图像去雾霭算法及其实现..

图像去雾霭算法及其实现..
图像去雾霭算法及其实现..

图像去雾霭算法及其实现

电气工程及其自动化

学生姓名杨超程指导教师李国辉

摘要雾霭等天气条件下获得的图像,具有图像不清晰,颜色失真等等一些图像退化的现象,直接影响了视觉系统的发挥。因此,为了有效的改善雾化图像的质量,降低雾霭等天气条件下造成户外系统成像的影响,对雾霭图像进行有效的去雾处理显得十分必要。

本设计提出了三种图像去雾算法,一种是基于光照分离模型的图像去雾算法;一种是基于直方图均衡化的图像去雾算法;还有一种是基于暗原色先验的图像去雾算法。并在MATLAB的基础上对现实生活的图像进行了去雾处理,最后对不同的方法的处理结果进行了简要的分析。

关键词:图像去雾光照分离直方图均衡化暗原色先验

Algorithm and its implementation of image dehazing

Major Electrical engineering and automation

Student Yang Chaocheng Supervisor Li Guohui

Abstract Haze weather conditions so as to obtain the image, the image is not clear, the phenomenon of color distortion and so on some image degradation, directly influence the exertion of the visual system. Therefore, in order to effectively improve the atomization quality of the image, reduce the haze caused by outdoor weather conditions such as imaging system, the influence of the haze image effectively it is necessary to deal with the fog.

This design introduced three kinds of algorithms of image to fog, a model is based on the separation of light image to fog algorithm; One is the image to fog algorithm based on histogram equalization; Another is based on the dark grey apriori algorithms of image to fog. And on the basis of MATLAB to the real life to deal with the fog, the image of the processing results of different methods are briefly analyzed.

Key words:Image to fog Light separation histogram Dark grey

目录

摘要................................................................... I Abstract. ............................................................. II 目录

1绪论图像去雾霭算法及其实现 (1)

1.1研究背景及意义 (1)

1.2当前图像去雾霭技术发展现状及其趋势 (2)

1.3 本文的章节安排 (2)

1.4小结 (3)

2图像去雾霭基础理论 (4)

2.1雾霭的形成机理 (4)

2.2图像去雾算法 (4)

2.2.1图像增强技术 (5)

2.2.2图像复原技术 (5)

2.3基于图像增强的去雾霭算法 (5)

2.3.1同态滤波 (6)

2.3.2光照分离模型 (7)

2.3.3小结 (11)

2.4基于直方图均衡化的图像去雾算法 (11)

2.4.1直方图均衡化去雾原理 (11)

2.4.2直方图均衡化模型 (12)

2.4.3直方图均衡化的算法步骤 (12)

2.4.4小结 (16)

2.5基于图像复原的去雾霭方法 (16)

2.5.1暗原色先验去雾霭原理 (16)

2.5.2暗原色先验模型 (16)

2.5.3算法概述 (17)

2.5.4小结: (20)

3实验结果 (21)

4总结与展望 (22)

附录1 光照分离代码 (23)

附录2 基于直方图均衡化的图像去雾代码 (25)

附录3 暗原色先验的去雾代码 (27)

参考文献 (29)

致谢 (30)

图像去雾霭算法及其实现

1绪论

图像作为人类感知世界的主要视觉基础,是人类获取信息以及表达信息的重要方法。因此一些雾化图像十分有必要进行一些处理。在本设计的开头部分,这章讲述了图像去雾的一些研究背景以及意义,主要介绍了当前去雾的算法以及发展趋势。最后介绍了本文的主要工作内容。

1.1研究背景及意义

社会在不断的发展,各种高科技也在不断的更新,一年比一年的雾霾现象也比较严重了。近些年,在我国出现了比较频繁的、覆盖区域也比较广泛的雾霾天气。尤其是大陆南方等地区。近几年的空气质量逐步退化,一些恶劣天气也频繁出现,PM2.5值越来越引起人们的关注。在有雾天气下拍摄的图像,由于空气重混入了不少的浑浊杂质对光的吸收和散射产生了严重的影响,最终导致了图像模糊不清,给人一种不美观的第一感觉。上述视觉效果不好不仅仅只是针对图像成像而造成的影响,给判定目标会带来一定的麻烦。在图像、视频的获取与空气质量息息相关,然而随着工业化的进程,大气污染日益严峻。大气雾霭环境下图像成像欠佳,使得图像后续处理,如目标识别等任务难度增加;在卫星遥感监测、公路监控等各方面都会造成极大的影响。本设计以公路监控为例,由于大雾弥漫,道路的能见度很低,驾驶员通过视觉获得道路的信息往往很模糊,进一步造成一些不必要的事故发生。由此可见,对雾天图像进行快速有效的处理显得十分必要。

图1四川师范大学成龙校区某角落

由图1可以很明显的看出,受浓雾的影响,图像的质量退化严重,许多地方显得十分模糊,基本无法识别和提取景物的特征。因此对图像去雾技术的研究,恢复图像等信息的处理显得十分重要。

1.2当前图像去雾霭技术发展现状及其趋势

图像去雾技术是通过一定的方法和手段,去除图像中雾的干扰,恢复出有效的图像信息及其特征,并能得到一种良好的视觉效果的图像。

图像去雾技术经历了一个漫长的过程。1992年,L.Bissonnette等人针对雾和雨天气下所做的图像进行了研究;随后John P.Oakley等人针对雾霭天气下所拍摄的彩色图像进行了去雾处理,并取得了一定的成果。目前图像去雾技术的主流是向基于模型与基于非模型的两个角度展开的。其中,基于非模型的方法可以简单的归纳为图像对比度增强的问题。比较典型和常用的图像增强方法包括直方图均衡化算法、曲波变换、小波方法、以及Retinex算法等。每种算法针对不同的场合和对象都取得不错的效果去雾效果,但是每种方法都有不同程度的不足,所以不断的引入新方法和新手段,才能使得该领域保持旺盛的生命力。

