黄冈中学高考数学典型例题18不等式的证明策略

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈中学

高考数学典型例题详解

不等式的证明

每临大事,必有静气;静则神明,疑难冰释;

积极准备,坦然面对;最佳发挥,舍我其谁?

敬请搜索“黄冈中学高考数学知识点”

结合起来看效果更好

体会绝妙解题思路

建立强大数学模型

感受数学思想魅力

品味学习数学快乐

不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.

●难点磁场

证法五:假设a+b>2,则

a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1,又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)

因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)

相关文档
最新文档