基于SPOT卫星影像的水域特征提取_王伟

基于SPOT卫星影像的水域特征提取_王伟
基于SPOT卫星影像的水域特征提取_王伟

第33卷第2期2010年4月

测绘与空间地理信息

GEOMATICS&SPATIALINFORMATIONTECHNOLOGY

Vol.33,No.2

Apr.,2010

收稿日期:2009-12-11

作者简介:王 伟(1966-),男,辽宁大连人,工程师,1986年毕业于信息工程大学军事工程专业,现从事航空摄影测量工作。

基于SPOT卫星影像的水域特征提取

王 伟,周延萍,王 睿

(解放军65015部队,辽宁大连116023)

摘要:从卫星遥感影像中快速、准确地提取水体信息已成为水资源调查,水资源宏观监测及湿地保护的重要手

段,但目前,进行水体提取所使用方法都是完全人工或者半人工半自动化的手段,都摆脱不了人工操作,还没有一个完全智能化的手段。本文利用ERDAS软件进行卫星影像中水域特征提取,通过图像分类的方法,提取遥感影像水域特征,得出实验结果,并进行分析和评价。

关键词:监督分类;水域;特征提取

中图分类号:TP75 文献标识码:B 文章编号:1672-5867(2010)02-0099-02

HydroFeaturesExtractionBasedonSPOTSatelliteImage

WANGWei,ZHOUYan-Ping,WANGRui

(People'sLiberationArmyNo.65015Force,Dalian116023,China)

Abstract:ExtractingHydroFeaturesfromremotesensingimagefastandaccuratelyhasbecomeanimportantmethodinhydrore-sourcesinvestigate,hydroresourcesmacroscopicallysurveyingandmarshprotection.Butatpresent,themethodsofhydrofeaturesex-tractionareartificialorhalf-artificialandsemiautomatic,whichcannotgetridofmanualwork,andthereisnotanentireintelli-gentizedmethod.ThispaperhastakenuseofERDASsoftwaretocarryonextractinghydrofeaturesfromsatelliteimage.Theresultscanbegotten,analyzedandevaluatedbyimageclassification.Keywords:supervisedclassification;Hydroarea;featureextraction

0 引 言

使用ERDAS软件进行监督分类提取水域特征。

监督分类一般有以下几个步骤:定义分类模板、评鉴分类模板、进行监督分类、评价分类结果,下面将结合例子讲述这几个步骤:

1 定义分类模板

ERDASIMAGINE的监督分类是基于分类模板来进行的,而分类模板的生成、管理、评价和编辑等功能是由分类模板编辑器来负责的。毫无疑问,分类模板生成器是进行监督分类一个不可缺少的组件。

在分类模板生成器中生成分类模板的基础是原图像和其他特征空间图像。因此,显示这两种图像的视窗也是进行监督分类的重要组件。

第一步:显示需要进行分类的图像;第二步:打开模板编辑器并调整显示字段;

有些字段对分类的意义不大,我们希望不显示这些字段,需要进行调整;

第三步:获取分类模板信息。

可以分别应用AOI绘图工具、AOI扩展工具、查询光标等3种方法,在原始图像或特征空间图像中获取分类模板信息

无论是在原图像还是在下面要讲的特征空间图像中,都是产生AOI区域来作为分类模板信息的来源。

要说明注意的是,如果对水域采集了多个AOI并分别生成了模板,可以将这些模板合并,可以使该分类模板具有多区域的综合特性。

在特征空间图像中应用AOI区域产生分类模板是参数型模板,而在特征空间图像上应用AOI工具产生分类模板的基本操作是:生成特征空间图像,关联原始图像与特征空间图像,确定图像类型在特征空间的位置,在特征空间的图像绘制AOI区域,将AOI区域添加在分类模板中。

2 评价分类模板

分类模板建立以后,就可以对其进行评价、删除、更名及与其他分类模板合并等操作。分类模板的合并可使

用户应用来自不同训练方法的分类模板进行综合复杂分类,这些模板训练方法包括监督、非监督、参数化和非参数化。

1)报警评价

第一步:产生报警掩膜

分类模板报警工具根据平行六面体决策规则将那些原属于或估计属于某一类别的像元在图像视窗中加亮显示以示报警。一个报警可以针对一个类别或多个类别进行;

第二步:利用Flicker功能查看报警掩膜;

第三步:删除分类报警掩膜。

2)可能性矩阵

可能性矩阵评价工具是根据分类模板,分析AOI训练区的像元是否完全落在相应的类别之中。通常都期望AOI区域的像元分到它们参与训练的类别当中,实际上AOI中的像元对各个类都有一个权重值,AOI训练样区只是对分类别模板起一个加权作用。ContingeneyMatrix工具可同时应用于多个类别,如果你没有在SignatureEditor中确定选择集,则所有的模板类别都将被应用。

可能性矩阵的输出结果是一个百分比矩阵,它说明每个AOI训练区中有多个像元分别属于相应类别。AOI训练样区的分类可应用以下几种分类原则:平行六面体、特征空间、最大似然、马氏距离。

3)由特征空间模板产生图像掩膜

只有产生特征空间的Signature才可以使用本工具,使用时可以基于一个或者多个特征空间模板。如果没有选择集,则当前处于活动状态的模板将被使用。如果特征空间模板被定义为一个掩膜,则图像文件会对该掩膜下的像元作标记,这些像元在视窗中也将被显示表达出来。因此可以直观地知道那些像元将被分在特征空间模板所确定的类别之中。必须注意,在使用本工具时,视窗的图像必须与特征空间图像相对应。