1.3 本文的章节安排

本文主要对以下几个方面进行研究和分析:

第一章绪论部分首先论述了图像去雾的研究背景及其发展趋势。

第二章详细的论述了图像去雾霭的基础理论,包括图像的增强及其复原。以及运用直方图均衡化、光照分离模型、暗原色先验的方法来处理雾化图像。

并对去雾结果进行了简要的分析。

第三章给出实验结果,对不同方法处理雾化图像进行了对比,并得出了相关的结论。

第四章对本文进行了简要的总结。

以上方法,本设计采用的直方图均衡算法是最基本的,是研究暗原色先验方法做对比时的参照;同态滤波算法在图像增强方面也取得了很大的进展;曲波变换能够很好的增强曲线边缘;暗原色先验算法是一种描述颜色恒常性的模型,具有使图像更加清晰化,图像特征更加明显,因此在图像增强方面暗原色先验要优于。

1.4小结

本设计围绕图像增强和图像复原去雾两个方面,对图像去雾技术涉及的内容进行了简单的介绍。根据雾天图像去雾处理的情况,采用不同的方法对雾化图像进行处理,并给出了各种去雾算法的实验结果图、不同方法的结果对比。采用主观和客观评价相结合的方式对图像质量进行评估。

2图像去雾霭基础理论

为了实现雾化图像的去雾处理,本章首先对雾霭的形成过程出发进行了简单的阐述,研究了图像去雾算法的分类主要包括图像增强技术以及图像复原技术。

2.1雾霭的形成机理

雾实际上是由悬浮颗粒在大气中的微小液滴构成的气溶胶,常呈现乳白色,其底部位于地球表面,所以也可以看做是接近地面的云。霭其实跟雾区别不大,它的一种解释是轻雾,多呈现灰白色,与雾的颜色十分接近。

雾霭作为一种灾害性的天气,会引起室外能见度降低,一些高速公路也会因此封锁道路,航空运输方面也会因此延误航班等等交通工具无法正常的使用。另外,人们长期停留在雾霭天气的环境中,人体会吸入不少的悬浮颗粒等有害物质,对人们的身体健康有着极大的影响,会对人体造成肺病或者流感等其他疾病。

2.2图像去雾算法

图像去雾算法可以分为两大类:一类是图像增强;另一类是图像复原。本设计将下面两个小节中逐步介绍上述的两种技术。图2介绍了图像去雾算法的分类:

图2图像去雾算法分类

2.2.1图像增强技术

为了改善视觉效果或者便于人们对图像的判别和分析,根据图像的特征采取简单的改善方法或者加强特征的措施叫做图像增强。图像增强可分为两大类:频率域法和空间域法。空间域处理主要包括:点处理,模块处理即领域处理。频率域处理主要包括:高、低通滤波、同态滤波等等。

图像增强可分为两大类:频率域法和空间域法。空间域处理主要包括:点处理,模块处理即领域处理。频率域处理主要包括:高、低通滤波、同态滤波等等。

2.2.2图像复原技术

从广义上讲,图像复原是一个求逆问题,逆问题经常存在非唯一解,甚至无解。图像复原的目的是将所观测到的退化图像恢复到退化前的原始图像,这种恢复过程在很多图像处理中的应用十分重要。目前应用最广泛的图像复原技术是Lucf-Richardson,随着迭代次数的增加,最终将会收敛在泊松统计的最大似然解处。为了更好的对图像复原的理解,图3为图像复原的流程图:

f(x,y)

图3 图像复原流程图

其中g(x,y)为降质图像函数,f(x,y)为真实图像函数。

在图像复原技术可以分为以下几类:

1)在给定退化模型条件下,分为无约束和有约束两大类。

2)根据是否需要外界干预,分为自动和交互两大类。

3)根据处理所在的域,分为频率域和空间域。

2.3基于图像增强的去雾霭算法

在本设计中将采用同态滤波的方式,通过求图像I的平滑来进行估计光照分量L,从而做到对两个分量进行分离。下面的论述中将着重介绍光照分离模型,使用同态滤波的方式来估计光照分量L。这种方法在人脸识别领域有一定的应用,可以有效地消除光,雨、雾等天气和环境减少影响人脸图像的质量,并且可以实现本地对象保持的细节。

通常,图像I (x,y )可以由光照分量L (x,y )和反射分量R (x,y )的乘积,光照分量L 取决于照射源,而反射分量R 取决于物体的内在不变的属性,如物体表面反射系数和表面法线等。因此光照预处理的问题可以转化为给定图像I 用来解决R 的问题。 2.3.1同态滤波

在进行光照分离前,我们使用同态滤波来得到光照分量L 。在生活中会得到这样的图像,它的动态范围很大,而我们感兴趣部分的灰度又很暗,图像细节无法辨认,采用一般的灰度级线性变换是不行的。同态滤波属于图像频率域处理范畴,其作用是对图像灰度范围进行调整,通过消除图像上照明不均的问题,增强暗区的图像细节,同时又不损伤亮区的图像细节。

图像的灰度由照射分量和反射分量合成。反射分量反映图象内容,随图像细节不同在空间上作快速变化。照射分量在空间上通常均具有缓慢变化的性质。照射分量的频谱落在空间低频区域,反射分量的频谱落在空间高频区域。

一般景物的图像),(y x f 可以由照明函数),(y x f i 和反射函数),(y x f r 的乘积表示。),(y x f i 表示景物的照明,与景物无关;),(y x f r 包含景物的细节,与照明无关。图3为同态滤波处理流程图: f(x,y) s(u,v) g(x,y)

Z(u,v)

图4 同态滤波处理流程图

例如,图像f(x,y)由照射分量i(x,y)与反射分量r(x,y)的乘积构成。 f(x,y)=i(x,y).r(x,y) (2-1) 公式(2-1)中。0< r(x,y)<10< f(x,y)≤i(x,y)<∞ 首先对f(x,y)取对数, z(x,y)=ln f(x,y)=ln i(x,y)+ln r(x,y) (2-2)

