粒度和粒度分布的测量

粒度和粒度分布的测量
粒度和粒度分布的测量

粒度和粒度分布的测量

原料药的粒径及粒径分布对制剂的加工性能、稳定性和生物利用度等有重要影响。本文总结了粒径表征的基本概念,及常见测量手段(筛分、激光散射、图像法和沉降法)的原理、优劣和注意事项。

1、粒径的表征方式

对于球形物体,通过直径很容易确定其大小;但对于立方体,则需要更多的参数,如长宽高;而对于形状更为复杂的颗粒体,恐怕没有足够的参数准确描述其大小。但在实际应用中,只要能够描述其相对大小,指导意义就很大了。为了采用简单的参数直观描述颗粒的大小,往往采取等效球体的直径来描述颗粒的大小。这种等效的基础常常是表面积、体积或者投影面积,分别被称为表面积径、体积径或投影径等。此外,还可以等效为具有相同沉降速度的球形粒子,称为斯托克径。我们通过各种检测方法获得的测量值一般都是理论等效值。不同原理的粒度检测设备的使用的等效物理参量不同,在检测同一个不规则颗粒时,得到的测试结果是不相同的,因此将不同测试方法的结果进行比较,可能无法得出具有实际意义的结论。粉体作为一堆粒子的集合,不同的粒子颗粒大小可能不同,表示粉体粒径的大小可以采用平均粒径。计算每一个颗粒的某一等效粒径,然后采用粒子数目、长度、表面积或粒子体积等参数作为权重计算平均粒径,从而得到不同的平均等效粒径。其中在药学中较为重要的平均径包括表面积加权平均粒径(该值与表面积成负相关)和体积加权平均粒径。

平均粒径无法描述各个颗粒的粒径情况。当就某一粒径范围的粒子数或粒子重量对粒径范围或平均粒径作图,就得到所谓的频率分布曲线,其可以直观的表示粒径分布。另一种表示分布的方式是将超过或低于某一粒径的累积百分数对粒径作图,得到的曲线往往为S形。在实践中,粒径分布对API性质的影响可能超过平均粒径,应当给以充分的重视。

2、粒径及粒径分布的测量

粒径及其分布的测定基于不同的原理有多种测定方法。在中国药典和日本药典中描述了显微法(即本文的“图像法”)、筛分法和激光散射法。美国药典也对对筛分和激光散射法进行了描述。除上述三种药典方法外,沉降法也可用于粒径的表征。下面就对这些方法的特点和注意事项进行介绍。(1)筛分

最简单衡量粒径的方法,就是其是否能够通过某一直径的孔,这就是所谓的“过筛”。筛网大小的单位称为“目”,表示每英寸孔眼数目。在筛网的目数前加正负号则表示能否漏过该目数的网孔,负数表示能漏过该目数的网孔,即颗粒尺寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。采用筛网作为工具进行粒径表征,其孔径大小必然是重要参数。但很遗憾的是,对于筛网孔径的大小未能形成统一标准,不同国家有不同的标准。常见的标准下的筛网编号和孔径大小见表1。

表1. 标准筛孔径大小

选择一系列不同筛孔直径的标准筛,按照孔径从小到大依次摞起,在最大

孔径的筛网中加入样品,震动筛网,通常是由于重力的作用,颗粒中不同粒径范围的粒子会分布在不同的筛网中,测定各个筛网中颗粒的含量,从而得到粒径分布。对于筛分法测定粒径分布,中国药典、美国药典和日本药典都做了较为详尽的描述。

筛分原理简单、直观,操作方便,易于实现。但是正是由于其简单性,其在样品用量、准确度和重复性等方面也有较大的缺点。一般而言,筛分法的物料用量为25g~100g,物料用量相对较大;由于筛网本身的区分力有

限,一般仅适用于粒径大于75μm(粉体中80%的粒子的粒径大于75μm)

的颗粒;筛分测量的精度受制于筛网划分的层数,同时极易受到颗粒形状、静电、测试条件、测试环境等因素的影响,从而造成较大的误差,因此需要特别注意观察筛分过程中的现象,如颗粒是否吸潮,颗粒是否在震荡过

程中聚集,筛网在震荡过程中是否被堵塞等,并针对性解决这些问题,可以有效提高试验的准确度;此外,采用符合相关标准、性能稳定的机械设备,对保证测量的重复性也有重要帮助;最后,值得特别注意的一点是关于筛网本身的精度问题。由于厂家制造能力或筛网的制造原理的不同等因素,不同的筛网可能本身就存在差距;使用时间过长或者不当使用等原因也可能造成筛网精度的下降。不同的筛网可能与其标识的目数有差距,或者孔径的均一性已经达不到使用要求,从而造成筛分的准确度下降。拟将筛分作为质控手段时,应当特别注意对筛网的校验。最后,应特别注意测量的重复性,中国药典做出了较为具体的规定,即“连续两次筛分,各个药筛上遗留的颗粒及粉末重量的差异不超过前次遗留颗粒及粉末重量的5%

或两次重量的差值不大于0.1g;若某一药筛上遗留颗粒及粉末的重量小于

供试品取样量的5%,则该药筛连续两次的重量差异应不超过20%”。

筛分除了作为一种测试手段,本身也可以作为一种粒径控制手段。例如在制粒后获取某一粒径范围内的粒子,用于后续工艺或质量研究,从而更清楚地获取粒径和后续结果的相关性。对于越来越追求API微粉化甚至纳米

化的今天,筛分在API粒径分布的测量中的应用可能会受到更多限制,但在大颗粒的粒度控制和表征方面仍有不可替代的作用。

(2)激光散射法

应用激光粒度仪测定粒径,样品用量小、测定方便、快速、重现性较高,在工业界的应用越来越受到重视。激光粒度仪测量方法的理论依据是Fraunhofer 衍射理论和米氏光散射理论,这两个理论在测量不同粒径大小

的粒子时,有不同的适用性。

图1. 激光粒度仪设备图

如图1所示,粉体分散在空气流或液体介质中,激光束照射在分散的粉体上,发生衍射和散射,从而产生光强的空间分布变化,光信号被光电探测

器器接收并转化为电信号。激光粒度仪接收到的散射光是许多颗粒的散射光的集合。很显然,如果我们知道粒径分布,可以很容易得出其散射光的结果,但是从散射光集合出发得出粒径分布,则有多种可能。计算机采用“数学反演”的方式拟合出与实测光强最为接近的粒径分布情况,而这种拟合总是可能与实测的散射光信号存在差异,因此解读数据质量则是这种测定方式的重要工作,同时需要优化调整仪器参数,使得测量者更接近于真实值。目前最为常见的激光粒度仪是Malvern Mastersizer,其测得的粒径一般为体积分布。其测量方式有干法和湿法两种模式,即粉体分散在空气流或液体中,其测定下限通常为200nm和20nm。

在激光粒度仪的报告中,常常采用以下值对粒径结果进行描述:

