各种激励信号的设置及瞬态分析 2

各种激励信号的设置及瞬态分析 2
各种激励信号的设置及瞬态分析 2

实验三

各种激励信号的设置及瞬态分析

学院:物理与电子学院

班级:电信1105班

姓名:刘岩

学号:1404110729

一、实验目的

1、了解各种激励信号中参数的意义,掌握其设置方法。

2、掌握对电路进行瞬态分析的设置方法,能够对所给出的实际电路进行规

定的瞬态分析,得到电路的瞬态响应曲线。

二、实验内容

1、正确设置正弦信号、脉冲信号、周期性分段线性信号,参数自行确定,要求屏幕上正好显示4个完整周期的信号曲线。

5.0V

2.5V

0V

0s 2.0s 4.0s 6.0s8.0s V(C1:1)

Time

10V

5V

0V

0s5s10s15s20s V(C1:1)

Time

2、对下图单管放大电路进行瞬态分析,信号源采用正弦波,频率从1kHz

到20kHz任意选定。根据信号频率,合理选择分析结束时间,观测输出端的波

形,屏幕上正好显示5个完整周期的波形。

2.0V

0V

-2.0V

0s100us200us300us400us500us V(C2:2)

Time

10mV

0V

-10mV

0s100us200us300us400us V(C1:1)

Time

3、在瞬态分析的同时对输出节点(out)的电压波形进行傅里叶分析,分析计算到6次谐波。

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(V_V1)

DC COMPONENT = -1.719473E-08

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE RMALIZED

NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+03 5.000E-03 1.000E+00 -3.067E-04 0.000E+00

2 2.000E+0

3 2.640E-08 5.281E-06 -1.587E+02 -1.587E+02

3 3.000E+03 1.869E-08 3.739E-06 1.675E+02 1.675E+02

4 4.000E+03 1.066E-08 2.133E-06 1.355E+02 1.355E+02

5 5.000E+03 4.034E-09 8.069E-07 1.563E+02 1.563E+02

6 6.000E+03 9.503E-09 1.901E-06 -1.748E+02 -1.747E+02

TOTAL HARMONIC DISTORTION = 7.118649E-04 PERCENT

JOB CONCLUDED

TOTAL JOB TIME .77

三、实验心得体会

通过本次实验,使我更充分的理解与观察了正弦信号、脉冲信号、周期性分段线性等各种信号下的波形,了解了他们的发生原理,加深了我们对这些工作信号更加直观的了解,并且对以后的学习打下了扎实的基础。

本次试验使我对信号的处理有了更深厚的兴趣。只需改变一个元器件,就能产生无穷多大信号变化,非常奇妙。

信号与系统大作业

中北大学 信号与系统综合性报告 学院:仪器与电子学院 专业:电子科学与技术 学号姓名:王鹏 学号姓名:张艺超 学号姓名:郭靖锋 学号姓名:蔡宪庆 学号姓名: 指导教师: 张晓明 2019年5 月13 日

1 设计题目时频域语音信号的分析与处理 2 设计目标对语音信号进行时频域分析和处理的基本方法 3 设计要求 1)分别录制一段男生和女生语音文件及相应有明显高频或低频干扰的语音文件*.wav,并将文件导入Matlab中; 2)分别分析各段语音的频谱,绘制其频谱图,分析语音信号和干扰信号的频段; 3)设计相应的滤波器,剔除含干扰的语音段的干扰信号,并分析滤波信号的频谱; 4)生成滤波后的语音文件,分析听觉效果。 4 理论分析 声音作为一种波,频率在20 Hz~20 kHz之间的声音是可以被人耳识别的 通过查阅资料显示,实际人声频率范围 男:低音82~392Hz,基准音区64~523Hz 男中音123~493Hz,男高音164~698Hz 女:低音82~392Hz,基准音区160~1200Hz 女低音123~493Hz,女高音220~1.1KHz 声音作为波的一种,频率和振幅就成了描述波的重要属性,频率的大小与我们通常所说的音高对应,而振幅影响声音的大小。声音可以被分解为不同频率不同强度正弦波的叠加。这种变换(或分解)的过程,称为傅立叶变换(Fourier Transform)。傅里叶变换之后可以得到男女声的频谱,从而分析男女声的特点,观察男女声频率集中的区域,在声音中加入高频噪声,分析高频噪声频率的分布,从而设计巴特沃斯滤波器进行滤波。 5 实验内容及步骤 5.1 获取音频文件 5.1.1 通过手机录音可直接获取wav音频文件,对于噪声的添加,我们选择单独录制高频 件,读取音频数据,在时域领域上相加,便获取到含有高频噪声的音频 5.2 音频的时域处理 5.2.1 wav属于无损音乐格式的一种,其文件包含采样频率,左右声道数据,在处理时, 由于我们使用的是matlab2012a,且录制时只有一个声道,可使用函数wavread()读取到一个一维数组,使用plot函数即可获取其音频时域图像 5.3 音频的频域处理 5.3.1 对于音频数组,我们采用fft函数进行傅里叶变换,获取到的是对称的复数数组,数组的前一半即为其频域,同样使用plot将其画出。 5.3.2 观察频域图,分析男女声特点。 5.4 噪声的去除 5.4.1 分析高频噪声频谱,找到合适的截止频率,设计巴特沃斯滤波器对高频噪声进行过滤。 5.4.2 将去除噪声的数组转换成音频文件