对公式2作傅里叶变换可得:

F (z(x,y))=F[ln i(x,y)]+F[ln r(x,y)] (2-3) 即Z (u,v )=I(u,v)+R(u,v) (2-4) 设计滤波器传递函数为H (u,v ),则

S (u,v )= H (u,v )Z (u,v )= H (u,v )I(u,v)+ H (u,v )R(u,v) (2-5)

根据不同图像特性和需要,对于公式(2-5)选用不同的H(u,v),可以得到令人满意的结果,细节对比度差,分辨不清的图像用同态滤波进行处理后,图像画面亮度比较均匀,细节得以增强。

2.3.2光照分离模型

在估计出光照分量后,进行计算物体内在的反射分量:R=I/L.

本设计将利用全变分模型来估计反射分量。全变分模型是一种经典的图像恢复方法,在图像中主要用于从观测图像中恢复图像真实,具有模型简单、需要优化的参数少的特点。

令l=logL,r=logR,i=logI则有:

i=l+r;(2-6)l是在空间上平滑的,在整个图像中变化缓慢;r在一个局部小邻域内是一个常量,r在边缘区域则变化激烈。反射系数r可以通过一个简单的值来进行分割;l

值大于r,并且接近于图像的亮度值。

mi n∫︱▽l(x,y)︱dxdy ; l∈BV(Ω)(2-7)s.t.‖i-l‖^2≤σ;(2-8)对于公式(2-7),公式(2-8)其中σ为一个常数,Ω是函数支撑集,范围覆盖整个图像。上述式的含义是光照l在空间上是平滑的,同时反射系数可以通过一个简单的阀值分割出来。可以将上述式子改写成:

E=mi n[∫▽l+λ(l-i)^2];l∈BV(Ω)(2-9)其中Ω是图像区域,λ是非负实数。即可求得光照l的估计。

这种算法的一般步骤如下:

1)给定图像I,取得对数得到i=logI;

2)去初始值l0=i,根据上述公式求解全变模型。求得l。

3)对光照l做指数运算,得到L。

4)再根据公式求取反射系数模型R。

基于光照分离模型图像去雾流程图如图5:

图5光照分离模型图像去雾流程图运用matlab软件编写程序代码获取下面效果图:

图6原始图像

图7高通滤波器

图8原始直方图灰度值

图9均衡后的直方图

图10光照分离后的图像

2.3.3小结

从上述图像中可以看出这种算法是把频率过渡和灰度变换相结合的图像增强的方法,利用压缩亮度范围和增强对比度来改善图像质量的处理技术。能够很好的去掉光照不均匀所产生的黑斑;能够比较好的保持图像的原始风貌。

2.4基于直方图均衡化的图像去雾算法

本章主要讨论了直方图均衡化处理的基本原理以及相关模型,并用MATLAB 语言实现了直方图均衡化的图像增强处理,结果表明,直方图均衡化方法并不能生成平坦的直方图,但它具有能增强图像灰度级的动态范围的特性。

2.4.1直方图均衡化去雾原理

目前,对于去雾图像进行清晰化处理的技术主要分为两大类:一种是基于图像处理,通过增强图像对比度而达到清晰化目的;另一种是基于物理模型的图像复原方法,从雾形成原因的角度对大气散射作用进行建模分析处理的。图11为简单的直方图均衡的分类示意图:

图11直方图均衡的分类示意图

基于直方图均衡化的算法以概率论为基础,用灰度变换达到图像增强的目的,是图像增强中最常用的算法之一。本文介绍一种基于累积分布函数变换法为基础的直方图均衡化。它可以通过对直方图进行均匀修正技术,可使图像的灰度间距增大,从而使图像变得更加清晰。

2.4.2直方图均衡化模型

对于连续图像,设r和s分别代表被增强图像和变换图像后图像的灰度。为了简单,在下面的讨论中,假定所有像素的灰度都被归一化了,就是说,当r=s=0时,表示黑色;当r=s=1时表示白色;变换函数T(r)与原图像概率密度函数P(r)之间的关系为:

s=T(r)=∫Pr(r)dr (0 ≤r≤ 1) (2-10)这是原始图像灰度r的,累积分布函数。式中累积分布函数是r的函数,单调从0增加到1,所以这个变换函数满足求导由此可见,变换后的变量s的定义域内的概率密度是均匀分布的。由此可见,用r累积分布函数作为变换函数可产生一幅灰度级分布具有均匀概率密度的图像。其结果扩展了像素取值的动态范围。

为了对图像进行数字处理,必须引入离散形式的公式。当灰度级是离散值的时候,可用频数近似代替概率值,即:

Pr(rk)= Nk

n

(0

公式2-12)中,L是灰度级数;()

r k

p r是取第k级灰度值的概率;Nk是在图像中出现第k级灰度的次数;n是图像中像素数。

通常把为得到均匀直方图的图像增强技术叫做直方图均衡化处理或直方图线性化处理

2.4.3直方图均衡化的算法步骤

直方图均衡化的算法步骤如下:

1)、列出原始图像和变换后图像的灰度级:I,j=0,1,,L-1,其中L是灰度级的个数;2)、统计原图像各灰度级的像素个数ni;

3)、计算原始图像直方图:P(i)=ni/N,N为原始图像像素总个数;

4)、利用灰度变换函数计算变换后的灰度值,并四舍五入:j=INT[(L-1)Pi+0.5];5)、确定灰度变换关系i→j,根据此将原图像的灰度值f(m,n)=i修正为g(m,n)=j 统计变换后各灰度级的像素个数nj;

6)、计算变换后图像的直方图:p(j)=nj/N

图12 直方图均衡化示意图根据图12直方图均衡化示意图做出下面图像效果:

图13输入图像

图14原始图像直方图

图15均衡化后的直方图

图16均衡化的图像

图17 直方图均衡化后的总示意图

2.4.4小结

结果分析:由输入图像图13和输出图像图16可以很清楚的看出,图像效果很好的增强,效果比较明显,图14原始图像的直方图分布比较密集,灰度级动态范围窄而集中于灰度级的中部,导致了图像的对比度低而使整幅图像模糊不清,图15经过直方图均衡化处理后直方图的成分覆盖了灰度级很宽的范围,而且像素的分布没有不太均匀,图像的局部特征得到了增强。因此这种把有雾图像的直方图变换为均匀分布的形式,这样就增加了像素灰度值的动态范围从而达到增强雾天图像整体对比度的效果。

2.5基于图像复原的去雾霭方法

2.5.1暗原色先验去雾霭原理

暗原色先验(dark channel prior)由何恺明等人首先提出。暗原色先验来自对户外无雾图像数据库的统计规律,它基于经观察得到的这么一个关键事实--绝大多数的户外无雾图像的每个局部区域都存在某些至少一个颜色通道的强度值很低的像素。

在被雾干扰的图像里,这些暗像素的强度值会被大气中的白光成分所充斥而变得较高。因此,这些暗像素能够直接用来评估雾光的透射信息。利用这个先验建立的去雾模型,结合一个已有的雾成像模型和插值法抠图修复,可以得到高质量的去雾图像和很好的深度图。求取暗原色的数学表达式描述如下:

Jdark(x)=min(min(Jc(y)));c∈(r,g,b);y∈Ω(x)(2-12)公式(2-13)中:Jdark(x)即图像J的强度值接近于0的暗原色;Jc为J的R、G、B三通道中的一个通道;Ω是以x为中心的一块区域,这里假设图像Ω具有相同的深度。在带雾里,这些暗原色的强度值会变高,并且决定着透射率的大小,这样就能够很好的估测透过率了。暗原色点主要存在于物体的局部阴影、自然景观的投影等等。关于引起暗原色的原因,何恺明这样解释:红、蓝、绿为光学三原色,即使是嫩绿的树木,其红色和蓝色的亮度也会很低,所以也会有暗原色。

2.5.2暗原色先验模型

(1)估测透射率分布

透射率反映了光在大气中传输的重要特性。假设大气是均匀的在一定时刻对于整幅图像来说,全散射系数β是个定值,因此图像上各点退化的程度是不同的,是

图像的平滑处理与锐化处理

数字图像处理作业题目:图像的平滑处理与锐化处理 :张一凡 学号:4 专业:计算机应用技术

1.1理论背景 现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。 图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。空间域处理是在图像本身存在的二维空间里对其进行处理。而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。 在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。 1.2介绍算法 图像平滑算法:线性滤波(邻域平均法) 对一些图像进行线性滤波可以去除图像中某些类型的噪声。领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。 领域平均法是空间域平滑噪声技术。对于给定的图像()j i f,中的每个像素点()n m,,取其领域S。设S含有M个像素,取其平均值作为处理后所得图像像素点()n m,处的灰度。用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。

领域S 的形状和大小根据图像特点确定。一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。如S 为3×3领域,点(m,n)位于S 中心,则 ()()∑∑-=-=++=1111 ,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为 ()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1 ,1 ,1 , 由上式可知,经过平均后,噪声的均值不变,方差221σσM = ,即方差变小,说明噪声强度减弱了,抑制了噪声。 图像锐化算法:拉普拉斯算子 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性,比较适用于改善因为光线的漫反射造成的图像模糊。其原理是,在摄像记录图像的过程中,光点将光漫反射到其周围区域,这个过程满足扩散方程: f kV t f 2=?? 经过推导,可以发现当图像的模糊是由光的漫反射造成时,不模糊图像等于模糊图像减去它的拉普拉斯变换的常数倍。另外,人们还发现,即使模糊不是由于光的漫反射造成的,对图像进行拉普拉斯变换也可以使图像更清晰。

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1) 实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y):

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

仪表显示的图像识别算法研究

仪表显示的图像识别算法研究 摘要:随着社会的逐渐发展,人类的生活越来越趋于智能化。本文根据当今社会对于图像识别研究的发展现状,针对目前人们生活中人工读表的弊端,提出了通过采集仪表显示的图像并进行图像识别算法处理来达到智能自动读表的方法。 为了能快速获得采集数据,减少人们生活中繁复的人工作业。本文通过多样的图像处理来代替人眼识别图像。只需要得到采集到的图像,就可以利用计算机来进行计算和识别,得出最后的数字。本文采用了一系列的图像处理方法,包括图像的去噪,二值化分割,边缘检测和基于数学形态学的膨胀腐蚀操作等。同时通过多种尝试和比较各种方法的优缺点得到了一套简易而又完善,快速的图像识别算法。 在进行多次测试试验后,本文采用数码相机来进行图像的采集,同时经过图像预处理、图像分割、图像识别等一系列流程得出了较为完善的图像采集和识别系统,为未来信息传递智能化提供了基础,对于促进工业发展或是改善生活水平都有重要的意义。 关键词:图像预处理、二值化、边缘检测、形态学、去噪、图像分割、图像匹配 The research of image recognition displayed by the instrument Abstract: With the continuous development of society, people's lives become more and more intelligent. Based on the current development in today's society for the study of image recognition, according to the present disadvantages of manual meter reading in peop le’s lives, this page proposed the way by collecting the instruments display image and then deals it with image recognizing algorithms to achieve intelligent automatic meter. In order to quickly gather data, reducing manual work in people’s lives complicated. The page uses a series of image processing to replace human eye image recognition. Just need the collected images, we can use a computer to calculate and identify, then we will arrive at a final figure. We used a variety of image processing methods, including image denoising, thresholding segmentation, expansion of edge-detection based on mathematical morphology and corrosion and so on. And