激光粒度仪也存在一定的缺点。首先从样品量来讲,所需的样品量一般少于1g,这是其测试的优势,但在在实践中,API的量可能达到公斤级别,

如何取样,才能使如此小的量代表整个批量的真实分布情况,这是一个值得思考的问题。在实践中,可以借鉴混合过程中旋转取样和特殊的取样器,

可能可以减小取样带来的误差。但是随着API的粒径减小,流动性进一步

减小,大批量粉体本身的均匀度就很差,取样带来的差异可能难以避免。其次,激光散射法测量粒径,一般需要设置粉体的折射率、吸收率的参数,这些参数的设置极大地影响粒径测定结果的可靠性。但是获取粉体样品的折射率等参数往往并不容易,若所测得粉体是混合物,那么情况会更为复

杂。在实践中,测量API粒径时,并没有提供准确的参数。更通常的做法

是根据测试者的经验,设定通用参数。判断在这些参数下的数据结果是否接近真实情况,则是较大的挑战。因此,一个拥有丰富测试经验和较强的数据解读能力的分析人员似乎会有很大的帮助。此外,从其测试方法的角

度讲,测试结果的粒径分布是从散射的综合结果“数学反演”得到的,其结果明确指向球形颗粒的粒径,而大多数情况下,API的并非如此。最后,

需要关注激光粒度仪测量本身的平行性问题。通常认为采用激光粒度仪的测量具有很好的重复性,但这种重复性体现在具体测量数值上,可能产生多大的偏差呢?由于仪器的性能不同,所测粉体的性质不同,两次平行测量中可能产生的误差可能不同。确定可接受的平行测定误差,是方法学验证中内容,即通过对同一均匀粉体多次测量,根据结果来确定偏差限度。但实际测量过程中,特别是在研究的前期,很少能够完成方法学验证。中国药典在介绍光散射法的仪器一般要求时,详细述采用“标准粒子”评价

仪器的结果的接受指标。其中指出,D v(50)平行测定的RSD不得超过3%,D v(90)和D v(10)的平行测定RSD不得超过5%;而对于粒径小于10μm的粒子,D v(50)平行测定的RSD不得超过6%,D v(90)和D v(10)的平行测定RSD不得超过10%。笔者认为这可以作为测量平行性的最严标准,对于实际测量样品还可适当放宽。

(3)图像分析

一般通过光学显微镜对颗粒进行直接观察结果更为直观,可以应用普通的显微镜测量0.2~100μm的粒径。更小的粒径也可以通过更为精密的仪器如扫描电镜等方式进行观察。这些测量一般是对平面进行的观察,即观察颗粒在平面的投影。应用原子力显微镜等手段也可以用来观察纵向的尺寸。这种直观的测量方式可能得到更为精准的与尺寸相关的信息,例如颗粒的形态,形态在某些时候对颗粒的性质也会产生重大影响。

此外,颗粒往往不是球形,并且多不规则,因此难以采用统一的方法测定粒径。一个较好的做法是,通过计算投影面积,转换为面积等效圆的直径。

对粒径进行定量,往往需要借助于图形,即对图像中的颗粒的投影进行测量,并根据比例尺进行转化,很多图像分析软件都可以实现这些功能。

为了更好地评估颗粒的粒径分布,必须计算较大量的粒子尺寸(通常为300~500个),这使得该方法极为繁琐。但借助于图形统计分析软件,如Image Pro Plus(I PP)等,可以快速的对图像中颗粒的尺寸进行自动识别、测量和统计。能够用于软件分析的图像对质量要求较高,一般要求颗粒颜色深度与背景有明显的区别,颗粒不能粘连重叠,不能有其他物质干扰(如气泡)等。

(3)沉降法

采用沉降法测定粒子的粒径与悬浮介质中粒子的沉降速率有关,应用的是Stokes定律,即对于特定的悬浮介质,粒子在介质中的沉降速率仅仅与基于沉降速率的粒子的平均粒径有关(流体力学体积)。该定律适用于各种大型不规则形状的粒子,但所测得粒径及分布只能看做是相当于球形的当量半径及分布。

需要注意的是,分散在介质中的粒子不能聚集,聚集体相当于粒径增大,沉降速率加快,因此需要选择合适测量介质和合适的去絮凝剂,以保证粒子在介质中分离和分散,如以水为介质时,常加入0.2%的六偏磷酸钠、焦磷酸钠或亚甲基双萘磺酸钠等。

此外,粒子在测量过程中,周围的分散介质必须处于层流状态,因此沉降速率不能很快,避免产生湍流,一般认为当雷诺数(Re)大于0.2时会出现湍流。根据雷诺数和Stokes定律可以得出,在给定密度和黏度条件下,应用Stokes定律能够测得的最大粒径(见下列公式)。

(其中ρs为粒子的密度,ρ0为介质的密度,g为重力加速度,η为分散介质的粘度,Re为雷诺数)

由上述公式可以看出,为了避免出现湍流,应当注意分散介质的粘度和密度。一般而言,对于密度较小的细粒子,分散介质可以选择水或甲醇等黏

度较小的液体,对于密度大的粗粒子,可以选用正丁醇或豆油等黏度较大的液体。

Stokes等效粒径是对粒子的流体力学性质的直接表征,因而对悬浮剂和乳剂有重要意义。

3、总结

图2.不同粒径测量方式的粒径测量范围

不同的粒径测定方式,能够表征的粒径范围不同,从图2中可以看出,激光粒度仪测得的粒径范围最为广阔。此外,不同的粒径测量方式原理不同,因此测得粒径及粒径分布数值所代表的物理意义也各不相同,将不同方法测得粒径结果进行比较,可能没有物理意义,甚至在很多情况下,同一种测量方式下,将不同的物料的粒径测定结果做简单比较也没有实际应用意义。明确粒径测定的原理,对判断粒径测定结果质量的分析以及对粒径数据的解读有重要帮助。此外,关于粒径的表征参数很多,粉体或者最终制剂的成品的某些性质可能仅对某些粒径指标相关,如制剂的溶出可能与D v

(90)可能更为相关,悬浮液的稳定性可能用Stokes等效粒径进行评价可

能更有相关性。从基本原理出发,“自下而上”地探求性质与结果的关联,使探索更有方向性,可能对把握关键因素更有帮助。

12粒度测定法检验操作规程

目的:建立粒度测定法的标准操作规程。 范围:本规程适用于粒度测定法。 职责:检验员、QC主任。 依据:中国药典2010年版一部。 内容: 1 简述 粒度系指颗粒的粗细程度及粗细颗粒的分布,用于测定药物制剂的粒子大小或限度。 2 仪器与用具 2.1 天平感量0.001g 2.2 药筛(各品种项下规定的药筛号),并配有筛盖和密合的接受容器。 3 测定操作方法 3.1显微镜法 本法中的粒度,系以显微镜下观察到的长度表示。 目镜测微尺的标定照显微鉴别法(附录Ⅱ C)标定。 测定法除另有规定外,取供试品,用力摇匀[黏度较大者可按品种项下的规定加适量甘油溶液(1→2)稀释],照该剂型或品种项下的规定取供试品,置载玻片上,覆以盖玻片(注意防止气泡混入),轻压使颗粒分布均匀;半固体可直接涂于载玻片上。立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或品种项下规定的50μm及50μm以上的粒子。再在200~500倍显微镜下检视该剂型或品种项下规定的视野内的总粒数及规定大小的粒数,计算所占百分比。 3.2 单筛分法 取各品种项下规定量的供试品,除另有规定外,取供试品10g,称定重量,置规定号药筛(配有密合接受容器)内,筛上加盖,按水平方向旋转振摇至少3分钟,并不时在垂