西电随机信号分析大作业

随机信号分析大作业 学院:电子工程学院 班级:021151 学号:02115037 姓名:隋伟哲

第一题:设有随机信号X(t)=5cos(t+a),其中相位a是在区间(0,2π)上均匀分布的随机变量,使用Matlab编程产生其三个样本函数。 解: 源程序如下: clc;clear; C=2*pi*rand(1,3);%在[0,2π]产生均匀分布的相位角 t=1:.1:80; y1=5*cos(t+C(1)); %将产生的随机相位角逐一代入随机过程中 y2=5*cos(t+C(2)); %将产生的随机相位角逐一代入随机过程中 y3=5*cos(t+C(3)); %将产生的随机相位角逐一代入随机过程中 plot(t,y1,'r-'); hold on; plot(t,y2,'g--'); hold on; plot(t,y3,'k-'); xlabel('t');ylabel('X(t)'); grid on;axis([0 30 -8 8]); title('随机相位的三条样本曲线'); 产生的三条样本曲线:

第二题:利用Matlab程序设计一正弦型信号加高斯白噪声的复合信号。(1)分析复合信号的功率谱密度、幅度分布特性; (2)分析复合信号通过RC积分电路后的功率谱密度和相应的幅度分布特性; (3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。 解:设定正选信号的频率为10HZ,抽样频率为100HZ x=sin(2*pi*fc*t)

(1)正弦函数加上高斯白噪声: y=awgn(x,10) y 的幅度分布特性可以通过傅里叶变换得到: Y(jw)=fft(y) y 的功率谱密度: G(w)=Y(jw).*conj(Y(jw)/length(Y(jw))) 随机序列自相关函数的无偏估计公式为: 1 01()()()N m xx n R m x n x n m N m --==+-∑ 01m N ≤≤- (2)复合信号 y 通过RC 积分电路后得到信号y2 通过卷积计算可以得到y2 即:y2= conv2(y,b*pi^-b*t) y2的幅度分布特性可以通过傅里叶变换得到: Y2(jw)=fft(y2) y2的功率谱密度: G2(w)=Y2(jw).*conj(Y2(jw)/length(Y2(jw))) (3)复合信号 y 通过理想滤波器电路后得到信号y3 通过卷积计算可以得到y3 即:y3=conv2(y,sin(10*t)/(pi*t)) y3的幅度分布特性可以通过傅里叶变换得到: Y3(jw)=fft(y3) y3的功率谱密度: G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))

实验二连续时间信号的频域分析

实验二 连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab 编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞ =++=1 000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞=++=1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、 余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为:

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

随机信号分析大作业

随机信号分析实验报告 信息25班 2120502123 赵梦然

作业题三: 利用Matlab 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),并通过一脉冲响应为 (0.8)(0)0 n n h n else =≥??? 的线性滤波器。 (1) 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函 数是否与理论相符。 (2) 绘出输入输出信号的均值、方差、自相关函数及功率谱密度的图形,讨论输出信号服从 何种分布。 (3) 试产生在[-1,+1]区间均匀分布的白噪声序列,并将其替换高斯白噪声通过上述系统。 画出此时的输出图形,并观察讨论输出信号服从何种分布。 作业要求 (1) 用MATLAB 编写程序。最终报告中附代码及实验结果截图。 (2) 实验报告中必须有对实验结果的分析讨论。 提示: (1) 可直接使用matlab 中已有函数产生高斯白噪声随机序列。可使用hist 函数画出序列的 直方图,并与标准高斯分布的概率密度函数做对比。 (2) 为便于卷积操作,当N 很大时,可近似认为h(N)=0。卷积使用matlab 自带的conv 函 数。 (3) 分析均值、方差等时,均可使用matlab 现有函数。功率谱密度和自相关函数可通过傅 里叶变换相互获得。傅里叶变换使用matlab 自带的fft 函数。 (4) 作图使用plot 函数。