基于MATLAB的图像平滑算法实现及应用

目录 1.3 图像噪声 一幅图像在获取和传输等过程中,会受到各种各样噪声的干扰,其主要来源有三:一为在光电、电磁转换过程中引入的人为噪声;二为大气层电(磁)暴、闪电、电压、浪涌等引起的强脉冲性冲激噪声的干扰;三为自然起伏性噪声,由物理量的不连续性或粒子性所引起,这类噪声又可分成热噪声、散粒噪声等。一般在图像处理技术中常见的噪声有:加性噪声、乘性噪声、量化噪声、“盐和胡椒”噪声等。下面介绍两种主要的噪声。 1、高斯噪声 这种噪声主要来源于电子电路噪声和低照明度或高温 带来的传感器噪声,也称为正态噪声,是在实践中经常用到的噪声模型。高斯随机变量z 的概率密度函数(P D F )由下式给出: }2/)(ex p{2/1)(22σμσπ--=z z p 其中, z 表示图像像元的灰度值;μ表示z 的期望;σ表示z 的标准差。 2、椒盐噪声 主要来源于成像过程中的短暂停留和数据传输中产生 的错误。其P D F 为: ?????===其他0)(b z pb a z pa z p 如果b > a , 灰度值b 在图像中显示为一亮点,a 值显

示为一暗点。如果P a和图像均不为零,在图像上的表现类似于随机分布图像上的胡椒和盐粉微粒,因此称为椒盐噪声。当P a为零时,表现为“盐”噪声;当P b为零时,表现为“胡椒”噪声。 图像中的噪声往往是和信号交织在一起的尤其是乘性 噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓‘线条等模糊不清,从而使图像质量降低。

第二章、图像平滑方法 2.1 空域低通滤波 将空间域模板用于图像处理,通常称为空间滤波,而空间域模板称为空间滤波器。空间域滤波按线性和非线性特点有:线性、非线性平滑波器。 线性平滑滤波器包括领域平均法(均值滤波器),非线 性平滑滤波器有中值滤波器。 2.1.1 均值滤波器 对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。邻域平均法是空间域平滑技术。这种方法的基本思想是,在图像空间,假定有一副N ×N 个像素的原始图像f (x ,y ),用领域内几个像素的平均值去代替图像中的每一个像素点值的操作。经过平滑处理后得到一副图像 g (x ,y ), 其表达式如下: ∑∈=s n m n m f M y x g ),(),(/1),( 式中: x ,y =0,1,2,…,N -1;s 为(x ,y )点领域中点的坐标的集合,但不包括(x ,y )点;M 为集合内坐标点的总数。 领域平均法有力地抑制了噪声,但随着领域的增大,图像的模糊程度也愈加严重。为了尽可能地减少模糊失真,也可采用阈值法减少由于领域平均而产生的模糊效应。其公式如下: ?????>-=∑∑∈∈其他),(),(/1),(),(/1),(),(),(y x f T n m f M y x f n m f M y x g s n m s n m 式中:T 为规定的非负阈值。

图像锐化处理

课 程 设 计 报 告 学 院: 自动化学院 专业名称: 信息工程 学生姓名: 赵建涛 指导教师: 赵春晖 时 间: 2011年9月

课程设计任务书 一、设计内容 对图像采用微分运算的方法进行锐化处理。 要求:编写Matlab 程序对图像进行处理。图像必须存于指定位置,处理后的图像也必须存于指定位置。该程序能运行,可处理不同的图像。图像处理算法自己制定,不得使用现成的Matlab 函数。拉普拉斯算子如下: -4-4-4 -4-4-4-4-4-41111111 111 111111111111111111 111111110 二、主要技术指标 1、熟悉图像锐化处理基本原理; 2、对彩色图像进行图像锐化处理; 3、将该模版与其他模版的图像分析效果进行比较; 4、阅读参考文献10篇以上。 三、进度要求 两周完成设计任务,写5000字以上的小论文。附参考文献并在论文上相应位置进行标注。 学 生 赵建涛 指导教师 赵春晖

基于微分运算的彩色图像锐化处理 摘要 数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20 世纪60年代初期。图像处理的基木目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更局、更深层次发展[1]。 在数字图像处理中,图像经转换或传输后,质量可能下降,难免有些模糊。另外,图像平滑在降低噪声的同时也造成目标的轮廓不清晰和线条不鲜明,使目标的图像特征提取、识别、跟踪等难以进行,这一点可以利用图像锐化来增强.图像锐化的主要目的有两个:一是增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图像;二是希望经过锐化处理后,目标物体的边缘鲜明,以便于提取目标的边缘、对图像进行分割、目标区域识别、区域形状提取等,为进一步的图像理解与分奠定定基础。图像锐化一般有两种方法:一是微分法,二是高通滤波法。 本文着重介绍的是基于拉普拉斯的一种典型的微分算法,并选择不同的模版进行图像锐化,分析比较不同模版下锐化效果的异同。 关键字:图像锐化拉普拉斯算子模版

车辆牌照图像识别算法研究与实现本科毕设论文

Q260046902 专业做论文 西南科技大学 毕业设计(论文)题目名称:车辆牌照图像识别算法研究与实现

车辆牌照图像识别算法研究与实现 摘要:近年来随着国民经济的蓬勃发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制、安全管理的要求也日益提高。因此,汽车牌照识别技术在公共安全及交通管理中具有特别重要的实际应用意义。本文对车牌识别系统中的车牌定位、字符分割和字符识别进行了初步研究。对车牌定位,本文采用投影法对车牌进行定位;在字符分割方面,本文使用阈值规则进行字符分割;针对车牌图像中数字字符识别的问题,本文采用了基于BP神经网络的识别方法。在学习并掌握了数字图像处理和模式识别的一些基本原理后,使用VC++6.0软件利用以上原理针对车牌识别任务进行编程。实现了对车牌的定位和车牌中数字字符的识别。 关键词:车牌定位;字符分割;BP神经网络;车牌识别;VC++

