Identification and Function of MicroRNAs Encoded by

Identification and Function of MicroRNAs Encoded by
Identification and Function of MicroRNAs Encoded by

cleaved by the cytoplasmic enzyme Dicer to form the mature ~22 nt RNA duplex (5,43,53).

One of the two strands of the RNA duplex, called mature miRNA, is loaded into the RNA-

induced silencing complex (RISC) (54,66), whereas the unloaded strand is degraded (52,56,

82). The RISC complex directed by the mature miRNA to its targets mediates the specific

cleavage of mRNAs or translation arrest of proteins, depending on the complementarities

between the miRNA and its target mRNAs (47,54,99).

Over 100 miRNAs have been discovered in viruses so far. However, few target genes of viral

miRNAs have been identified so far. Consequently, the functions of the majority of viral

miRNAs remain unclear.

Herpesviruses are enveloped, double-stranded DNA viruses. There are three subfamilies:

alpha, beta and gamma herpesviruses, based on their structure and biology (77). Herpesviruses

have two distinct phases in their life cycle: latency and lytic replication. Interestingly, the

majority of viral miRNAs identified are from herpesviruses, suggesting that viral miRNAs

may play important roles in the unique life cycle of this family of viruses. In this review, we

discuss the miRNAs encoded by herpesviruses and their regulatory roles in virus-host

interactions.Identification and Expression of miRNAs Encoded by Herpesviruses Alpha herpesviruses Herpes simplex virus 1 (HSV-1) is a neurotropic virus, belonging to genus Simplexvirus , one of the members of alpha herpesvirus subfamily. HSV-1 is commonly associated with herpes outbreaks of the face known as cold sores or fever blisters; it can also cause more severe infections in newborns or immunocomprised persons. As a well-studied virus, a number of animal infection models are available, which facilitates the study of HSV-1 pathogenesis (91). To identify miRNAs encoded by HSV-1, Cui et al . searched the entire viral genome for

potential stem-loops using a computational approach, and predicted the existence of 13 miRNA

precursors and 24 miRNA candidates in this herpesvirus. However, only one of them, miR-

H1, was detected and confirmed by Northern-blot hybridization (22). miR-H1 is located

upstream of the latency-associated transcript (LAT) thought to be a non-coding RNA. In

contrast to the latent transcript LAT, miR-H1 and its precursor were expressed as late gene

products.

LAT is an abundantly expressed RNA transcript in latently infected neurons (86), which had

been shown to be nonessential for viral replication. However, LAT mutants had decreased

frequencies of reactivation in an animal model (80). Recent data had demonstrated the

important role of LAT in preventing cell death by blocking cell apoptosis (1,7,49,72). Because

the multifunction of LAT and absence of any detectable protein product translated from this

transcript, Umbach et al . attempted to identify potential miRNA precursor hairpins from LAT

by cloning and expression of the corresponding genomic sequence in 293T cells. A total of 4

pre-miRNAs, that give rise to 6 mature miRNAs, were identified using a cDNA library deep

sequencing method (46). To determine whether HSV-1 can encode more miRNAs, cDNA

deprived from trigeminal ganglia of mice latently infected by HSV-1 was deep sequenced,

which led to the identification of miR-H6. It is notable that miR-H6 is located in the opposite

strand of miR-H1, which are largely complementary to each other (89). In contrast, miR-LAT

also encoded by LAT described in an early report was not confirmed by Umbach et al . (45,

89).

Recently, a new viral miRNA encoded by herpes simplex virus 2 (HSV-2), which causes genital

herpes, was reported (87). To identify putative miRNAs in the LAT region of HSV-2, Tang

et al . used a similar strategy described by Umbach et al . to clone and express the entire HSV-2

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

LAT region resulting in the discovery of HSV-2 miR-I. This viral miRNA lies within LAT

exon 2 and is complimentary to the neurvirolence factor ICP34.5. More interestingly, Tang et

al . also predicted a homolog sequence to HSV-2 miR-I in the same region of HSV-1 LAT

exon-2, which was identified by Umbach et al. as HSV-1 miR-H3 (89).