一、作业分析: 本题主要考察的是加性高斯白噪声相关问题,因此构造一个高斯白噪声十分重要,故在本题中使用randn函数随机生成一个个符合高斯分布的数据,并由此构成高斯白噪声;而且由于白噪声是无法完全表示的,故此根据噪声长度远大于信号长度时可视为高斯白噪声,构造了一个长度为2000的高斯白噪声来进行试验。 二、作业解答: (1)matlab程序为: x-1000:1:1000; k=1*randn(1,length(x));% 生成零均值单位方差的高斯白噪声。 [f,xi]=ksdensity(x);%利用ksdensity函数估计样本的概率密度。 subplot(1,2,1); plot(x,k); subplot(1,2,2); plot(xi,f); 实验结果为:

哈工大测试大作业——信号的分析与系统特性——锯齿波

1 题目: 写出下列信号中的一种信号的数学表达通式,求取其信号的幅频谱图(单边谱和双边谱)和相频谱图,若将此信号输入给特性为传递函数为)(s H 的系统,试讨论信号参数的取值,使得输出信号的失真小。 (选其中一个信号) 000 2=tan ,=45,=1w 2K T s T π ααπ= =假设锯齿波的斜取周期,则圆周率,A=1 2 幅频谱和相频谱 00()(+nT )(

所以0001111 (t)=(sin(w t)+sin(2w t)+sin(3w t)+223 w π-…) 转换为复指数展开式的傅里叶级数: 0000000-20 2 1-0 --1 00-02222 0001= (t)e =e 11 =e e |11 = e (2) T jnw t T n jnw t jnw t jnw t jnw t c w dt T t dt t jnw jnw jnw n w n w w π-??-+? ???+-=? ? 其中 当n=0时,01 = =22 A c ,0=0? ; =1,2,3,n ±±±当… 时, 111 222n n c A n π=== , 1,2,32 =1,2,32 n n n π ?π?=??? ?-=---?? 等 等 用Matlab 做出其双边频谱 图 1锯齿波双边幅频谱 A = 1 T0 = 1

对语音信号进行分析及处理资料

一、设计目的 1.进一步巩固数字信号处理的基本概念、理论、分析方法和实现方法;使自身对信号的采集、处理、传输、显示和存储等有一个系统的掌握和理解; 2.增强应用Matlab语言编写数字信号处理的应用程序及分析、解决实际问题的能力; 3.培养自我学习的能力和对相关课程的兴趣; 二、设计过程 1、语音信号的采集 采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。 采样位数可以理解为声卡处理声音的解析度。这个数值越大,解析度就越高,录制和回放的声音就越真实 采样定理又称奈奎斯特定理,在进行模拟/数字信号的转换过程中,当采样频率fs不小于信号中最高频率fm的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍。 利用Windows下的录音机,录制了一段发出的声音,内容是“数字信号”,时间在3 s内。接着在D盘保存为WAV格式,然后在Matlab软件平台下.利用函数wavread对语音信号进行采样,并记录下了采样频率和采样点数,在这里我们还通过函数sound引入听到采样后自己所录的一段声音。 [x1,fs,bits]=wavread('E:\数字信号.wav'); %读取语音信号的数据,赋给变量x1,返回频率fs 44100Hz,比特率为16 。 2 、语音信号的频谱分析 (1)首先画出语音信号的时域波形; 程序段: x=x1(60001:1:120000); %截取原始信号60000个采样点

