of understanding of the existing image registration algorithms .The

浅谈医学图像配准研究

浅谈医学图像配准研究 【摘要】随着现代医学影像技术的快速发展,越来越多的影像设备应用于临床,而不同设备采集的图像参数往往是不一样的,因此,要想将病变部位的各种不同情况在一张图像上体现出来,研究图像配准技术就是相当必要的,它能够将两幅图像中的信息综合起来,非常具有现实意义。本文从医学图像配准的概念、发展现状、分类及应用等方面进行了阐述。 【关键词】医学图像配准;多模态;医学影像技术 1.医学图像配准概述 医学图像配准是指将来自不同形式的探测器(如MRI,CT,PET,SPECT 等)的医学图像,利用计算机技术实现对于一幅医学图像寻求一种或者一系列的空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。通俗地讲,医学图像配准就是对参考图像进行一系列的空间变换,使得参考图像和浮动图像中的对应点在空间位置或者解剖位置上达到一致[1]。主要包含4个模块:几何变换、插值算法、相似性测度和寻优算法。医学图像配准是医学图像处理的一个重要研究领域,被广泛应用于手术导航、病变跟踪以及治疗后期评估等临床诊断治疗中。 2.医学图像配准研究的现实意义 随着新型传感器的不断涌现,人们获取图像的能力迅速提高,不同物理特性的传感器所产生的图像也不断增多。由于成像原理以及成像设备的不同,造成成像模式的不同,按照不同成像模式提供信息的不同,医学图像可以分为解剖结构图像和功能图像两大类。单一模态的图像往往很难提供足够的病理信息,让医生作出病理诊断,常常需要将同一病人的多种成像模式的图片综合起来进行分析,以便获得病人更全面的信息,如X 射线断层扫描(CT,Computed Tomography)对骨骼信息的揭示是其他成像手段所不能比拟的,而要查看软组织结构信息,则会选择核磁共振成像(MRI,Magnatic Resonance Imaging);利用PET、SPECT 获得功能信息,再综合CT、MRI的解剖信息分析。这种把各种成像模式的图像信息融合成一种新的影像模式的技术称为图像融合技术,经过融合后的图像克服了各种单一模式图像信息存在的不足。而在图像融合之前首先要经过图像的配准,配准结果的好坏直接影响图像融合的质量。因此,医生要想全面的了解病变组织的情况,必须准确的对多幅图像进行配准才能融合,进而制定出更加合理的治疗方案。因此,以图像配准技术为基础将多种模态图像信息融合起来,充分利用不同模态图像的优越性,将人体解剖结构信息以及功能代谢信息在同一副图像中表达出来,更有利于医生做出准确、可靠的诊断。 3.医学图像配准的发展现状 图像融合技术诞生于上世纪80年代,是指对多幅源图像的信息进行提取。

相关文档
最新文档