Research and Realization of License Plate Recognition Algorithm Abstract:In recent years, with the vigorous development of the national economy,there are more and more construct in the domestic expressway, urban road, and parking area. The requisition on the traffic control, safety management improves day by day. Therefore, license plate recognition technology has the particularly important practical application value in the public security and the traffic control. In the paper, a preliminary research was made on the license location, characters segment and characters recognition of the license plate recognition. On the license location,the projection was used to locate the license plate; On the characters segmentation, the liminal rule was used to divide the characters; In order to solve the problem of the digital characters recognition in the plate, BP nerve network was used to recognize the digital characters. After studying and mastering some basic principles of the digital image processing and pattern recognition, the task of license plate recognition was programmed with VC++ 6.0 using above principles. The license location and the digital characters recognition in the license plate were implemented. Keywords: license location, characters segmentation, BP nerve network, license plate recognition, VC++

MATLAB 实现数字图像锐化处理

MATLAB 实现数字图像锐化处理 摘要:讨论了数字图像增强技术中空域图像锐化的四种算法及其用MATLAB的实现;同时给出了利用四种算法进行图像锐化后的对照图像。比较实验结果,可知运用算法锐化处理后,图像比原来图像清晰。 关键词:MATLAB、线性锐化、非线性锐化、sobel算子、prewitt算子、log算子 1.引言 MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际运用中MATLAB 中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了MATLAB 在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。 二维图像均匀采样,可得到一幅离散化成M ×N 样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的。而MATLAB 的长处就是处理矩阵运算,因此用MATLAB 处理数字图像非常的方便。MATLAB 支持五种图像类型,即索引图像、灰度图像、二值图像、RGB 图像和多帧图像阵列;支持BMP,GIF,HDF,JPEG,PCX,PNG,XWD,CUR,ICO等图像文件格式的读、写和显示。MATLAB 对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作口。 数字图像处理中图像锐化的目的有两个:一是增强图像的边缘,使模糊的图像变得清晰起来;这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。二是提取目标物体的边界,对图像进行分割,便于目标区域的识别等。通过图像的锐化,使得图像的质量有所改变,产生更适合人观察和识别的图像。 2.数字图像的锐化 数字图像的锐化可分为线性锐化滤波和非线性锐化滤波。如果输出像素是输入像素领域像素的线性组合则称为线性滤波,否则称为非线性滤波。 2.1线性锐化滤波器 线性高通滤波器是最常用的线性锐化滤波器。这种滤波器必须满足滤波器的中心系数为正数,其他系数为负数。线性高通滤波器3 ×3 模板的典型系数如表1 所示: 表 1 用线性高通滤波实现图像锐化的程序和图像如下: F=imread('F:/text.png'); %读入图像 f=rgb2gray(F); h=double(f); %转化为double类型 g=[-1 -1 -1; -1 8 -1; -1 -1 -1];%线性高通滤波3×3 模板

基于retinex的图像去雾算法

I=imread('1.jpg'); R = I(:, :, 1); G = I(:, :, 2); B = I(:, :, 3); R0 = double(R); G0 = double(G); B0 = double(B); [N1, M1] = size(R); Rlog = log(R0+1); Rfft2 = fft2(R0); sigma1 = 128; F1 = fspecial('gaussian', [N1,M1], sigma1); Efft1 = fft2(double(F1)); sigma2 = 256; F2 = fspecial('gaussian', [N1,M1], sigma2); Efft2 = fft2(double(F2)); sigma3 = 512; F3 = fspecial('gaussian', [N1,M1], sigma3); Efft3 = fft2(double(F3)); DR0 = Rfft2.* Efft1; DR = ifft2(DR0); DRlog = log(DR +1); Rr1 = Rlog - DRlog; DR0 = Rfft2.* Efft2; DR = ifft2(DR0); DRlog = log(DR +1); Rr2 = Rlog - DRlog; DR0 = Rfft2.* Efft3; DR = ifft2(DR0); DRlog = log(DR +1); Rr3 = Rlog - DRlog; Rr = (Rr1 + Rr2 +Rr3)/3; a = 125; II = imadd(R0, G0); II = imadd(II, B0); Ir = immultiply(R0, a); C = imdivide(Ir, II); C = log(C+1); Rr = immultiply(C, Rr); EXPRr = exp(Rr); MIN = min(min(EXPRr)); MAX = max(max(EXPRr)); EXPRr = (EXPRr - MIN)/(MAX - MIN); EXPRr = adapthisteq(EXPRr); Glog = log(G0+1); Gfft2 = fft2(G0); DG0 = Gfft2.* Efft1;

图像去雾霭算法及其实现..

图像去雾霭算法及其实现 电气工程及其自动化 学生姓名杨超程指导教师李国辉 摘要雾霭等天气条件下获得的图像,具有图像不清晰,颜色失真等等一些图像退化的现象,直接影响了视觉系统的发挥。因此,为了有效的改善雾化图像的质量,降低雾霭等天气条件下造成户外系统成像的影响,对雾霭图像进行有效的去雾处理显得十分必要。 本设计提出了三种图像去雾算法,一种是基于光照分离模型的图像去雾算法;一种是基于直方图均衡化的图像去雾算法;还有一种是基于暗原色先验的图像去雾算法。并在MATLAB的基础上对现实生活的图像进行了去雾处理,最后对不同的方法的处理结果进行了简要的分析。 关键词:图像去雾光照分离直方图均衡化暗原色先验