plot(x) %做截取原始信号的时域图形 title('原始语音采样后时域信号'); xlabel('时间轴 n'); ylabel('幅值 A'); (2)然后用函数fft 对语音号进行快速傅里叶变换,得到信号的频谱特性; y1=fft(x,6000); %对信号做N=6000点FFT 变换 figure(2) subplot(2,1,1),plot(k,abs(y1)); title('|X(k)|'); ylabel('幅度谱'); subplot(2,1,2),plot(k,angle(y1)); title('arg|X(k)|'); ylabel('相位谱'); (3)产生高斯白噪声,并且对噪声进行一定的衰减,然后把噪声加到信号中,再次对信号进行频谱特性分析,从而加深对频谱特性的理解; d=randn(1,60000); %产生高斯白噪声 d=d/100; %对噪声进行衰减 x2=x+d; %加入高斯白噪声 3、设计数字滤波器 (1)IIR 低通滤波器性能指标通带截止频Hz f c 1000=,阻带截止频率 Hz f st 1200=,通带最大衰减dB 11=δ,阻带最小衰减dB 1002=δ。 (2)FIR 低通滤波器性能指标通带截止频率Hz f c 1000=,阻带截止频率 Hz f st 1200=, 通带衰减1δ≤1dB ,阻带衰减 2δ≥ 100dB 。 (3)IIR 高通滤波器的设计指标,Hz f z 1000=,Hz f p 2000=,阻带最小衰减dB A s 30=,通带最大衰减dB A P 1=。 (4)(4)FIR 高通滤波器的设计指标,Hz f z 1000=,Hz f p 2000=,阻带最小衰减dB A s 50=,通带最大衰减dB A P 1=。 (5)用自己设计的各滤波器分别对采集的信号进行滤波,在Matlab 中,FIR 滤波器利用函数fftfilt 对信号进行滤波,IIR 滤波器利用函数filter 对信号进行滤波。比较滤波前后语音信号的波形及频谱,在一个窗口同时画出滤波前后

北航测试技术大作业—压气机失速信号分析

压气机失速信号分析 ZY1704301曹濛 在本次信号分析的大作业中,给定有近设计点、近失速点以及失速状态三个工况以及对应工况状态下不同位置的测量点测得的信号。但是由于没有发动机转速和转子叶片数量等信息,这需要我们通过对信号进行分析后得到。选用OriginPro 2017C作为分析软件进行信号分析。分析方法采用FFT和滤波等。 一、近设计点信号分析 可以看出信号整体还是具有较为明显的周期性的,根据傅里叶变换的原理,任何一个周期信号都可以分解为无穷项谐波之和,即

∑∑∞ =∞=++=++=11000)2sin()2sin()(n n n n n n t f c c t T n c c t f φπφπ 所以对信号进行快速傅里叶变换。 高频段的幅值过低,我们主要考虑中低频率的部分。

三个位置信号的线性部分分别为2.54507、2.85216和3.01312。如果假定测点的气压和电压信号成线性相关,那么可以得到,这级叶片的压比约为1.184。 可以看出,无论是前缘,50%弦长或是尾缘部分,低频率部分信号都有较大波动,并且以10HZ为基底,在10HZ的各个倍数的频率下都有明显的静压提高。在170HZ以及170HZ的倍数频率上有静压的明显提高。

选取50%弦长为代表进行进一步分析,滤掉电压信号幅值在0.005以下的部分,得到相应的数据。 可以明显地看出,10HZ及其倍率频率以及170HZ及其倍率频率上有明显静压增,10HZ及其倍率上的静压增大约是0.01数量级, 170HZ更是达到了0.0287。通过对信号做低通滤波,我们可以看出小于2HZ的低频信号在时域上波动较大,且振幅相较10HZ和170HZ来说较小,一般远小于0.01,如此低频率的信号应当与转子的旋转无关,可能是外界干扰引起的。

南邮现代信号处理最后大作业4道题目(含答案)

南邮研究生“现代信号处理”期末课程大作业 (四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

信号分析处理大作业报告+程序

1.设计方案如下 ①利用MATLAB中的wavread命令来读入语音信号,将它赋值给某一向量。再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。对于波形图与频谱图(包括滤波前后的对比图)都可以用MATLAB画出。 ②由于音频信号是连续且长度未知,故可以采用N阶低通滤波器。滤掉低频部分的噪音,剩下的就是原信号了。 ③将去噪后的信号写成wav格式的文件可以使用wavwrite函数。 2. 步骤 ①录制一段歌曲,采用Matlab工具对此音频信号用FFT作谱分析。 ②录制一段音频信号并命名为信xinhao1.wav存放在文件夹中。 ③使用wavread函数读出此信号。 ④用函数FFT进行傅里叶变换,得到波形图,幅值图,频谱图。 ⑤加入一个随机高斯噪声,将原始信号与噪声叠加产生加噪之后的声音文件,得到xinhao2.wav文件。 ⑥通过N阶低通滤波器对噪声语音滤波,在Matlab中,FIR 滤波器利用函数filter对信号进行滤波,得到xinhao3.wav文件。