直方向轻叩筛。取筛下的颗粒及粉末,称定重量,计算所占百分比。 3.3 双筛分法 除另有规定外(西药取单剂量包装5袋或多剂量包装的1袋),中成药取供试品30g,称定重量,置该品种规定药筛的上层小号筛(小号筛置于大号筛上,并配有密合接受容器)中,盖好筛盖,保持水平状态过筛,左右往返,边筛动边叩3分钟。取不能通过小号筛和能通过大号筛的颗粒及粉末,称定重量,计算所占百分比。 4 注意事项 4.1 在筛动时速度不宜太快,否则由于粉末运动速度太快,可筛过粉末来不及与筛网接触而混于不可筛过粉末之中而影响结果。 4.2 适当增加振动力度,使药粉跳动运动增强,能有效地增加粉末间距,筛孔得到充分暴露而利于筛选。 4.3 振动的力度要适当,因为粒径有方向性,通过某一筛孔的粒子的实际长度可能比筛孔的孔径大。如果振动力度较强,此种误差会增大。 4.4 筛动时间不宜过长。若筛动时间长、振动力大,颗粒间互相撞击破碎,也可引起误差。 5 记录 记录筛号、称量数据、计算结果。 6 计算 6.1 散剂(采用单筛分法) 式中 A为供试品中通过筛子的粉末的含量,%; m为通过筛子的供试品粉末的重量,g; m 为供试品重量,g。 6.2 颗粒剂和细粒剂(采用双筛分法) B%=(m 2×100%)/m 式中 B为供试品中没能通过小号筛和通过大号筛的颗粒和粉末的含量,%;

附录KE粒度和粒度分布测定法

附录H E粒度和粒度分布测定法 率,以补偿供试品发生变化时的热效应,从而使供试品与参比 物之间的温度始终保持不变(么了=0)。由于A T-0,所以供 试品与参比物之间没有附加的热传导。热流型差示扫描量热 分析仪是在输给供试品与参比物相同的功率条件下,测定供 试品与参比物两者的温度差(4了),通过热流方程将温度差(A T)换算成热量差(dQ/dT)。热流型差示扫描量热分析仪应用较为广泛。差示扫描量热分析的定量测定准确度通常好于差热分析。 D T A曲线与D SC曲线的形状极为相似,横坐标均为温度TX或时间0,不同之处仅在于前者的纵坐标为而后者为dQ/d丁。在两者的曲线上,随样品不同而显示不同的吸热峰或放热峰。 在差热分析或差示扫描量热分析中,可使用《-氧化铝作为惰性参比物,通常可以采用氧化铝空坩埚或其他惰性空坩埚作为参比物应用。 仪器应根据操作规程,定期使用有证标准物质对温度(高 纯铟或锌等)进行校准,以保证检测结果的准确性。 差热分析与差示扫描量热分析可用于下列数据的测量。 1.转换温度 D T A或DSC两种实验方法均客观地记录了物质状态发生变化时的温度。例如熔融曲线可显示熔融发生时的温度(onset值)和峰值温度(peak值)。但这两种温度值与熔点值可能并不一致(由于升温速率等影响)。 2.转换热焓 吸热或放热峰的峰面积正比于相应的热焓变化,即: M-A H=K? A 式中M为物质的质量; 为单位质量物质的转换热焓; A为实测的峰茴积; K为仪器常数。 先用已知值的标准物质测定仪器常数K后,即可方 便地利用上式由实验求取样品的转换热焓。 当不同样品的化学成分相同,而差热分析或差示扫描量热分析获得的测量转换温度值或转换热焓值发生变化时,表 明不同样品的晶型固体物质状态存在差异。 3.纯度 理论上,化学固体纯物质均具有一定的熔点(T。)或无限 窄的熔距,并吸收一定的热量(熔融热焓任何熔距的展宽或熔点下降都意味着物质化学纯度的下降。杂质所引起 的熔点下降可由范特霍夫方程表示。 式中T为热力学温度,K; X2为杂质的浓度(摩尔分数 A H f为纯物质的摩尔熔融热焓; K为气体常数; ? 388 ? k为熔融时杂质在固相与液相中的分配系数。 假定熔融时无固溶体形成,即丨=0,此时可对式(1)积 分,得: v(T0— T m)A H f/0、 w n^⑵式中T0为纯物质的熔点,K; Tm为供试品的实测熔点,K。 由实验测得丁。和T m后,代入式(2)即可求得供试 品中杂质的含量。 无定型态固体物质(或非晶态物质)可能没有明确的熔点 (T。)或呈现宽熔距现象,其熔距宽度与物质的化学纯度或晶型 纯度无关。无定型固体物质状态亦不符合范特霍夫方程规律。 三、热载台显微镜 热载台显微镜可观测供试品的物相变化过程,通过光学 显微镜或偏光显微镜直接观测并记录程序温度控制下供试品 变化情况。 热载台显微镜的观察结果可对热重分析、差热分析、差示 扫描量热分析给予更直观的物相变化信息。热载台显微镜的 温度控制部分需要校准。 四、测定法 热重分析、差热分析、差示扫描量热分析、热载台显微镜分析的测定方法,应按各仪器说明书操作。为了尽可能得到 客观、准确、能够重现的热分析曲线或相变规律,首先应在室 温至比分解温度(或熔点)髙10?20°C的宽范围内做快速升温 或降温速率(每分钟10?20°C)的预试验,然后在较窄的温度范围内,以较低的升温或降温速率(必要时可降至每分钟r c)进行精密的重复试验,以获得准确的热分析结果。 热分析报告应附测定条件,包括仪器型号、温度的校正值、供试品的取用量和制备方法、环境气体、温度变化的方向 和速率,以及仪器的灵敏度等。 需要指出的是,利用范特霍夫方程测定纯度时,是建立在 杂质不形成固溶体的假设之上的,所以本法的应用具有一定的局限性,特别是当供试品为混晶物质(即不同晶型的混合物 熔点值无差异)或熔融时分解的物质,则难以准确地测定其化 学或晶型纯度。■[修订] 附录K E粒度和粒度分布测定法 本法用于测定原料药和药物制剂的粒子大小或粒度分布。其中第一法、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。 第一法(显微镜法) 本法中的粒度,系以显微镜下观察到的长度表示。 目镜测微尺的标定■照显微鉴别法(《中国药典》2010年版 一部附录n c)标定。■[修订] 测定法取供试品,用力摇匀,黏度较大者可按各品种项 下的规定加适量甘油溶液(1 — 2)稀释,照该剂型或各品种项