Algorithm and its implementation of image dehazing Major Electrical engineering and automation Student Yang Chaocheng Supervisor Li Guohui Abstract Haze weather conditions so as to obtain the image, the image is not clear, the phenomenon of color distortion and so on some image degradation, directly influence the exertion of the visual system. Therefore, in order to effectively improve the atomization quality of the image, reduce the haze caused by outdoor weather conditions such as imaging system, the influence of the haze image effectively it is necessary to deal with the fog. This design introduced three kinds of algorithms of image to fog, a model is based on the separation of light image to fog algorithm; One is the image to fog algorithm based on histogram equalization; Another is based on the dark grey apriori algorithms of image to fog. And on the basis of MATLAB to the real life to deal with the fog, the image of the processing results of different methods are briefly analyzed. Key words:Image to fog Light separation histogram Dark grey

图像平滑与锐化处理

图像平滑与锐化处理 1 图像平滑处理 打开Image Interpreter/Utilities/Layer Stack对话框,如图1-1 图1-1 打开Layer Stack对话框 在Input File中打开tm_striped.img,在Layer中选择1,在Output File中输入输出文件名band1.img,单击Add按钮。忽略零值,单击OK(如图1-2所示)。 图1-2 Layer Stack对话框设置

打开Interpreter>Spatial Enhancement>Convolution对话框。如图1-3 图1-3 打开Convolution对话框 在Input File中选择band1.img。在Output File中选择输出的处理图像,命名为lowpass.img。在Kernel中选择7*7Low Pass,忽略零值。单击OK完成图像的增强处理(如图1-4所示)。 图1-4 卷积增强对话框(Convolution) 平滑后的图像去掉噪音的同时造成了图像模糊,特别是对图像的边缘和细节消弱很多。而且随着邻域范围的扩大,在去噪能力增强的同时模糊程度越严重(如图1-5)。

图1-5 处理前后的对比 为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T,将原有图像灰度值f(i,j),和平均值g(i,j)之差的绝对值与选定的阈值进行比较,根据比较结果决定像元(i,j)的最后灰度值G(i,j)。当差小于阈值的时候取原值;差大于阈值的时候取平均值。这里通过查询得T取4,其表达式为下: g(i,j),当| f(i,j)-g(i,j)|>4 G(i,j)= f(i,j),当| f(i,j)-g(i,j)|<=4 具体操作步骤:在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图 1-6,1-7,1-8,1-9,1-10,1-11所示)。

基于MATLAB的图像锐化算法研究

中北大学 课程设计说明书 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 基于MATLAB的图像锐化算法研究 指导教师:陈平职称: 副教授 2013 年 12 月 15 日 中北大学 课程设计任务书

13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 课程设计题目:信息处理综合实践: 基于MATLAB的图像锐化算法研究起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日 课程设计任务书

课程设计任务书

目录 1 绪论 (1)

1.1 MATLAB简介 (1) 1.2 MATLAB对图像处理的特点 (1) 1.3 图像锐化概述 (2) 1.4 图像锐化处理的现状和研究方法 (2) 2 设计目的 (2) 3 设计内容和要求 (2) 4 总体设计方案分析 (2) 5 主要算法及程序 (4) 5.1 理想高通滤波器锐化程序 (4) 5.2 高斯高通滤波器锐化程序 (5) 5.3 高提升滤波器锐化程序 (6) 6 算法结果及比较分析 (8) 6.1 理想高通滤波器锐化结果 (8) 6.2 高斯高通滤波器锐化结果 (9) 6.3 高提升滤波器锐化结果 (10) 6.4 算法结果比较分析 (11) 7 设计评述 (11) 参考文献 (12)

1 绪论 数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。图像处理的基本目的是改善图像的质量。它以人为对象,改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常见的图像处理方法有图像增强、复原、编码、压缩等。图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天。生物医学工程、工业检测、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注意、前景远大的新型科学。随着图像处理技术的深入发展,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理更高、更深层次发展。 1.1 MATLAB简介 MATLAB全称Matrix Laboratory(矩阵实验室),最早初由美国Cleve Moler 博士在20世纪70年代末讲授矩阵理论和数据分析等课程时编写的软件包Linpack和Eispack组成。它用于数学、信息工程、摇感、机械工程、计算机等专业。它的推广得到各个领域专家的关注,其强大的扩展功能为各个领域应用提供了基础,各个领域的专家相继推出MATLAB工具箱,而且工具箱还在不断发展,借助于这些工具箱,各个层次的研究人员可直接、直观、方便地进行工作,从而节省大量的时间。目前,MATLAB语言已经成为科学计算、系统仿真、信号与图像处理的主流软件。本文主要从MATLAB图像处理方面做应用。 1.2MATLAB对图像处理的特点 MATLAB全称Matrix Laboratory(矩阵实验室),是一种主要用于矩阵数据值计算的软件,因其在矩阵运算上的特点,使得MATLAB在处理图像上具有独特优势,理论上讲,图像是一种二维的连续函数,而计算机在处理图像数字时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样个量化的过程。二维图像均匀采样,课得到一副离散化成N×N样本的数字图像,该数字图像是一个整数列阵,因而用矩阵来描述该数字图像是最直观最简便的。

基于matlab的图像去雾算法详细讲解与实现附matlab实现源代码

基于matlab的图像去雾算法详细讲解与实现-附matlab 实现源代码

————————————————————————————————作者: ————————————————————————————————日期: ?