4)模板对象图示

模板对象图示工具可以显示各个类别模板的统计图,以便比较不同的类别。统计图以椭圆形式显示在特征空间图像中,每个椭圆都是基于类别的平均值及其标准差。可以同时产生一个类别或者多个类别的图形显示。

显示特征的空间图像可以显示出特征空间及所选类别的统计椭圆,这些椭圆的重叠程度,反应了类别的相似性。如果两个椭圆不重叠,说明他们代表相互独立的类型,正是分了所需要的。然而。重叠是肯定有的,因为几乎没有完全不同的类别。如果两个椭圆完全重叠或重叠较多,则这两个类别是相似的,对分类而言,这是不理想的。

5)直方图方法

直方图绘制工具通过分析类别的直方图对模板进行评价和比较,本功能可以同时对一个或多个类别制作直方图,如果处理对象是单个类别,那就是当前活动类别,如果是多个类别的直方图,那就是处于选择集中的类别。

6)类别的分离性

类别的分离性工具用于计算任意类别间的统计距离,这个距离可以确定两个类别间的差异性程度,也可以用于确定在分类中效果最好的数据层。类别间的统计距离是基于下列方法计算的:欧氏光谱距离、Jeffries-Matus-ta距离、分类的分离度、转换分离度。类别的分离性工具是可以同时对多个类别进行操作的,如果没有选择任何类别,则它将对所有的类别进行操作。

3 执行监督分类

在监督分类过程中,用于分类决策的规则是多层次的,如对非参数模板有特征空间、平行六面体等方法、对参数模板有最大似然法、Mahalanobis距离、最小举例法等方法。当然,非参数规则与参数规则可以同时使用,但要注意应用范围,如非参数规则是能应用于非参数模板,要使用参数型规则。另外,如果使用非参数型模板,还要确定叠加规则和未分类规则。

4 评价分类结果

执行了监督分类之后,需要对分类效果进行评价,ERDAS系统提供了多种分类评价方法,包括分类叠加、定义阈值、分类编码、精度评估等。

1)分类叠加

分类叠加就是将专题分类图像与分类原始图像同时在一个视窗中打开,将分类专题层置于上层,通过改变分类结果及分类叠加方法来确定类别的专题特性,并评价分类结果。对监督分类结果,该方法只是查看分类结果的准确性。

2)阈值处理

本方法可以确定哪些像元最可能没有被正确分类,从而对监督分类的初步结果进行优化。用户可以对每个类别设置一个距离阈值,将可能不属于它的像元筛选出去,筛选出去的像元在专题地图中被赋予另一个分类值。

3)分类重编码

对分类像元进行了分析之后,可能需要对原来的分类重新进行组合,给部分或者所有类别以新的分类值从而产生一个新的分类专题层

4)分类精度评估

分类精度评估是将专题分类图像中的特定像元与已知分类的参考像元进行比较,实际工作中常常是将分类数据与地面真值、先前的试验地图、航空像片或者其他数据进行对比。

5 分类后处理

监督分类是按照图像光谱特征进行聚类分析,因此,都带有一定的盲目性。所以,对获得的分类结果需要再进行一些处理工作,这样才能得到最终相对理想的分类结果,这些处理操作称为分类后处理。

1)聚类统计

监督分类会产生一些面积很小的图斑。无论从专题制图角度还是实际应用的角度,都有必要对这些小图斑进行剔除。ERDAS系统中的GIS分析命令Clump,Sieve,Eliminate可以联合完成小图斑的处理工作。

(下转第103页)

100 测绘与空间地理信息 2010年

3.5 属性信息录入

数据采集和编辑时,不同的要素即可通过分层、编码来加以分类;这里还可根据需要和资料的掌握情况录入相应要素的属性信息,建立基础地理信息数据库。然后根据不同的使用需求,对数据进行分类提取。

4 讨 论

采用这种技术方法,可以方便快速地在DOM上获取2维数据,在Lidar数据上获取3维数据。如果使用需要,还可以使所有数据都具有3维坐标:如果原始激光点云的采点间距足够,可直接通过Lidar数据内插出DOM上采集的2维点的高程信息;还可以将2维数据叠加到Lidar数据上,判读出屋顶、路面等要素的高程信息。

5 结束语

利用DOM的像幅范围大、信息量丰富、获取方便、更新快的特点,可以及时地为地形图更新提供所需的信息。而Lidar技术是实现空间3维坐标快速、高精度获取的先进的空间技术,在采集地表3维数据方面具有传统航空摄影测量所无法比拟的巨大优势。总之,DOM和Lidar数据的综合利用,可为城市规划、土地、环境、测绘、电力、电信、煤气等部门提供精确、直观、信息丰富、现势性强的基础地理数据,丰富规划、设计、管理的手段与方法,提高管理效率。

参考文献:

[1] 王铁军,陈云,袁如金.基于LiDAR数据的DEM和矢量

自动提取探讨[J].测绘与空间地理信息,2009,32(1):

29-31.

[2] 江宏军,马永生.地形图更新方法初探[J].测绘通报,

2004,(7):54-56.

[3] 高光星,郑凤娇,蔡国兴,等.城市基本比例尺地形图更

新模式的探讨[J].中国测绘,2006,(1):52-55. [4] 吴志军.利用DOM更新1∶10000地形图平面精度的探

讨[J].地理空间信息,2008,6(2):38-39.