颗粒度的检测 筛分法 标准操作规程

编制、审核、批准 生产管理部质量管理部行政管理部财 务 部QA 室QC 室 营养粉车间仓 储 中 心

1目的 建立颗粒度检查法标准操作规程,规范该项目检查操作。 2适用范围 本标准适用于食品添加剂中颗粒度检测的定量试验。 3职责 6.1QC检验员:负责对颗粒度检测的管理。 6.2QC主管:负责监督本规程的执行。 4参考文件 GBT 21524-2008 无机化工产品中粒度的测定筛分法. 5培训范围 6内容: 6.1手筛法:用手往复振摇实验筛,一手在振幅距离处轻轻碰撞实验筛,由此产生的 震动使小于孔径的颗粒通过筛孔的筛分方法。 6.2方法原理:把预先于(105±2)℃下干燥并冷却至温室的无机化工产品样品,在 相对湿度不大于50%的环境下,使用毛筛法进行筛分到达筛分终点后,称量不同筛子剩余样品的质量,计算出以筛网孔径为的粒度分布。 6.3仪器:实验筛、天平、羊毛筛子、电烘箱、超声波清洗器。 6.4分析步骤: 6.4.1将指定尺寸的实验筛从底盘到顶部按筛孔增大的顺序组装好。 6.4.2用天平称取20g~50g试样,精确至,放置在最顶部的实验筛上,盖上顶盖。 6.4.3测定(手筛法) 用手振动试验,振幅约为,频率约为120/min,筛分时间为3min~5min,静至 3min后,称量各筛的剩余物或筛下物,判定方案如)

6.4.4筛分过程应连续进行,直至1min内通过剩余粒度级最多的试验筛的试样的质量 分数小于。把留在筛上或底盘上的试料用毛刷仔细刷净,分别称量每个粒度级 别的试验筛的筛余物质量(M1),所有筛余物的量的总和与称样量之差应不大 于%,否则,重新取样测定。 6.4.5每次测定结束后,用超神波对整套筛子进行清洗,以保证试验筛堵塞不大于%。 6.4.6定期对试验筛进行计量或校准,若发现筛孔尺寸超过有关标准的要求或筛孔变 形、筛网破损,应及时更换实验筛。 6.4.7计算结果 粒度以细度或通过率质量分数w计,数值以%表示,按如下公式计算: W=(m-m1)÷M×100 式中: m1------试验筛筛余物的质量的数值,单位为克(g); m--------试料的质量的数值,单位为克(g); 7注意事项 8相关文件 9附录 10版本历史

粒度测定法

GMP文件 编号:QMS001-2013-0粒度测定法操作规程页码:第1页共3页部门质量部类别管理标准 编制人陈云 审核人 蔡群虎 批准人 邹顺光 编制日期2013年3月1日审核日期2013年3月5日批准日期2013年3月10日 签发人王铿 生效日期2013 年 4 月 1 日 签发日期2013年3月10日 变更记载 原文件编号:变更原因及目的: 执行日期: 授权:现授权下列部门拥有并执行本标准(复印数:份) 质量部、财务部、营销部、行政部、研发部、生产部、物料部、工程部 目录 1.目的 (2) 2.适用范围 (2) 3. 责任 (2) 4. 依据 (2) 5.分类 (2) 5.1显微镜法 (2) 5.2筛分法 (3)

1.目的 建立粒度测定法操作标准,以保证产品检验质量。 2.适用范围 产品质量标准中需进行粒度测定的产品的检验。 3.责任 QC对本操作标准的实施负责 4.依据 《中华人民共和国药典》2010年版一部附录本法项下规定的方法。 5.分类 粒度:指颗粒的精细程度及粗细颗粒的分布。 本法用于测定原料药和药物制剂的粒子大小或粒度分布。。 5.1显微镜法 本法中的粒度,系以显微镜下观察到得长度表示。 5.1.1仪器与用具 显微镜、镜台测微尺和目镜测微尺(直尺式)、盖玻片、载玻片、计数器、 5.1.2 测定法 除另有规定外,取供试品,用力摇匀﹝黏度较大者可按品种项下的规定加适量甘油溶液(1→2)稀释﹞,照该剂型或品种项下的规定取供试品,置载坡片上,覆以盖玻片(注意防止气泡混入),轻压使颗粒分布均匀;半固体可直接涂于载玻片上。立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或品种项下规定的50μm及50μm以上的粒子。再在200~500倍显微镜下检视该剂型或品种项下的视野内的总粒子数及规定大小的粒数,计算所占百分比。 5.1.3注意事项 5.1.3.1应注意物镜、目镜的正确选择。 5.1.3.2所用器具应清洁。 5.1.3.3盖盖玻片时,用镊子夹取盖玻片,先使其一边与药物接触,慢慢放下,以防止气泡混入,轻压使颗粒分布均匀。 5.1.3.4盖玻片、载玻片应平整,光洁、无痕、透明度良好,以免引起散射等现象。

粒度和粒度分布的测量

粒度和粒度分布的测量 原料药的粒径及粒径分布对制剂的加工性能、稳定性和生物利用度等有重要影响。本文总结了粒径表征的基本概念,及常见测量手段(筛分、激光散射、图像法和沉降法)的原理、优劣和注意事项。 1、粒径的表征方式 对于球形物体,通过直径很容易确定其大小;但对于立方体,则需要更多的参数,如长宽高;而对于形状更为复杂的颗粒体,恐怕没有足够的参数准确描述其大小。但在实际应用中,只要能够描述其相对大小,指导意义就很大了。为了采用简单的参数直观描述颗粒的大小,往往采取等效球体的直径来描述颗粒的大小。这种等效的基础常常是表面积、体积或者投影面积,分别被称为表面积径、体积径或投影径等。此外,还可以等效为具有相同沉降速度的球形粒子,称为斯托克径。我们通过各种检测方法获得的测量值一般都是理论等效值。不同原理的粒度检测设备的使用的等效物理参量不同,在检测同一个不规则颗粒时,得到的测试结果是不相同的,因此将不同测试方法的结果进行比较,可能无法得出具有实际意义的结论。粉体作为一堆粒子的集合,不同的粒子颗粒大小可能不同,表示粉体粒径的大小可以采用平均粒径。计算每一个颗粒的某一等效粒径,然后采用粒子数目、长度、表面积或粒子体积等参数作为权重计算平均粒径,从而得到不同的平均等效粒径。其中在药学中较为重要的平均径包括表面积加权平均粒径(该值与表面积成负相关)和体积加权平均粒径。 平均粒径无法描述各个颗粒的粒径情况。当就某一粒径范围的粒子数或粒子重量对粒径范围或平均粒径作图,就得到所谓的频率分布曲线,其可以直观的表示粒径分布。另一种表示分布的方式是将超过或低于某一粒径的累积百分数对粒径作图,得到的曲线往往为S形。在实践中,粒径分布对API性质的影响可能超过平均粒径,应当给以充分的重视。 2、粒径及粒径分布的测量 粒径及其分布的测定基于不同的原理有多种测定方法。在中国药典和日本药典中描述了显微法(即本文的“图像法”)、筛分法和激光散射法。美国药典也对对筛分和激光散射法进行了描述。除上述三种药典方法外,沉降法也可用于粒径的表征。下面就对这些方法的特点和注意事项进行介绍。(1)筛分