首先通过MATLAB工具编程获取音频文件的原始信号波形,原信号幅值和原始信号频谱图如下: 然后通过加一个高斯噪声对其分析可得加噪声后信号波形,加噪声后幅值和加噪声后信号频谱图如下: 最后再通过N阶低通滤波器对噪声信号滤波,在Matlab中,FIR 滤波器利用函数filter

对信号进行滤波,从而得到滤波后信号波形,滤波后幅值和滤波后信号频谱图: 程序 [x]=wavread('C:\Users\h\Desktop\xinhao1.wav'); X=fft(x,2048); figure(1) fs=abs(X); plot(fs); xlabel('HZ'); ylabel('|Y(d)|'); subplot(2,2,1); plot(x); xlabel('HZ'); ylabel('|Y(d)|'); title('原始信号波形'); subplot(2,2,2); plot(X); xlabel('HZ'); ylabel('|Y(d)|'); title('原始信号幅值'); subplot(2,2,3);

连续时间信号的频域分析(信号与系统课设).

福建农林大学计算机与信息学院 信息工程类 课程设计报告 课程名称:信号与系统 课程设计题目:连续时间信号的频域分析 姓名: 系:电子信息工程 专业:电子信息工程 年级:2008 学号: 指导教师: 职称: 2011 年 1 月10 日

福建农林大学计算机与信息学院信息工程类 课程设计结果评定

目录 1课程设计的目的 (1) 2课程设计的要求 (1) 3课程设计报告内容.....................................................................1-13 3.1连续信号的设计..................................................................1-11 3.2验证傅里叶变换的调制定理 (11) 3.3周期信号及其频谱 (12) 4总结 (13) 参考文献 (14)

连续时间信号的频域分析 1.课程设计的目的 (1)熟悉MATLAB语言的编程方法及MATLAB指令; (2)掌握连续时间信号的基本概念; (3)掌握门函数、指数信号和抽样信号的表达式和波形; (4)掌握连续时间信号的傅里叶变换及其性质; (5)掌握连续时间信号频谱的概念以及幅度谱、相位谱的表示; (6)掌握利用MATLAB进行信号的傅里叶变换以及时域波形和频谱的表示;(7)通过连续时间信号的频域分析,更深刻地理解了连续时间信号的时域和频域间的关系,加深了对连续时间信号的理解。 2.课程设计的要求 (1)自行设计以下连续信号:门函数、指数信号和抽样信号。要求:(a)画出以上信号的时域波形图; (b)实现以上信号的傅里叶变换,画出以上信号的幅度谱及相位谱,并对相关结果予以理论分析; (c)对其中一个信号进行时移和尺度变换,分别求变换后信号的傅里叶变换,验证傅里叶变换的时移和尺度变换性质。 (2)自行设计信号,验证傅里叶变换的调制定理。 (3)自行设计一个周期信号,绘出该信号的频谱,并观察周期信号频谱的特点。 3.课程设计报告内容 3.1(a)①门函数(矩形脉冲): MATLAB中矩形脉冲信号用rectpuls函数表示: y=rectpuls (t,width) %width缺省值为1 >> t=-2:0.001:2; T=2; yt=rectpuls (t,T); plot(t,yt); axis([-2,2,0,1.5]); grid on; %显示格线

随机信号分析大作业

随机信号分析大作业

一、实验目的 基于随机过程的莱斯表达式产生窄带随机过程。 二、实验内容及实验原理 1,基于随机过程的莱斯表达式 00()()cos ()sin y t a t t b t t ωω=- (3.1) 2,实验过程框图如下: 3,理想低通滤波器如图所示: 图1 理想低通滤波器 ()20 A H ?ω ?ω≤ ?ω=? ??其它 (3.2) 设白噪声的物理谱0=X G N ω() ,则系统输出的物理谱为 2 2 0=()=20 Y X N A G H G ?ω ?0≤ω≤ ?ωωω???()() 其它 (3.3) 输出的自相关函数为:

1 ()()cos 2Y Y R G d τωωτωπ ∞ = ? /2 200 1cos 2N A d ωωτωπ ?= ? (3.4) 2 0sin 242 N A ωτωωτπ ??=? ? 可知输出的自相关函数()Y R τ是一个振荡函数。计算高斯白噪声x(t)、限带白噪声()a t 、()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密度图形。 三、MATLAB 实验程序 function random(p,R,C) %产生一个p 个点的随机过程 %--------------------------高斯窄带随机过程代码--------------------------% n=1:p; w=linspace(-pi,pi,p); wn=1/2*pi*R*C; [b,a]=butter(1,wn,'low'); %产生低通滤波器 Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器 y_at=at.*cos(w.*n); %产生随机过程a (t ) y_bt=at.*sin(w.*n); %产生随机过程b (t ) yt=y_at-y_bt; %产生一个p 个点的高斯窄带随机过程 subplot(211) plot(yt) title('高斯窄带随机过程y(t)') subplot(212) pdf_ft=ksdensity(yt) ; plot(pdf_ft) title('y(t)的概率密度图') disp('均值如下') E_Xt=mean(y_at) E_at=mean(y_at) E_bt=mean(y_bt) E_ft=mean(yt) %-----------------------自相关函数代码如下--------------------------% figure(2) R_Xt=xcorr(Xt); %高斯白噪声X(t)的自相关函数 R_at=xcorr(at); %限带白噪声的自相关函数 R_y_at=xcorr(y_at); %随机过程a(t).coswt 的自相关函数 R_y_bt=xcorr(y_bt); %随机过程b(t).coswt 的自相关函数 R_ft=xcorr(yt);

信号的频谱分析

实验4 信号的频谱分析 一、 实验目的: 1. 掌握连续时间周期信号的傅里叶级数的分析方法及其物理意义; 2. 观察截短的傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3. 掌握连续时间傅里叶变换的分析方法及其物理意义; 二、 实验内容及要求 1. 设上例中12;2T E π==,请用付立叶三角级数的方法绘制出上例中周期函数f(t) 的一个周期,选择适当的不同谐波次数N ,观察这两个信号用有限项谐波合成后的时域波形中是否有Gibbs 现象产生,Gibbs 现象有何规律,用文字说明你观察到的结果及相关分析或说明。尝试改变各频率分量的幅值或相位,观察周期函数波形所受的影响。 (1)程序代码

(2)实验结果 (3)实验分析 1、将具有不连续点如矩形脉冲进行傅立叶级数展开后,选取有限项进行合成。在逼近信号的断点处出现了明显的振荡现象,随着谐波次数的增加,振荡并没有消失,反而更加的集中在断点附近。 2、当改变周期信号各频率上的幅值和相位时,周期函数的波形随幅值和相位发生对应的变化。例:E=4,1Φ=,则图形的幅值就变成2,且向右平移一个单位。 2.采用数值计算算法分别计算非周期连续时间信号1f 的傅里叶变换. ()()16f t g t =

采用数值计算算法的理论依据是: ()()()j t j nT n F j f t e dt f nT e T ωωω∞ ---∞==∑? ,用绘图函数将时 间信号f(t),信号的幅度谱|F(j w )|和相位谱∠F (j w )分别以图形的方式表现出来,并对图形加以适当的标注。观察结果与理论推导是否相符,试图查找原因,并在一定程度上加以改善。 理论分析: ()()6(3)j t F jw f t e dt Sa w ω∞ --∞==? (1)程序代码 (2)实验结果

DFT分析连续时间信号频谱

在matlab 中对信号111()cos()cos(2)s t t f t π=Ω进行采样,其中f1=1000Hz ,根据奈奎斯特采样定理,采样频率f>=2*f1,在此我们取f=3000Hz 在matlab 中仿真也好,实际中处理的信号也罢,一般都是数字信号。而采样就是将信号数字化的一个过程,设将信号s1(t)数字化得到信号s1(n)=cos(2*pi*f1/f*n),其中n=[0…N -1],N 为采样点数。 为什么说s1(n)=cos(2*pi*f1/f*n)表示以采样率f 对频率为f1的信号进行采样的结果呢? 采样,顾名思义,就是对信号隔一段时间取一个值,而隔的这段时间就是采样间隔,取其倒数就是采样率了,那们我们看s1(n)=cos(2*pi*f1/f*n),将前面的参数代入,当n=0时,s1(0)=cos(0),当n=1时,s1(1)=cos(2*pi*1000/3000*1),当n=2时, s1(2)=cos(2*pi*1000/3000*2),当n=3时,s1(3)=cos(2*pi*1000/3000*3),这是不是想当于对信号s1(t)的一个周期内采了三个样点呢?对一个频率为1000Hz 的信号每周期采三个样点不就是相当于以3倍于频率的采样率进行采样呢?注意,当n=3时相当于下一个周期的起始了。 我们取采样点数N=64,即对64/3=21.3个周期,共计64/3/f1=21.3ms 时长。 我们在matlab 中输入以下命令: >> n=0:63; >> f1=1000;f=3000; >> s1=cos(2*pi*f1/f*n); >> plot(abs(fft(s1)));