[5] 付俊燕,董诗新.基于正射影像更新中小比例尺DLG的

方法研究[J].中国科技博览,2009,(30):237-239. [6] 韩文泉,储征伟,黄金浪.利用LiDAR技术生产数字线

划图技术路线分析[J].测绘通报,2007,(1):58-60. [7] 黄励鑫,王丽园.机载激光雷达技术在困难复杂地区公

路勘察设计中的应用[J].交通科技,2009,(1):59

-61.

[编辑:胡 雪]

(上接第100页)

聚类统计是通过对分类专题图像计算每个分类图斑的面积、记录相邻区域中最大图斑面积的分类值等,结果产生一个Clump类组的输出图像,其中每个图斑都包含Clump类组属性,改图像是一个中间文件,用于下一步的处理。

影像经过处理图斑之后,变得清晰,水域特征明显,视觉效果也很好。

2)过滤分析

Sieve功能是经过对Clump处理后的Clump类组图像进行处理。按照定义的数值大小,删除Clump图像中较小的类组图斑,并给所有小图斑赋予新的属性值0.显然,这里引出了一个新的问题,就是小图斑的归属问题。可以与原分类图像对比确定其新属性,也可以通过空间建模方法,调用Delerows或Zonel工具进行处理。Sieve经常与Clump命令配合使用,对于无须考虑小图斑归属的应用问题,有很好的作用。

3)去除分析

去除分析是用于删除原始分类图像中的小图斑或Clump聚类图像中的小Clump类组,与Sieve命令不同。Eliminate将删除的小图斑合并到相邻的最大的分类当中,而且,如果输入图像是Clump聚类图像的话,经过E-liminate处理后,将分类图斑的属性值自动恢复为Clump处理前的原始分类编码。显然,Eliminate处理后的输出图像是简化了分类图像。

6 结束语

SPOT影像水体在可见光波段的吸收少、反射少而大量透射,在红外波段水体吸收的能量高于可见光波段,即使水很浅,水体也几乎全部吸收了近红外及中红外波段内的全部反射能量,所以水体在近红外及中红外波段的反射能量很少,而这两个波段内的吸收能量较小,且有较高的反射特性,影像上水体呈现出暗色调,所以通过pho-toshop处理,通过通道分离出红色波段的部分,然后使用ERDAS软件处理,所提取的影像特征明显,便于提取,效果更好。

参考文献:

[1] 钟文君,兰樟仁.基于高空间分辨率遥感影像的湿地信

息提取技术研究[J].云南地理环境研究,2007,19(5):

134-136.

[2] 丁莉东,吴昊.基于谱间关系的MODIS遥感影像水体提

取研究[J].测绘与空间地理信息,2006,29(6):25-27.

[3] 翟辉琴,何乔.基于数学形态学的遥感影像水域提取

[J].海洋测绘,2005,25(2):52-54.

[4] 张朝阳,冯伍法.基于形态学色差的彩色遥感影像水域

提取[J].海洋测绘,2006,26(5):58-60.

[5] 何智勇,章孝灿.一种高分辨率遥感影像水体提取技术

[J].浙江大学学报,2004,31(6):701-707.

[6] 龚辉,姜挺.一种基于四元数的彩色遥感影像水域提取

算法[J].海洋测绘,2007,27(5):19-21.

[责任编辑:栾丽杰]

103

第2期蒋宝东等:基于DOM和Lidar数据的地形图要素快速更新方法探讨

遥感卫星影像镶嵌的基本原则

北京揽宇方圆信息技术有限公司 遥感卫星影像镶嵌的基本原则 遥感卫星影像镶嵌是指对一幅或若干幅图像通过几何镶嵌、色调调整、去重叠等处理,镶嵌到一幅大的背景图像中的影像处理方法。 基本原则 镶嵌时应对多景影像数据的重叠带进行严格配准,镶嵌误差不低于配准误差,镶嵌区应保证有10-15个像素的重叠带。影像镶嵌时除了要满足在镶嵌线上相邻影像几何特征一致性,还要求相邻影像的色调保持一致。镶嵌影像应保证色调均匀、反差适中,如果两幅或多幅相邻影像时相不同使得影像光谱特征反差较大时,应在保证影像上地物不失真的前提下进行匀色,尽量保证镶嵌区域相关影像色彩过渡自然平滑。 1、原则上,镶嵌只针对采样间隔相同影像。需在相邻数据重叠区域进行如下处理:首先,在相邻数据重叠区勾绘镶嵌线,镶嵌线勾绘尽量靠近采样间隔较小影像的外边缘,以保证其数据使用率最大化。然后对镶嵌线两侧影像进行裁切,裁掉重叠区域影像,为避免因坐标系转换导致接边处出现漏缝,对于采样间隔小的影像严格沿镶嵌线裁切,采样间隔大的影像应适当外扩一定范围,原则上不超过10个像素进行裁切。 2、镶嵌前进行重叠检查。景与景间重叠限差应符合要求。重叠误差超限时应立即查明原因,并进行必要的返工,使其符合规定的接边要求。采用

“拉窗帘”方式目视检查相邻影像间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者接边精度不超过1个像素。 3、镶嵌时应尽可能保留分辨率高、时相新、云雾量少、质量好的影像。 4、选取镶嵌线对DOM进行镶嵌,镶嵌处无地物错位、模糊、重影和晕边现象。 5、时相相同或相近的镶嵌影像纹理、色彩自然过渡;时相差距较大、地物特征差异明显的镶嵌影像,允许存在光谱差异,但同一地块内光谱特征尽量一致。 重叠精度检查 叠加相邻纠正单元,采用“拉窗帘”方式逐屏幕目视检查相邻纠正单元间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者相对精度应满足下表要求。 相邻影像采样间隔≤1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采样间 隔) 山地、高山地(采样间 隔) 相对误 差 2.0倍8.0倍 基础底图采样间隔>1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采 样间隔) 山地、高山地(采 样间隔) 相对误差 2.0倍 4.0倍 注:相对误差因侧视角超限、基础底图和高程数据等控制资料精度不足引起,且无法改正的特殊地区除外,但该区域周边不超限。 镶嵌步骤 1、镶嵌线选取