筛分析法测试粉体粒度及粒度分布汇总

筛分析法测试粉体粒度及粒度分布 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法和沉降法,以及激光法测粉体粒度分布。 一、实验目的 筛析法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛析法测粉体粒度,其实验的目的是: 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、基本原理 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量分数表示的粒度分布。筛析法适用于约10mm至20μm之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 过去,筛孔的大小用“目”表示,其含义是每英寸(25.4mm)长度上筛孔的数目,也有用1cm长度上的孔数或1cm2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛析法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1mm的筛子作为基筛,以优先系数及20/3为主序列,其筛孔为

粒度方法验证

1粒度 1.1概述 ****** 是一种难溶性的药物,故对****** 的粒度进行研究。****** 粒度检测方法是采用中国药典2015年版四部通则0982中第三法光散射法测定****** 粒度。本方法经过方法验证,适用于****** 粒度的测定。 1.2粒度分析方法验证 1.2.1粒度方法的建立及验证 1仪器与试剂 激光散射粒度分布仪、自动循环进样系统、碳酸钙、纯化水。 2粒度仪的标定 用纯化水冲洗自动进样系统,取粒度工作标样(碳酸钙)适量,充分分散于水中,再加入自动进样系统,标定仪器,标定三次。结果见下图 图3.2.S.4 - 1第一次标定

图3.2.S.4 - 2第二次标定 图3.2.S.4 - 3第三次标定 3超声时间的考察 取****** 适量,充分分散于水中,加入自动进样系统,转速1600转,分别超声1分钟,2分钟,3分钟,4分钟,5分钟测定其粒度分布。结果见下表: 表3.2.S.4- 1超声时间考察

结论:由此可知超声1~5分钟d(0.1),d(0.5),d(0.9)的RSD分别为0.5%,0.7%,1.0%,表明超声1~5分钟样品粒度检测无明显变化,因此超声1~5分钟均可使样品充分分散,由于工作站中自动测定程序中的超声时间为2分钟,故选择超声时间为2分钟。 4转速考察 取****** 适量,充分分散于水中,加入自动进样系统,超声2分钟,分别考察转速为500转,800转,1200转,1600转,2000转,2500转测定其粒度分布。结果见下表: 表3.2.S.4- 2转速考察 结论:由此可知转速为1600~2500转的d(0.1),d(0.5),d(0.9)的RSD分别为0.5%,0.9%,1.1%,RSD无明显变化,而转速为500~2500转的d(0.1),d(0.5),d (0.9)的RSD分别为0.6%,4.3%,7.7%,对于d (0.5),d (0.9)的检测波动较大,说明500~1200转的转速不适宜,选择转速为1600~2500转对粒度分布无明显影响,因工作站中自动测定程序中转速为1600转,故选择转速为1600转。 5样品浓度考察(遮光率考察) 光散射法测定粒度时样品的浓度大小主要以遮光率的数值来体现,故对遮光率进行考察。取****** 适量,置于100ml的烧杯中,加水使样品充分分散后倒入自动进样系统中,考察不同遮光率下样品的粒度分布。结果见下表:

粒度方法验证

1粒度 概述 ****** 是一种难溶性的药物,故对****** 的粒度进行研究。****** 粒度检测方法是采用中国药典2015年版四部通则0982中第三法光散射法测定****** 粒度。本方法经过方法验证,适用于****** 粒度的测定。 粒度分析方法验证 粒度方法的建立及验证 1仪器与试剂 激光散射粒度分布仪、自动循环进样系统、碳酸钙、纯化水。 2粒度仪的标定 用纯化水冲洗自动进样系统,取粒度工作标样(碳酸钙)适量,充分分散于水中,再加入自动进样系统,标定仪器,标定三次。结果见下图 图 - 1 第一次标定

图 - 2 第二次标定 图 - 3第三次标定 3超声时间的考察 取****** 适量,充分分散于水中,加入自动进样系统,转速1600转,分别超声1分钟,2分钟,3分钟,4分钟,5分钟测定其粒度分布。结果见下表: 表 1超声时间考察 样品名称d(),μm d(),μm d(),μm 样品超声1分钟 样品超声2分钟 样品超声3分钟 样品超声4分钟

结论:由此可知超声1~5分钟 d(),d(),d()的RSD分别为%,%,%,表明超声1~5分钟样品粒度检测无明显变化,因此超声1~5分钟均可使样品充分分散,由于工作站中自动测定程序中的超声时间为2分钟,故选择超声时间为2分钟。 4转速考察 取****** 适量,充分分散于水中,加入自动进样系统,超声2分钟,分别考察转速为500转,800转,1200转,1600转,2000转,2500转测定其粒度分布。结果见下表: 表 2转速考察 结论:由此可知转速为1600~2500转的d(),d(),d()的RSD分别为%,%,%,RSD无明显变化,而转速为500~2500转的d(),d(),d()的RSD分别为%,%,%,对于d, d的检测波动较大,说明500~1200转的转速不适宜,选择转速为1600~2500转对粒度分布无明显影响,因工作站中自动测定程序中转速为1600转,故选择转速为1600转。 5样品浓度考察(遮光率考察) 光散射法测定粒度时样品的浓度大小主要以遮光率的数值来体现,故对遮光率进行

粒度检验的基本概念和基本知识

粒度测试的基本概念和基本知识 1.什么是颗粒? 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。 2.什么叫粒度? 颗粒的大小称为颗粒的粒度。 3.什么叫粒度分布? 不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。 4.常见的粒度分布的表示方法? ?表格法:用列表的方式表示粒径所对应的百分比含量。通常有区间分 布和累计分布。 ?图形法:用直方图和曲线等图形方式表示粒度分布的方法。 5.什么是粒径? 颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。 6.什么是等效粒径?