西安交大随机信号分析大作业

随机信号分析 学院:班级: 姓名:学号:

随机信号分析大作业 作业题三: 利用Matlab 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),并通过一脉冲响应为 (0.8)(0)0 n n h n else =≥??? 的线性滤波器。 (1) 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函数是否与理论相符。 (2) 绘出输入输出信号的均值、方差、自相关函数及功率谱密度的图形,讨论输出信号服从何种分布。 (3) 试产生在[-1,+1]区间均匀分布的白噪声序列,并将其替换高斯白噪声通过上述系统。画出此时的输出图形,并观察讨论输出信号服从何种分布。 作业要求 (1) 用MATLAB 编写程序。最终报告中附代码及实验结果截图。 (2) 实验报告中必须有对实验结果的分析讨论。 提示: (1) 可直接使用matlab 中已有函数产生高斯白噪声随机序列。可使用hist 函数画出序列的直方图,并与标准高斯分布的概率密度函数做对比。 (2) 为便于卷积操作,当N 很大时,可近似认为h(N)=0。卷积使用matlab 自带的conv 函数。 (3) 分析均值、方差等时,均可使用matlab 现有函数。功率谱密度和自相关函数可通过傅里叶变换相互获得。傅里叶变换使用matlab 自带的fft 函数。 (4) 作图使用plot 函数。

程序和最终结果 1.产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函数是否与理论相符。 程序: y=randn(1,2500); y=y/std(y); y=y-mean(y); a=0; b=sqrt(1); y=a+b*y; hist(y); plot(y); >> y=normpdf(x,0,1); >> plot(x,y) 图: 实验结果分析: 图为产生的高斯白噪声的直方图,标准高斯分布,高斯白噪声在时域的分布; 图中直方图和标准高斯分布符合。

小波分析大作业

小波分析及其应用 结课作业 小波分析在信号分析及滤波中的应用 指导老师:白键 学生姓名: 班级:071011 学号:07101075

小波分析在信号分析及滤波中的应用 信号滤波是信号处理中的重要的一环,在实际测量中,由于噪声源的存在,传播过程中加载的噪声,还有传感器本身的测量误差,信号中总会存在一些噪声,在处理信号之前,必须将噪声滤掉,否则会影响后续的时频分析,得不到信号中想要的结果。 一、信号时频分析方法比较 1.1Fourier变换与Gabor变换 在信号分析中,最基础的Fourier变换,Fourier变换提供了从另一个角度看信号的一种方法,将函数展成以余弦为基本函数的叠加,Fourier系数表示了信号在频域上的幅值和相角,但Fourier变换只能从整个信号分析其频率,不能很好的反应时间特性,故此提出了窗口Fourier变换,即Gabor变换,窗口Fourier 变换则将非平稳信号假定为分段平稳的,通过采用一个滑动窗截取信号,一次次地对截得的信号进行Fourier变换。但由于Fourier变换时间分辨率与频率分辨率矛盾,得不到时间分辨率与频率分辨率都很高的信号分析结果。 1.2小波变换 小波变换是在Fourier变换基础上提出的。其基础函数是小波函数,其可在通过伸缩和平移实现信号的分析,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的时间一频率窗口,是进行信号时频分析和处理的理想工具。但是依旧有一些局限性,小波变换中,可以根据需要构造不同的小波函数,正是由于有不同的小波函数可供选择,使得小波变换对信号分析有足够的适应性,但是小波函数的选择成为一大问题,此外选取的小波函数可能在全局是最佳的,但是对某个局部区域可能是最差的,而一旦小波函数确定,所有的分析特性就会确定,因此缺乏一定的自适应性。 1.3希尔伯特黄变换 对一列时间序列数据先进行经验模态分解然后对各个分量做希尔伯特变换的信号处理方法是由美国国家宇航局的Norden E. Huang 于1998年首次提出的称之为希尔伯特黄变换Hilbert-Huang Transformation HHT 。由于时间序列的信号经过EMD分解成一组本征模函数Intrinsic Mode Function IMF 而不是像傅立叶变换把信号分解成正弦或余弦函数因此该方法既能对线性稳态信号进行分析又能对非线性非稳态信号进行分析。 1.3.1EMD 方法基本原理 经验模态分解(Empirical Mode Decomposition, 简称EMD))方法是由美国NASA 的黄锷博士提出的一种信号分析方法.它依据数据自身的时间尺度特征来进行信