遥感数据特征

常用遥感数据特征总结 按照遥感平台类型,遥感技术可以分为航宇遥感、航天遥感、航空遥感、地面遥感四类。其中航天遥感平台发展最快,应用最广。很据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。不同的卫星系列所获得的遥感数据有着不同的特征,常常应用于不同的应用领域,在进行检测研究时,常常根据不同的卫星资料特点,选择不同的遥感数据。下文简单总结了几种常用的航天遥感数据特征。 1 气象卫星系列 气象卫星是最早发张起来的环境卫星。从1960年美国发射第一颗实验性气象卫星(TIROS)以来,已经有多种实验性或者业务性气象卫星进入不同轨道。气象卫星资料已经在气象预报、气象研究、资源调查海洋研究等方面显示出了强大的生命力。 气象卫星主要有以下几种系列:60年代——TIROS系列、ESSA系列、Nimus 系列;70年代——ITOS系列、NOAA系列、SMS系列、GOES系列、MeteopII、GMS、Meteosat;80年代后,主要以NOAA系列为代表。我国的气象卫星发展比较晚,FY-1是我国发射的第一颗1988年9月7日发射成功。气象卫星主要有以下特征。 (1)轨道。气象卫星轨道可以分为两种,低轨和高轨。低轨是近极低太阳同步轨道,简称极地轨道,轨道高度800~1600km,南北向绕地球运转。对东西宽约2800km的带状地域进行观测,由于与太阳同步,使卫星每天在固定的时间经过每个地方的上空,资料获得时具有相同的照明条件。高轨是指地球同步轨道,轨道高度36000km左右,相对于地球静止,能够观测地球1/4的面积,有3—4颗卫星形成观测网,对某一固定地区,每隔20~30min获取一次资料,由于它相对于地球静止,可以作为通讯中继站,用于传送各种天气资料。 (2)短周期重复观测。地球同步卫星观测周期为0.5小时一次,极轨卫星为约为0.5~1天/次,时间分辨率较高。有助于对地面快速变化的动态检测。 (3)成像面积大,有助于获得宏观同步信息,减少数据处理容量。 (4)资源来源连续、实时性强、成本低 NOAA系列。 NOAA-11卫星:发射日期1988年9月24日,正式运行日期1988年11月8日,轨道高度841公里,轨道倾角98.9度,轨道周期:101.8分。 NOAA-12卫星:发射日期1991年5月14日,正式运行日期1991年9月17日轨道高度804公里,轨道倾角98.6度,轨道周期101.1分。 NOAA-14卫星:发射日期1994年12月30日,正式运行日期1985年4月10日,轨道高度845公里,轨道倾角99.1度,轨道周期101.9分。 NOAA-15卫星:发射日期1998年5月13日,正式运行日期1998年12月15日轨道高度808公里,轨道倾角98.6度,轨道周期101.2分。 NOAA-16卫星:发射日期2000年9月12日,正式运行日期2001年3月20日,轨道高度850公里,轨道倾角98.9度,轨道周期102.1分。

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

卫星影像提取建筑

卫星影像提取建筑、道路专题信息 技术方案提纲 一、影像专题信息提取原理 影像专题信息提取是一个影像分割、分类、分类后处理及专题信息输出的过程。但是在专题信息提取过程中,由于“同谱异物”、“同物异谱”等情况的普遍存在,加上遥感数据空间分辨率的限制,“混合像元”现象不可避免,因此基于常规像元灰度值的图像分类存在很多问题。在此基础上,人们开始对多源信息复合的信息提取方法进行探索,主要是从波谱特性、纹理信息、图像运算和地学专家知识等方面出发。 1.光谱特征信息复合 光谱特征分析法是遥感信息提取的常用方法之一,在相关研究中得到了广泛应用。不同地物的波谱特性,是遥感影像分析解译的理论基础,也就是说多光谱影像的计算机自动分类识别必须建立在全面了解掌握分类对象不同波段光谱特性的基础上。一般而言,同一地物在不同波段的光谱值不同,在同一波段不同地物的光谱值也不相同。根据这一原理,在多波段彩色合成影像上,首先对典型地物进行光谱采样,然后计算各种地物的光谱均值,得到典型地物波谱响应曲线图。之后分析所需专题信息光谱曲线与其他地物光谱曲线的关系,找到能够区分所需信息与其他地物的波段,利用波段之间的亮度值差异,选择适当的阈值即可将所需要的信息提取出来。 基于光谱特征的分析方法是从分析地物的光谱曲线入手,挖掘谱间特征,从而提取出所需地物信息的。但是该方法无法克服异物同谱和同物异谱的现象,许多地物无法准确区分。 2.纹理结构信息复合 常规提取遥感图像信息的最大似然分类法等都是基于地物光谱特征的,很难正确区分一些光谱易混淆的地物,因此为了克服这种现象,可以采用纹理分析的方法。影像纹理反映了影像灰度性质及它们之间的空间关系,是描述和识别影像的重要依据,与其他影像特征相比,它能更好地兼顾地物的宏观性质和细部结构。 纹理分析方法大致分为统计方法、结构方法和谱方法。统计方法是指在不知