当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法, 等效粒径可具体分为下列几种: ?等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激 光法所测粒径一般认为是等效体积径。 ?等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直 径。重力沉降法、离心沉降法所测的粒径为等效沉速粒径,也叫Stokes 径。 ?等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗 粒的直径。库尔特法所测的粒径就是等效电阻粒径。 ?等效投影面积径:即与所测颗粒具有相同的投影面积的球形颗粒的直 径。图像法所测的粒径即为等效投影面积直径。 7.为什么要用等效粒径概念? 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来 表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采 用等效粒径的概念。简单地说,粒径就是颗粒的直径。从几何学常识我们 知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如 多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。 但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的 一个量,所以在实际的粒度分布测量过程中,人们还都是用粒径来描述颗 粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这 个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中

实验1 粉体的粒度及其分布的测定

实验1 粉体的粒度及其分布的测定 粒度分布的测量在实际应用中非常重要,在工农业生产和科学研究中的固体原料和制品,很多都是以粉体的形态存在的,粒度分布对这些产品的质量和性能起着重要的作用。例如催化剂的粒度对催化效果有着重要影响;水泥的粒度影响凝结时间及最终的强度;各种矿物填料的粒度影响制品的质量与性能;涂料的粒度影响涂饰效果和表面光泽;药物的粒度影响口感、吸收率和疗效等等。因此在粉体加工与应用的领域中,有效控制与测量粉体的粒度分布,对提高产品质量,降低能源消耗,控制环境污染,保护人类的健康具有重要意义。 一、实验目的 1、掌握粉体粒度测试的原理及方法。 2、了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注 意事项。 3、学会对粉体粒度测试结果数据处理及分析。 二、实验原理 粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。粉体粒度的测试方法有许多种:筛分析、显微镜法、沉降法和激光法等。激光法是用途最广泛的一种方法。它具有测试速度快、操作方便、重复性好、测试范围宽等优点,是现代粒度测量的主要方法之一。 激光粒度测试时利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅里叶)透镜的聚焦作用,在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光-电转换信号再经模数转换,送至计算机处理,根据夫琅禾费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。 三、仪器设备 1、制样:超声清洗器、烧杯、玻璃棒、蒸馏水、六偏磷酸钠。 2、测量:Easysizer20激光粒度仪、微型计算机、打印机。 四、实验步骤 (一)测试准备 1、仪器及用品准备 (1)仔细检查粒度仪、电脑、打印机等,看它们是否连接好,放置仪器的工

粒度测定法

1、目的 建立粒度检验操作规程 2、范围 适用于预胶化淀粉粒度的检测 3、依据 《中国药典》2010版二部附录IX E 粒度和粒度分布测定法内容 粒度的检测 4、内容 本法用于测定原料药和药物制剂的粒子大小或粒度分布。其中,第一法、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。 第一法(显微镜法) 本法中的粒度,系以显微镜下观察到的长度表示。 目镜测微尺的标定用以确定使用同一显微镜及特定倍数的物镜、目镜和镜筒长度时,目镜测微尺上每一格所代表的长度。 将镜台测微尺置于显微镜台上,对光调焦,并移动测微尺于视野中央; 取下目镜,旋下接目镜的目镜盖,将目镜测微尺放入木镜筒中部的光栏上(正面向上),旋上目镜盖后反置镜筒上。此时在视野中可同时观察到镜台测微尺的像及目镜测微尺的分度小格,移动镜台测微尺和旋转目镜,使两种量尺的刻度平行,并令左边的“0”刻度重合;寻找第二条重合刻度,记录两条刻度的读数;并根据此值计算出目镜测微尺每小格在该物镜条件下所相当的长度(μm)。由于镜台测微尺每格相当于10μm,故目镜测微尺每一小格的长度为: 10 相重区间镜台测微尺的格数 相重区间目镜测微尺的格数

当测定时要使用不同的放大倍数时,应分别标定。 测定法取供试品,用力摇匀,黏度较大者可按各品种项下的规定加适量甘油溶液(1→2)稀释,照该剂型或各品种项下的规定,量取供试品,置载玻片上,覆以盖玻片,轻压使颗粒分布均匀,注意防止气泡混入,半固体可直接涂在载玻片上,立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或各品种项下规定的50μm及以上的粒子。再在200~500倍的显微镜下检视该剂型或各品项下规定的视野内得总粒数,并计算其所占比例(%)。 第二法(筛分法) 筛分法一般分为手动筛分法、机械筛分法与空气喷射筛分法。手动筛分法和机械筛分法适用于测定大部分粒径大于75μm的样品。对于粒径小于75μm的样品,则应采用空气喷射筛分法或其他适宜的方法。 机械筛分法系采用机械方法或电磁方法,产生垂直振动、水平圆周运动、拍打、拍打与水平圆周运动相结合等振动方式。空气喷射筛分法则采用流动的空气流带动颗粒运动。 筛分实验时需注意环境湿度,防止样品吸水或失水。对易产生静电的样品,可加入0.5%胶质二氧化硅(或)氧化铝等抗静电剂,以减小静电作用产生的影响。 1.手动筛分法 (1) 单筛分法称取各品种项下规定的供试品,置规定号的药筛中(筛下配有密合的接收容器),筛上加盖。按水平方向旋转振摇至少3分钟,并不时在垂直方向轻叩筛。取筛下的颗粒及粉末,称定重量,计算其所占比例(%)。 (2) 双筛分法取单剂量包装的5袋(瓶)或多剂量包装的1袋(瓶),称定重量,置该剂型或品种项下规定的上层(孔径大的)药筛中(下层的筛下配有密合的接收容器),保持水平状态过筛,左右往返,边筛动边拍打3分钟。取不能通过大孔径筛和能通过小孔径筛的颗粒及粉末,称定重量,计算其所占比例(%)。 2. 机械筛分法 除另有规定外,取直径为200mm规定号的药筛和接收容器,称定重量,根据供试品的容积密度,称取供试品25~100g,置最上层(孔径最大的)药筛中(最下层的筛下配有密合的接收容器),筛上加盖。设定振动方式和振动

粒度方法验证

1粒度 概述 是一种难溶性的药物,故对的粒度进行研究。粒度检测方法是采用中国药典2015年版四部通则0982中第三法光散射法测定粒度。本方法经过方法验证,适用于粒度的测定。 粒度分析方法验证 粒度方法的建立及验证 1仪器与试剂 激光散射粒度分布仪、自动循环进样系统、碳酸钙、纯化水。 2粒度仪的标定 用纯化水冲洗自动进样系统,取粒度工作标样(碳酸钙)适量,充分分散于水中,再加入自动进样系统,标定仪器,标定三次。结果见下图 图- 1 第一次标定

图- 2 第二次标定 图- 3第三次标定 3超声时间的考察 取适量,充分分散于水中,加入自动进样系统,转速1600转,分别超声1分钟,2分钟,3分钟,4分钟,5分钟测定其粒度分布。结果见下表: 表1超声时间考察 样品名称d(),μm d(),μm d(),μm 样品超声1分钟 样品超声2分钟 样品超声3分钟 样品超声4分钟 样品超声5分钟