测试技术大作业 系统分析与信号处理

信号的分析与系统特性 一、信号的分析 在进行信号分析和系统特性分析是利用方波进行信号分析。由于幅值和频率都有自己给定,选取在数字信号经常用的信号5v的方波作为研究对象,频率采用较为低的50Hz频率。 已知方波的周期为T0,幅值为A,则根据方波的图像我们得出在时间上的表达式为:X(t)=x(t+n T0); A (0 < t < T0/2) X(t)= -A (?T0/2< t < 0) 1. 信号的频谱特性: 单边谱:对该方波进行傅立叶变换,可以得到该方波的单边谱特性。 已知该信号可以展开的形式如下的傅立叶级数: x t=a0+(a n cosn?0t+b n sinn?0t) ∞ n=1 其中: a0=1 x t dt T0 2 ? T0 2 =0; a n=2 x t cosn?0tdt T0 2 ? T0 2 =0; b n=2 x t sinn?0tdt T0 2 ? T0 2 0 n为偶数bn= 4A nπ n为奇数于是: x t=4A1 sin?((2n?1)?0t)∞ n=1 得出周期方波的频谱如下:

双边谱:根据傅立叶级数函数展开式的复指数形式: x t=c n e jnw0t ∞ n=?∞ 其中: c n=1 T0 x t e?jnw0t dt T0 2 ? T0 2 积分后可以得到, c n=Ai ?cosnπ?1; 0 n为偶数 Cn= ?2Ai nπ n为奇数 幅值为2A nπ ,相位值:当n为正时,相位为-90°,当n为负值时,相位为90°。频率特性图如下: 由于幅值和频率都有自己给定,选取在数字信号经常用的信号5v的方波作为研究对象,频率为50Hz,分析频谱曲线可以得到一下结论: 1.频谱分析可以看到频率为(2n-1) w0的谐波,幅值为4A (2n?1)π ,各阶谐波的相位都为0。二、系统的分析

信号的频谱分析实验报告

实验四 信号的频谱分析 一.实验目的 1.掌握利用FFT 分析连续周期,非周期信号的频谱,如周期,非周期方波,正弦信号等。理解CFS ,CTFT 与DFT (FFT )的关系。 2.利用FFT 分析离散周期,非周期信号的频谱,如周期,非周期方波,正弦信号等。理解DFS ,DTFT 与DFT (FFT )的关系,并讨论连续信号与离散信号频谱分析方法的异同。 二.实验要求 1.编写程序完成任意信号数字谱分析算法; 2.编写实验报告。 三.实验内容 1.利用FFT ,分析并画出sin(100),cos(100)t t ππ频谱,改变采样间隔与截断长度,分析混叠与泄漏对单一频率成分信号频谱的影响。 (1)sin (100*pi*t )产生程序: close all; clc; clear; t=0:0.0025:0.5-0.0025; f=400*t; w0=100*pi; y=sin(w0*t); a=fft(y); b=abs(a)/200;

d=angle(a)*180/pi; subplot(311); plot(t,y); title('y=sin(wt)'); xlabel('t'); ylabel('y(t)'); subplot(312); stem(f,b); title('振幅'); xlabel('f'); ylabel('y(t)'); subplot(313); stem(f,d); title('相位'); xlabel('t'); ylabel('y(t)');

混叠 close all; clc; clear; t=0:0.0115:0.46-0.0115; f=(t/0.0115)*2; w0=100*pi; y=sin(w0*t); a=fft(y); b=abs(a)/40; d=angle(a)*180/pi; subplot(311); plot(t,y); title('y=sin(wt)'); xlabel('t');

相关文档
最新文档