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感影像判读

南京信息工程大学复习参考资料—— 遥感影像判读 第一章绪论 遥感影像判读既是一门学科,又是图像处理的一个过程: 1.作为一门学科,遥感影像判读的目的是为了从遥感图像上得到地物信息所进行的基础理 论和实践方法的研究 2.作为一个过程,它完成地物信息的传递并起到揭示遥感图像内容的作用,其目的是取得 地物各组成部分和存在于其他地物的内涵的信息 分为计算机辅助判读和人工目视判读 遥感影像判读的任务与实施 任务 根据应用范围:巨型、大型、中型和小型地物与现象的判读 实施(组织方法): 野外判读、飞行器目视判读、室内判读、综合判读 遥感信息的利用方式(5个) 1.瞬时信息的定性分析:确定相关目标是否存在 2.空间信息的定位:空间分布规律 3.瞬时信息的定量分析:定量反演目标参数 4.时间信息的趋势分析:地表物质能量迁移规律 5.多源信息的综合分析 遥感信息的技术支撑(6个) 1.观察与测量仪器的改变 2.产品形式的改变 3.生产工艺的改变 4.新一代传感器的研制 5.地理信息系统的支持 6.遥感应用模型的深化 遥感影像判读的质量要求:分为用户精度(正确分类/所有分为该类制图精度 )和制图者精度(正确分类/参考数据中的该类) 1.判读结果的完整性(详细性):与给定任务的符合程度,用质量指标评价 2.判读的可靠性:与实际的符合程度,用质量和数量指标评价 3.判读的及时性:资料及时;指定限期完成 4.判读结果的明显性:便于理解和应用 第二章遥感影像判读的理论基础 地物的电磁辐射特性—— 地物的电磁辐射特性概念: 1.从近紫外到中红外(0.3-6μm)波段区间能量最集中而且相对来说较稳定 2.被动遥感主要利用可见光、红外等稳定辐射 3.对流层:地表到平均高度12km处,航空遥感活动区,侧重研究电磁波在该层内的传输 特性;

基于高分辨率遥感影像的建筑物提取

基于高分辨率遥感影像的建筑物提取 摘要:本文首先对遥感影像上建筑物提取的研究历史进行分析,总结高分辨率航空相片或卫星影像提取建筑物等人工地物信息的主要方法,从影像数据、分辨率与方法几个方面概括建筑物提取的发展历史。总结高空间分辨率遥感影像建筑物提取研究的现状以及发展趋势。 关键词:高空间分辨率遥感影像;建筑物提取 引言 随着遥感技术的不断进步,光学卫星影像的空间分辨率不断提高(目前军用卫星已经达到厘米级),与同类中低空间分辨率的遥感影像相比,高空间分辨率光学卫星影像上地物的光谱特征更明显,景观的结构、形状、纹理和细节等信息突出,使得研究城市内部建筑分布细节成为可能。从20世纪90年代以来高空间分辨率光学卫星影像逐渐进入商业和民用领域,在地图更新、土地管理、城市规划、资源调查、环境监测、灾害评估等方面得到广泛应用,逐步成为一种主要的地理空间数据获取和更新途径,针对高空间分辨率光学卫星影像的信息提取研究也随之兴起,但高空间分辨率影像信噪比低的特点限制了建筑提取的精度,人工解译仍然是最普遍的提取方式,其费时费力的弱点成为制约高分辨率卫星影像大范围应用的瓶颈。目前对绿地和水体的自动提取已经比较成熟,而道路和建筑物由于其自身的复杂性导致自动提取困难,国内外很多学者在高分辨影像道路和建筑提取方面做了很多相关研究,在提取理论和方法方面取得了一定的成果。本文就高空间分辨率遥感影像建筑物提取研究现状进行总结,在此基础上提出目前遥感影像建筑物提取研究的热点及其发展趋势。 一、建筑物提取的研究历史 迄今为止,利用高分辨率航空相片或卫星影像提取建筑物等人工地物信息的方法大体分为两类:其一,利用图像信息结合高程信息进行建筑物信息提,通过建筑物与周围环境之间的高差进行屋顶边界的提取,大多需要一定的辅助数据如DEM、DSM等。其二,利用高空间分辨率遥感影像数据结合计算机视觉、图像处理与分析、人工智能等学科领域的新方法实现对建筑物顶部信息的半自动甚至全自动识别与提取。此方法不需要多景影像数据,也不需要其它的外部信息源,具有更为广泛的应用前景和范围,但是其缺乏对识别建筑物表面高度信息,只是利用的是图像的光谱信息、灰度信息以及建筑物的形态信息和一部分先验知识,难度要更大,此方法仍处于探索研究阶段。在城市环境中由于受到建筑物结构复杂性的影响,建筑物常常被人造目标或者自然目标包围,给提取建筑物带来干扰,常见的典型情况有:房屋边缘与道路平行且相邻,边缘检测后的影像中道路和房屋边缘相互混淆;因为拍摄角度导致建筑物彼此的遮蔽,影像上丢失了被遮蔽建筑物的信息;建筑物阴影的灰度接近建筑物的灰度,很难区分二者的边界,对提取产生干扰。此外利用成像质量、光谱范围等多方面因素影响的遥感影像提取建筑物信息,出现信息的丢失以及失真,从而增加了建筑物提取的难度。图1分别从影像数据、分辨率与方法几个方面概括了建筑物提取的发展历史。快速准确地

SPOT卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数 北京揽宇方圆信息技术有限公司 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 – 0.59um 20米分辨率B2 0.61 – 0.68um B3 0.78 – 0.89um SWIR 1.58 – 1.75um