结论:由此可知超声1~5分钟d(),d(),d()的RSD分别为%,%,%,表明超声1~5分钟样品粒度检测无明显变化,因此超声1~5分钟均可使样品充分分散,由于工作站中自动测定程序中的超声时间为2分钟,故选择超声时间为2分钟。 4转速考察 取适量,充分分散于水中,加入自动进样系统,超声2分钟,分别考察转速为500转,800转,1200转,1600转,2000转,2500转测定其粒度分布。结果见下表: 表2转速考察 结论:由此可知转速为1600~2500转的d(),d(),d()的RSD分别为%,%,%,RSD无明显变化,而转速为500~2500转的d(),d(),d()的RSD分别为%,%,%,对于d,d的检测波动较大,说明500~1200转的转速不适宜,选择转速为1600~2500转对粒度分布无明显影响,因工作站中自动测定程序中转速为1600转,故选择转速为1600转。 5样品浓度考察(遮光率考察) 光散射法测定粒度时样品的浓度大小主要以遮光率的数值来体现,故对遮光率进行考察。取适量,置于100ml的烧杯中,加水使样品充分分散后倒入自动进样系统中,考察不同遮光率下样品的粒度分布。结果见下表:

粒度测试的基本概念和基本知识概论

粒度测试的基本概念和基本知识 前言 1. 什么是颗粒? 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。 2. 什么叫粒度? 颗粒的大小称为颗粒的粒度。 3. 什么叫粒度分布? 不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。 4. 常见的粒度分布的表示方法? 表格法:用列表的方式表示粒径所对应的百分比含量。通常有区间分布和累计分布。 图形法:用直方图和曲线等图形方式表示粒度分布的方法。 5. 什么是粒径? 颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。 6. 什么是等效粒径? 当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法,等效粒径可具体分为下列几种: 等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激光法所测粒径一般认为是等效体积径。 等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直径。重力沉降法、离心沉降法所测的粒径为等效沉速粒径,也叫Stokes径。 等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗粒的直径。库尔特法所测的粒径就是等效电阻粒径。 等效投影面积径:即与所测颗粒具有相同的投影面积的球形颗粒的直径。图像法所测的粒径即为等效投影面积直径。

7. 为什么要用等效粒径概念? 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采用等效粒径的概念。简单地说,粒径就是颗粒的直径。从几何学常识我们知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的一个量,所以在实际的粒度分布测量过程中,人们还都是用粒径来描述颗粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中所说的粒径并非颗粒的真实直径,而是虚拟的“等效直径”。等效直径是当被测颗粒的某一物理特性与某一直径的同质球体最相近时,就把该球体的直径作为被测颗粒的等效直径。就是说大多数情况下粒度仪所测的粒径是一种等效意义上的粒径。 不同原理的粒度仪器依据不同的颗粒特性做等效对比。如沉降式粒度仪是依据颗粒的沉降速度作等效对比,所测的粒径为等效沉速径,即用与被测颗粒具有相同沉降速度的同质球形颗粒的直径来代表实际颗粒的大小。激光粒度仪是利用颗粒对激光的散射特性作等效对比,所测出的等效粒径为等效散射粒径,即用与实际被测颗粒具有相同散射效果的球形颗粒的直径来代表这个实际颗粒的大小。当被测颗粒为球形时,其等效粒径就是它的实际直径。 8. 平均径、D50、最频粒径 定义这三个术语是很重要的,它们在统计及粒度分析中常常被用到。 平均径: 表示颗粒平均大小的数据。有很多不同的平均值的算法,如D[4,3]等。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、面积平均径、长度平均径、数量平均径等。 D50: 也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。如果一个样品的 D50=5μm,说明在组成该样品的所有粒径的颗粒中,大于5μm的颗粒占50%,小于5μm 的颗粒也占50%。

粒度与粒度分布测定标准操作规程

粒度与粒度分布测定标准操作规程 粒度系指颗粒的粗细程度及粗细的分布,用于测定原料药和药物制剂的粒子大小或粒度分布。中国药典2005年版二部附录Ⅸ E“粒度和粒度分布测定法”项下列有三种不同的测定方法,第一法(显微镜法)、第二法(筛分法)和第三法(光散射法),其中第一、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。 第一法显微镜法 1 简述 1.1 本法中的粒度,系以显微镜下观察到的长度表示。 1.2 本法适用于混悬型眼用制剂、混悬型软膏剂、混悬型凝胶剂等制剂以及品种项下规定的粒度检查。 2 仪器与用具 2.1 显微镜。 2.2 镜台测微尺和目镜测微尺(直尺式)。 2.3 盖、载波片。 2.4 计数器 3 操作方法 3.1 目镜测微尺的标定用以确定使用同一显微镜及特定倍数的物镜、目镜和镜筒长度时,目镜测微尺上每一格所代表的长度。

标定时,将镜台测微尺置于载物台上,对光调焦,并移动测微尺使物象于视野中央,取下目镜,旋下接目镜的目镜盖,将目镜测微尺放入目镜筒中部的光栏上(正面向上),旋上目镜盖后返置镜筒上,此时在视野中可同时观察到镜台测微尺的像及目镜测微尺的分度小格,移动镜台测微尺和旋转目镜,使两种量尺的刻度平行,并使左边的“0”刻度重合;然后再寻找第二条刻度,记录两条刻度的读数,并根据比值计算出目镜测微尺每小格在该物镜条件下所相当的长度(μm)。由于镜台测微尺每格相当于10μm,故目镜测微尺每一小格的长度为: 10×相重合区间镜台测微尺的格数÷相重合区间目镜测微尺的格数 例如:镜台测微尺15格和目镜测微尺34格完全重合,则目镜测微尺在该目镜与物镜的组合下,每小格的长度即为4.4μm(10×15÷34=4.4)。 当测定时要用两种放大倍数(即该目镜与不同物镜组合)时,应分别标定。 3.2 测定法除另有规定外,取供试品,用力摇匀,黏度较大这可按该品种项下的规定加适量甘油溶液(1→2)稀释,使颗粒分散均匀,照高剂型或品种项下的规定,量取供试品,置载玻片上,盖以盖玻片(注意防止气泡混入),轻压使颗粒分布均匀;半固体可直接涂在载玻片上,立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出超过该剂型或品种项下规定的最大颗粒,再在200~

粒度测试的基本知识和基本方法

粒度测试的基本知识和基本方法 (丹东市百特仪器有限公司董青云) 粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。粉体在我们日常生活和工农业生产中的应用非常广泛。如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等等。在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标。所以客观真实地反映粉体的粒度分布是一项非常重要的工作。下面就我具体讲一下关于粒度测试方面的基知识和基本方法。 一、粒度测试的基本知识 1、颗粒:在一尺寸范围内具有特定形状的几何体。这里所说的一尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。 2、粉休:由大量的不同尺寸的颗粒组成的颗粒群。 3、粒度:颗粒的大小叫做颗粒的粒度。 4、粒度分布:用特定的仪器和方法反映出的不同粒径颗粒占粉体总量的百分数。有区间分布和累计分布两种形式。区间分布又称为微分分布或频率分布,它表示一系列粒径区间中颗粒的百分含量。累计分布也叫积分分布,它表示小于或大于某粒径颗粒的百分含量。 5、粒度分布的表示方法: ①表格法:用表格的方法将粒径区间分布、累计分布一一列出的方法。 ②图形法:在直角标系中用直方图和曲线等形式表示粒度分布的方法。 ③函数法:用数学函数表示粒度分布的方法。这种方法一般在理论研究时用。如著名的Rosin-Rammler分布就是函数分布。 6、粒径和等效粒径: 粒径就是颗粒直径。这概念是很简单明确的,那么什么是等效粒径呢,粒径和等效粒径有什么关系呢?我们知道,只有圆球体才有直径,其它形状的几何体是没有直径的,而组成粉体的颗粒又绝大多数不是圆球形的,而是各种各样不规则形状的,有片状的、针状的、多棱状的等等。这些复杂形状的颗粒从理论上讲是不能直接用直径这个概念来表示它的大小的。而在实际工作中直径是描述一个颗粒大小的最直观、最简单的一个量,我们又希望能用这样的一个量来描述颗粒大小,所以在粒度测试的实践中的我们引入了等效粒径这个概念。 等效粒径是指当一个颗粒的某一物理特性与同质的球形颗粒相同或相近时,我们就