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为:? S(x,y)=R(x,y)×L(x,y) (1.3.1)实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x,y)=r(x,y)+l(x, y)=log(R(x,y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x,y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x,y): G(x,y)=S'(x, y)-log(D(x, y)) ;

图像锐化的目的和意义

图像锐化的目的和意义 图像模糊的主要原因是图像中的高频成分低于低频成分,它对图像质量的影响体现在两个不同均匀灰度区域的边界部分。 当成像参数正确,图像的亮度变化传递正常时,在图像中对象边缘与背景之间的理想边缘面应该时阶梯形的,这样的图像看上去边缘清晰,反之,则会边缘模糊,其特征时对象与背景间的灰度改变有一个过渡带,这将损害图像的视觉效果。要消除图像中不应又的模糊边缘,需要增强图像中的高频成分,使边缘锐化。 图像锐化是一种使图像原有的信息变换到有利于人们观看的质量,其目的是为了改善图像的视觉效果,消除图像质量劣化的原因(模糊),使图像中应又的对象边缘变得轮廓分明。 图像的锐化,需要利用积分的反运算(微分),因为微分运算是求信号的变化率,又加强图像中高频分量的作用,从而要锐化图像需要采用各向同性的,具有旋转不变特征的线性微分算子。 图像锐化是一种补偿轮廓、突出边缘信息以使图像更为清晰的处理方法.锐化的目标实质上是要增强原始图像的高频成分.常规的锐化算法对整幅图像进行高频增强,结果呈现明显噪声.为此,在对锐化原理进行深入研究的基础上,提出了先用边缘检测算法检出边缘,然后根据检出的边缘对图像进行高频增强的方法.实验结果表明,该方法有效地解决了图像锐化后的噪声问题 图像的锐化可以在空间域中进行,也可以在频率域中实现。 一. 图像信号的锐化过程 1.空间域中锐化图像的目的 在空间域中进行图像的锐化也成为空间滤波处理,目的又 (1)一是提取图像中用于认识和识别图像特征的参量,为 图像识别准备数据 (2)消除噪声。图像数字化时产生的噪声主要是造成对图像 内容的干扰,这用图像的平滑处理。图像数字化时在信号 高频区域产生的误差以及设备自身噪声对图像的高频(轮 廓特征)干扰同样也是一种噪声,可以用空间滤波的方法 去除。

基于Matlab的图像边缘检测算法的实现及应用汇总

目录 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1 课程设计选题的背景及意义 (3) 1.2 图像边缘检测的发展现状 (4) 第二章边缘检测的基本原理 (5) 2.1 基于一阶导数的边缘检测 (8) 2.2 基于二阶导的边缘检测 (9) 第三章边缘检测算子 (10) 3.1 Canny算子 (10) 3.2 Roberts梯度算子 (11) 3.3 Prewitt算子 (12) 3.4 Sobel算子 (13) 3.5 Log算子 (14) 第四章MATLAB简介 (15) 4.1 基本功能 (15) 4.2 应用领域 (16) 第五章编程和调试 (17) 5.1 edge函数 (17) 5.2 边缘检测的编程实现 (17) 第六章总结与体会 (20) 参考文献 (21)

摘要 边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。 边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。 关键词:边缘检测;图像处理;MATLAB仿真

引言 边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。 本设计主要讨论其中5种边缘检测算法。在图像处理的过程需要大量的计算工作,我们利用MATLAB各种丰富的工具箱以及其强大的计算功能可以更加方便有效的完成图像边缘的检测。并对这些方法进行比较

图像锐化的方法及比较

图像的锐化 摘要:图像平滑往往使图像中的轮廓变得模糊,为了减少这类不利影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。本文分析了图像锐化方法中的梯度算子法和二阶导数算子法的各自特点,其中梯度算子法主要是Roberts 梯度算子法、Prewitt 梯度算子法、Sobel 算子法;二阶导数算子法为Laplacian 算子法,并通过编程对一张实际图片进行了试验对比,结果证明Laplacian 算子法锐化效果最好。 引言 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。图像锐化处理的主要技术体现在空域和频域的高通滤波,而空域高通滤波主要用模版卷积来实现。 1、梯度算子法 在图像处理中,一阶导数通过梯度来实现,因此利用一阶导数检测边缘点的方法就称为梯度算子法。梯度值正比于像素之差。对于一幅图像中突出的边缘区,其梯度值较大;在平滑区域梯度值小;对于灰度级为常数的区域,梯度为零。 1.1、Roberts 梯度算子法 Roberts 梯度就是采用对角方向相邻两像素之差,故也称为四点差分法。对应的水平和垂直方向的模板为: 标注 的是当前像素的位置(i,j)为当前像素的位置,其计算公式如下: ??????-=? 1001x G ??????-=?0110y G ?

基于matlab图像锐化算法的研究与实现 开题报告

x学院毕业论文(设计) 开题报告 题目:图像锐化算法的研究与实现 姓名: x 学号: 080502221 系别: 物理与电子信息工程系 专业: 电子信息科学与技术 年级: 200x级 指导老师: x 2011年11月5日

一、选题依据(含研究的目的和意义等) 目前,图像锐化是数字图像处理的最基本的方法之一,它是为了突出图像总的细节或者增强被模糊地细节,这种模糊不是由于错误操作,就是特殊获取方法的固有影响。图像锐化处理的方法多种多样,其也包括多种应用,从电子印象和医学成像到工业检测和军事系统的的制导,等等. 从图像平滑处理图像,我们可以看到在空间域用像素领域平均法可以使图像变模糊.因为均值处理与积分相似,从逻辑的角度,我们可以断定锐化处理可以用空间微分来完成。在这次设计中将实现数字微分锐化的各中定义及其实现算子。微分算子的响应程度与图像在该点(应用了算子)的突变程度有关。这样一来,图像微分增强了边缘轮廓的高频分量,在这次我们将用Matlab实现图像锐化算法(即微分算子),并对其不同的微分锐化算子比较看其优缺点和应用场合,以及改变算法参数对锐化结果的影响。它的实现将改善人的视觉效果或便于人或机器对图像的分析理解,根据图像的特点或存在的问题,以及应用目的所采取的不同算子改善图像质量或增强图像的某些特征的措施。 二、研究的内容及目标 1、研究内容 ①应用Matlab实现传统的图像锐化算法; ②分析不同算子的优缺点和应用场合; ③改变算法的一些参数后对锐化效果的影响。 2、研究目标 合理的运用不同的算子锐化各类不同的图像,得到目标图像。加深对算子的理解,学会用矩阵实验室(Matlab)对图像进行锐化处理。

相关文档
最新文档