基于直线检测算法的卫星图片中建筑物轮廓提取

收稿日期:2007-11-22;修回日期:2008-01-15。 作者简介:庞池海(1982-),男,浙江天台人,硕士研究生,主要研究方向:计算机仿真、图像处理; 李光耀(1965-)男,安徽安庆人,研究员,博士生导师,主要研究方向:计算机仿真、图像处理; 赵洁(1983-),女,江苏南通人,硕士研究生,主要研究方向:计算机仿真、图像处理;朱恒晔(1978-),男,江苏镇江人,博士,主要研究方向:系统仿真、虚拟样机。 文章编号:1001-9081(2008)S1-0190-03 基于直线检测算法的卫星图片中建筑物轮廓提取 庞池海,李光耀,赵 洁,朱恒晔 (同济大学CAD 研究中心,上海201804) (tcp ch @sohu .com ) 摘 要:提出一种方法,可以从卫星图像中自动检测建筑物。介绍了直线提取和直线合并的算法,分别讨论算法的实现结果和对结果的评价。建筑物检测的结果为矢量的二维候选数据,缩短了原始图像数据和最后对图像理解之 间的差距。 关键词:建筑物检测;直线检测;Canny 算子;霍夫变换;边缘检测中图分类号:T P391.41 文献标志码:A Buildi ng figure extracti on i n satellite i m ages based on li ne detecti on algorithm PANG Ch-i ha,i LI Guang -yao ,Z HAO Jie ,ZHU H eng -ye (CAD Re se a rch C e n te r,T ongji Universit y,S hangha i 201804,C hina ) Abstract :In o rder to g enerate t he 3D-model of constructi on ,usi ng t he m ethod based on i m ag e pro cessi ng,au t om ated techn i ques w ere proposed to replace the curren t manua l work .A n approach for auto m atic bu ildi ng detection w as put for w ard from sate llite i m agery .F irstl y,the algo rith m s o f li ne ex tracti on and li ne m erg i ng w ere presen ted .T hen ,t he i m p l ementation of the m e t hod and resu lt quantitative qua lity assess m ent we re discussed respecti ve l y .The resu lt of bu il d i ng detecti on prov i des the vector i a l and t w o -di m ens i on cand i date data ,w hich sho rten the d ifference be t w een or i g i na l i m ag e data and fi nal understandi ng . K ey words :buil d i ng detection ;li ne de tecti on ;C anny opera t o r ;H ough transf o r m;edge detection 0 引言 从城市航空影像中提取关键地物的研究主要集中于建筑 物和道路两个方面。已有的匹配的方法,对于现代城市中具有重要意义且形状复杂的高层建筑物和主干道,还不能形成有效的提取。 然而人类却能几乎在瞬间辨识出这些物体的存在和位置[1] 。航空影像的复杂性使目标检测变得十分困难。以往对建筑的检测方法可以分为以下3类:1)使用立体影像匹配的方法,这种方法可以提供建筑物准确的空间信息,使建筑物通过空间信息被检测出来[2]。不过这种方法需要额外的信 息,如DE M 信息。2)使用直线分析。首先从图片中检测出直线,将它们归类并且建模出矩形,推算出候选的建筑物[3]。直线可以通过使用感知的视觉数据组织的方法分类,许多报告已经使用这种方法进行了建筑物检测实验[4]。不过该方法对于大规模的检测效果不是很好。3)辅助信息的方法。如阴影或直线的透视效果,也可作为建筑物检测的重要手段。 作为一种低层次视觉技术,线段提取是一项很基本的任务。它的处理对象是边缘图像,输出是线段。其输出经常作为更高层处理(形状描述、目标识别、立体匹配等)的输入。由于线段提取的重要性,很多研究者在这方面做了大量工作。归纳起来,可分为3类:1)传统的H ough 变换;2)首先提取基本线段(e l ementary li ne segm ent ,ELS),再进行线段合并;3)利用梯度信息将边缘像素组成线段[3]。本文结合前两种方法,利用局部的H ough 变换,先抽取出直线,然后利用附有信息的直线分析图像中的对象,构建直线图的数据结构,并利用这些信息生成建筑物的候选集。 1 主要准则 通常将图像理解系统划分成几个阶段从而简化整个问题的难度。主要流程包括图像预处理,图像分割,特征提取,特征描述和识别。至今,对于各类应用还没有一个统一的方法。对于不同的项目的方法大相径庭。本文着眼于卫星图片中的建筑物检测。首先定义一些策略或思想准则作为解决这个问题的指导。 层次化 图像数据在计算机中以孤立点的信息形式存在。图像处理的目的是要对这些点尽可能地按照图像的原意进行分类,最后抽象出同类点集的含义。所有工作,包括前处理、图像分割、特征提取等,都是为了实现这一目标。在本文的研究中,首先将点归类成线,然后将线组合成几何形状。称之为点线面的变换。 整合方法 一些信息,比如颜色和方向,对图像中的元素来说是非常重要的,但不少方法忽略了这些信息的利用。在本文的研究中,将取得的颜色信息作为线和面对象的附属信息,或者称之为权重。这些信息可以帮助改善的检测过程。 局部化假设 假设物体,包括颜色、线的位置、面的位置以及图像中的所有元素,只和其一定范围内的邻域元素存在相应的关系。这个假说可以减少处理所花费的时间,从而得出各种可行的统计(现在的图像分析方法主要是基于数学统计的)。这个假设使得分治的方法能够得以实施,从而降低计算难度。 2 建筑物检测算法 整个检测算法主要分为以下4个阶段。 第28卷2008年6月 计算机应用 C o mpu ter App lications Vo.l 28June 2008