粒度粒度分布测定法

粒度粒度分布测定法 本法用于测定原料药和药物制剂的粒子大小或粒度分布。其中第一法、第二法用于测定药物制剂的粒子大小和限度,第三法用于测定原料药从药物制剂的粒度分布。 第一法(显微镜法) 本法中的粒度,系以显微镜下观察到的长度表示。 目镜测微尺的标定照显微鉴别法(附录44)标定目镜测微尺。 测定法除另有规定外,取供试品,用力摇匀,黏度较大者可按品种项下的规定加适量甘油溶液1→2稀释,照该剂型或品种项下的规定取供试品,置载玻片上,覆以盖玻片(注意防止气泡混入),轻压使颗粒分布均匀,注意防止气泡混入;半固体可直接涂于载玻片上。立即在50-100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或品种项下规定的50um及以上的粒子。再在200-500倍显微镜下检视该剂型或品种项下规定的视野内的总粒数及规定大小的粒数,计算所占百分比。 第二法(筛分法) 筛分法一般分为手动筛分法、机械筛分法和空气喷射筛分法。手动筛分法和机械筛分法适用于测定大部分粒径大于75um的样品。对于粒径小于75um的样品,则应采用户气空气喷射筛分法或其他适宜的方法。 机械筛分法系采用机械方法或电磁方法,产生垂直振动、水平圆周运动、拍打、拍打与水平圆周运动相结合等振动方式。空气喷射筛分法则采用流动的空气流带动颗粒运动。

筛分试验时需注意环境湿度,防止样品吸水或失水。对易产生静电的样品可加入0.5%胶质二氧化硅和(或)氧化铝等抗静电剂,以减小静电作用产生的影响。 1.手动筛分法 (1)单筛分法称取各品种项下规定的供试品,置规定号的药筛中(筛下配有密合的接收容器),筛上加盖。按水平方向旋转振摇至少3分钟,并不时在垂直方向轻叩筛。取筛下的颗粒及粉末,称定重量,计算其所占比例(%)。 (2)双筛分法取单剂量包装的颗粒剂5袋(瓶)或多剂量包装的1包(瓶),称定重量,置该剂型或品种项下规定的上层(孔径大的)药筛中(下层的筛下配有密合的接收容器),保持水平状态过筛,左右往返,边筛动边拍打3分钟。取不能通过大孔径筛和能通过小孔径筛的颗粒及粉末,称定重量,计算其所占比例(%) 2.机械筛分法 除另有规定外,取直径为200mm规定号的药筛和接收容器,称定重量,根据供试品的容积密度,称取供试品25~100g,置最上层(孔径最大的)药筛中(最下层的筛下配有密合的接收容器),筛上加盖。设定振动方式和振动频率,振动5分钟。取各药筛与接收容器,称定重量,根据筛分前的重量差异计算各药筛上和接收容器内颗粒及粉末所占比例(%)。重复上述操作直至连续两次筛分后,各药筛上遗留颗粉及粉末重量的差异不超过前次遗留颗粒及粉末重量的5%或两次重量的差值不大于0.1g;若某一药筛上遗留颗粒及粉末的重量小于供试品取样量的5%,则该药筛连续两次的重量差异应不超过20%。 3.空气喷射筛分法

粒度分析方法

无机粉体材料大作业(粒度分析方法及应用范围) 姓名:史磊学号:201341053 摘要:粒径是以单个颗粒为对象,表征单颗粒和尺寸的大小,而粒度是以颗粒 群为对象,表征所有颗粒在总体上几何尺寸大小的概念。为了方便,人为规定了 一些所谓尺寸的表征方法:三轴径,定向径,当量径。粒度的测量方法主要包括: 直接观察法,筛分法,沉降法,激光法,电感应法,光散射法,吸附法,超声波 衍射法等。[1-7] 引言:粒度分析又称“机械分析”,是研究碎屑沉积物(或岩石)中各种粒度的 百分含量及粒度分布的一种方法。对于纳米材料,其颗粒大小和形状对材料的性 能起着决定性的作用。因此,对纳米材料的颗粒大小和形状的表征和控制具有重 要的意义。一般固体材料颗粒大小可以用颗粒粒度概念来描述。但由于颗粒形状 的复杂性,一般很难直接用一个尺度来描述一个颗粒大小。因此,在粒度大小的 描述过程中广泛采用等效粒度的概念。对于不同原理的粒度分析仪器,所依据 的测量原理不同,其颗粒特性也不相同,只能进行等效对比,不能进行横向直接 对比。 1颗粒大小及形状表征 1.1颗粒大小 颗粒的大小和形状是粉体材料最重要的物性特性表征量。颗粒大小的表征表 征方法主要有三种: 三轴径:三轴算术平均值、三轴调和平均值、三轴几何平均值; 定向径:定方向径、定方向等分径、定向最大径; 当量径:等体积球当量径、等表面积球当量径、比表面积球当量径、投影圆当量径、等周长圆当量径; 1.2颗粒形状 科学地描述颗粒的形状对粉体的应用有很大的帮助。同颗粒大小相比,描述 颗粒形状更加困难些。为方便和归一化起见,人们规定了某种方法,时形状的描 述量化,并且是无量纲的量。这些形状表征量统称为形状因子,主要由以下几种: 球形度、扁平度、延伸度、形状系数等等。 2.粒度分析测量方法 2.1直接观察法: 显微镜法是一种测定颗粒粒度的常用方法。根据材料颗粒的不同,既可以采 用一般的光学显微镜,也可以采用电子显微镜。与其他粒度分析方法相比较,显 微镜法的优点在于直接测量粒子本身,而不是测定与粒子相关的某些性质,操作 者可以直接观察粒子的大小、形状、外观和分散情况。对于电镜法粒度分析还可 以和电镜的其他技术联用,实现对颗粒成分和晶体结构的测定,这是其他粒度分 析法不能实现的。但是显微镜法也有一定的缺点:如有较大的统计误差,一次粒

相关文档
最新文档