遥感卫星影像数据采购知识要素

北京揽宇方圆信息技术有限公司 (一)遥感卫星数据类型有哪些? 北京揽宇方圆卫星公司可提供多种遥感数据类型供用户选择,目前来说是国内遥感数据最多的遥感数据中心,分辨率从0.3米到30米的光学卫星影像,还有各种极化方式的雷达卫星影像,高光谱卫星影像,还有解密的1960年至1980年的锁眼卫星影像,根据自己的情况来定,也可以把自己的卫星数据需求告诉我们,给您推荐合适的卫星数据类型。如果您想获取高程信息DEM、DLG等信息,需要购买的就是卫星影像立体像对数据,并不是所有卫星都有立体像对哦。 (二)遥感卫星数据影像有哪些级别? 卫星公司北京揽宇方圆销售的都是1A级别原始卫星影像,光学卫星影像原始数据都是以全色+多光谱捆绑形式提供,卫星影像一般可以经过一定的处理,形成各级别的影像数据,不同的级别可以针对不同的用户需求,在订购时需特别注意。 *名词(全色就是黑白数据,多光谱是指红绿蓝近红外) (三)遥感卫星数据影有没有最小数量起订的说法? 北京揽宇方圆提醒您在购买卫星影像时,都要确认购买面积大小或景数。对于高分辨率影像来说,一般是按面积大小来计算,单位为平方公里。但是往往有个最小购买面积,例如,WorldView影像的存档数据最低起购面积为25平方公里,且需要满足四边形两边相距大于等于5公里;而中低分辨率影像则往往按景数来计算,景是一幅卫星影像的通俗讲法,例如,一景高分一号卫星影像,范围大小为32.5×32.5公里。 (四)遥感卫星存档数据是指什么? 北京揽宇方圆详解遥感卫星存档数据:是指先前卫星已经拍摄过的某区域的影像数据,已存档在数据库中,是现成品。该种影像的购买价格相对较低,订购时间较快。但是订购前需要对既定需求区域做出确认,即确认所需区域是否有卫星影像数据存档、卫星影像存档数据的拍摄时间、拍摄质量(包含了云量、拍摄倾角等因素)等。 (五)遥感卫星编程数据是什么意思? 北京揽宇方圆遥感公司对遥感卫星编程数据的解释是指地面编程控制卫星对需求区域拍摄最新的影像,可以让用户得到需求区域最新的影像。但是编程影像的拍摄周期通常较长,订购初期需要先向卫星运营公司申请拍摄区域的拍摄周期,然后由卫星公司反馈计划拍摄周期。在这个拍摄周期中,并不能够保证拍摄成功,这与所拍摄地的天气情况、拍摄数据的优先级权重以及需求数据范围有关。 (六)遥感卫星影像数据价格如何一般是多少? 目前市面上的商业遥感卫星数量较多,北京揽宇方圆是国内遥感数据资源最多的公司,不同的行业根据自己的遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星

图象视觉特征的提取与表示

第1章图像视觉特征的提取和表示 1.1引言 图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。 图像底层视觉特征一定程度上能够反映图像的内容,可以描述图像所表达的意义,因此,研究图像底层视觉特征是实现图像分类与检索的第一步。一般来说,随着具体应用的不同,选用的底层特征也应有所不同,在特定的具体应用中,不同底层视觉特征的选取及不同的描述方式,对图像分类与检索的性能有很大的影响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求: (1)提取简单,时间和空间复杂度低。 (2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。 (3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。 (4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,旋转不变性。 本章重点讨论当前比较成熟的特征提取方法,在此基础上选取合适的特征提取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。 1.2颜色特征的提取和表示 颜色是图像视觉信息的一个重要特征,是图像分类与检索中最为广泛应用的特征之一。一般来说同一类别的图像之间颜色信息具有一定的相似性,不同类别的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,有对大小、方向不敏感等特点。因此,颜色特征的提取受到极大重视并得到深入研究。本章首先介绍几种常用的颜色空间模型,然后介绍各种颜色特征提取和表示方法。 1.2.1颜色空间模型 为了正确地使用颜色这一特征,需要建立颜色空间模型,通常的颜色空间模型可用三个基本量来描述,所以建立颜色空间模型就是建立一个3-D坐标系,其中每个空间点都代表某一种颜色。通常来说,对于不同的应用,应该选取不同的颜色空间模型。常用的颜色空间模型主要有:RGB、HIS、HSV、YUV、YIQ、Munsell、Lu*v*和La*b*等。颜色空间模型的选取需要符合一定的标准,下面就这一标准和最常用的颜色空间模型作一些介绍。 文献[错误!未找到引用源。]中介绍了选择颜色空间模型的标准主要有以下几个: (1)观察角度的鲁棒性

高分辨率遥感影像中建筑物3D信息的提取

基于Barista 软件的高分辨率遥感影像中建筑物3D 信息的提取* 张培峰1,2  胡远满 1**  贺红士 1,3 (1中国科学院沈阳应用生态研究所,沈阳110016;2 中国科学院研究生院,北京100049; 3 密苏里大学自然资源学院,美国 哥伦比亚65211) 摘 要 城市建筑物空间信息的获取对城市规划二环境保护等社会各行业越来越重要,高分辨率商业卫星的出现为提取建筑物3D 信息提供了可能性.本文基于Barista 软件,利用Quick?Bird 数据提取了建筑物的3D 信息并进行了精度验证.结果表明:基于Barista 软件从高分辨率卫星影像中提取建筑物3D 信息,具有专业水平要求低二普适性强二操作简单二精度高等优点;当数字高程模型(DEM )和传感器定位模型精度较高二影像偏天底角较理想时,3D 信息提取的水平定位精度和高度测量精度可达到1个像素水平.关键词 Barista 软件 高分辨率遥感影像 3D 信息提取 文章编号 1001-9332(2010)05-1190-06 中图分类号 Q149;TP75 文献标识码 A Extraction of buildings three?dimensional information from high?resolution satellite imagery based on Barista software.ZHANG Pei?feng 1,2,HU Yuan?man 1,HE Hong?shi 1,3(1Institute of Applied Ecology ,Chinese Academy of Sciences ,Shenyang 110016,China ;2Graduate University of Chinese Academy of Sciences ,Beijing 100049,China ;3School of Natural Resources University of Missouri ,Columbia 65211,USA ).?Chin.J.Appl.Ecol .,2010,21(5):1190-1195. Abstract :The demand for accurate and up?to?date spatial information of urban buildings is becom?ing more and more important for urban planning,environmental protection,and other vocations.Today’s commercial high?resolution satellite imagery offers the potential to extract the three?dimen?sional information of urban buildings.This paper extracted the three?dimensional information of ur?ban buildings from QuickBird imagery,and validated the precision of the extraction based on Baris?ta software.It was shown that the extraction of three?dimensional information of the buildings from high?resolution satellite imagery based on Barista software had the advantages of low professional level demand,powerful universality,simple operation,and high precision.One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM)and sensor orientation model had higher precision and the off?Nadir View Angle was rela?tively perfect. Key words :Barista software;high?resolution satellite imagery;three?dimensional information ex?traction. *中国科学院沈阳应用生态研究所知识创新工程项目(06LYQY1001)资助. **通讯作者.E?mail:Huym@https://www.360docs.net/doc/3a9803994.html, 2009?11?18收稿,2010?03?06接受. 城市3D 信息广泛应用于制图二城市规划与设计二城市污染控制二环境保护与建设二通信二交通二能源与财产管理二旅游二城市可视化二城市进程监测以及城市现代化管理[1-2],在城市噪声扩散二空气污染 分析和房地产税收评估等方面也具有一定的应用潜力[3].建筑物3D 信息的获取对城市规划者二地理学者二建筑设计者等非常重要.高分辨率卫星影像(high?resolution satellite imagery,HRSI)的出现使制图及建筑物3D 信息提取成为可能[4-5],从高分辨率影像中获取建筑物3D 信息已得到广泛应用. 目前,空间3D 信息的获取方法主要有航空摄 影测量二卫星遥测以及机载激光扫描(light detection and ranging,LiDAR)三大类[6].Ameri 等[7]应用平面屋顶结构自动提取了建筑物的3D 结构,从简单的 应用生态学报 2010年5月 第21卷 第5期 Chinese Journal of Applied Ecology,May 2010,21(5):1190-1195

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

遥感影像中建筑物提取研究综述

基于遥感影像的建筑物提取研究方法综述 摘要:遥感影像上建筑物提取的基础理论研究始于20世纪80年代,随着遥感技术的不断进步,遥感影像的分辨率及精确度越来越高以及快速发展的城市在城市空间数据库方面的巨大要求。现在城市空间数据库需要对数据快速获取更新,又因为遥感影像本身具有的现时性,更新速度快的特点。在城市空间数据库的更新、城市动态监测、城市变化监测以及“智慧城市”建设等方面有着重要的使用价值。本文介绍基于不同遥感影像提取建筑物的基本方法和几个发展趋势。主要包括SAR图像,LIDAR点云数据,高光谱影像,航空影像等多种源数据不同的提取方法,以及不同数据来源的优缺点。同时对建筑物提取研究中需要解决的问题和研究趋势进行了总结。 1.引言 城市地区的遥感影像中,超过8成的目标是建筑物和道路,所以对建筑物和道路的识别和提取式遥感影像地物提取的主要研究方向,除道路和建筑物以外,剩下的大部分都是植被,在城市中绿地的面积占了一定的比例,在建筑物的提取中,建筑物在遥感影像中容易受到植被的干扰,如何高效率、高质量的剔除植被对建筑物的影响成了建筑物提取的关键。进行建筑物提取的主要应用有城区自动提取、 地图更新、城市变化监测、城市规划、三维建模、数字化城市建立等诸多方面,如何实现建筑物的快速、高精度、自动化提取成为目前的研究热点。目前对绿地和水体的自动提取已经比较成熟,而道路和建筑物由于其自身的复杂性导致自动提取困难,本文主要提出了目前遥感影像建筑物提取研究的热点及其发展趋势。 2.建筑物提取的历史发展 快速准确地获取不同类型城市建筑的空间位置、形状等信息具有极其重要的意义,在城市规划、城市动态监测、城市三维建模、地形图更新、地籍调查等方面有广泛的应用。目前,对自动建立城市三维模型和实现城市虚拟现实的需求越来越多,利用大比例尺航空影像获取城市建筑物的三维几何信息和表面纹理,是实现“三维城市”建模的有效途径之一。 到目前为止,利用高分辨率航空相片或卫星影像提取建筑物等人工地物信息的方法大体分为两类:其一,利用图像信息结合高程信息进行建筑物信息提取,因为城市里的建筑物有一定的高度信息,通过建筑物与周围环境(地面)之间的高差进行屋顶边界的提取,这种方法大多需要一定的辅助数据如DEM、DSM等一类具有地物高程数据的影像。其二,利用高空间分辨率遥感影像数据结合计算

相关文档
最新文档