Marek’s disease virus (MDV) is an avian herpesvirus, belonging to genus Mardivirus , another

member of alpha herpesvirus subfamily. It includes two distinct MDV species, MDV-1 and

MDV-2. MDV-1 consists of all oncogenic strains, while MDV-2 consists of non-oncogenic

strains (6). Two studies identified a total of 13 pre-miRNAs in MDV-1 and 17 pre-miRNAs

in MDV-2 (11,12,96,97). Burnside et al . reported the first identification of 8 pre-miRNAs in

MDV-1, using a parallel sequencing approach, 5 of which were mapped near an important

gene-meq while the other 3 were mapped to the LAT. The miRNAs flanking meq have similar

expression pattern as meq (11). Further studies by Burnside et al . and Yao et al identified 5

additional pre-miRNAs in the MDV-1 genome (12,97). Analysis of the expression profiles by

quantitative real-time reverse-transcription PCR showed that several MDV-1 miRNAs

including miR-4, miR-8 and miR-12 are highly expressed in the tumor tissues compared to the

non-tumor tissues (94).

Beta herpesviruses

Infection by beta herpesvirus human cytomegalovirus (HCMV) is common. Over 50% US

individuals of ≥ six years old are infected by HCMV (85). CMV infection can lead to serious

diseases in both immunocompetent and immunocompromised individuals as well as newborns

(71,90). In 2005, a total of 13 pre-miRNAs were identified by three groups (27,40,73). Unlike

gamma herpesviruses, HCMV miRNAs are not clustered but scattered over the entire viral

genome. Pfeffer et al . cloned 9 of the 11 pre-miRNAs predicted by a bioinformatics approach;

5 mapped to the intergenic region, 3 derived from the antisense strand of known ORFs, and 1

mapped within the intron of UL36, which is dispensable for viral replication in cultured cells

(70,73). A similar study by Grey et al . predicted 13 potential hairpin structures, which are

conserved between chimpanzee CMV and HCMV, and have high scores using the MiRscan

algorithm (40). Five of the 13 miRNAs were detected by Northern-blot hybridization, and 2

of which were newly discovered. Dunn et al . identified two new viral pre-miRNAs from two

distinct cell lines infected by HCMV (27). These two miRNAs were not identified by the other

two groups. The majority of HCMV miRNAs are expressed at the early time points of

productive viral infection except UL70-1 and UL23-3p, which are expressed at the immediate-

early (IE) time points of infection (27,40).

Murine cytomegalovirus (MCMV) has long been used as an important animal model for

HCMV. The discovery of HCMV miRNAs has also lead to the identification of miRNAs in

MCMV. Buck et al . identified a number of MCMV miRNAs using a bioinformatics approach

combined with the RNA cloning method (10). In addition to 2 other pre-miRNAs identified

by Dolken et al . (25), a total of 18 miRNAs were identified and validated in MCMV. Unlike

the scattered pattern of HCMV miRNAs, the MCMV miRNAs are distributed over the entire

genome as small clusters. However, similar to the expression pattern of HCMV miRNAs, the

MCMV miRNAs display both IE or early expression kinetics during viral infection (10,25).

Gamma herpesviruses

Epstein-Barr virus (EBV) is the first virus reported to encode viral miRNAs (74). EBV is a

γ1-herpesvirus associated with several lymphoproliferative diseases, including post-transplant

lymphoproliferative disorders, Hodgkin’s disease, Burkitt’s lymphoma and nasopharyngeal

carcinoma (NPC) (76). Pfeffer et al . described the first cloning and identification 5 viral pre-

miRNAs from a Burkitt’s lymphoma cell line latently infected with EBV (74). In this milestone

study, which influenced the subsequent discoveries of viral miRNAs in a number of NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

herpesviruses and other viruses, 5 pre-miRNAs were mapped to two regions in the EBV genome: BHRF1 (Bam HI fragment H rightward ORF1) and BART (Bam H I-A region rightward transcript). Following this work, two studies by Cai et al . and Grundhoff et al .identified a panel of 17 additional novel pre-miRNAs encoded by EBV (16,44). Previous work by Cai et al . identified multiple Kaposi’s sarcoma-associated herpesvirus (KSHV) miRNAs in a KSHV and EBV dually infected PEL cell line BC-1 (15,17). Extensive analysis of cDNA clones deprived from this cell line identified up to 14 novel EBV pre-miRNAs located within the BART region (16). A similar study by Grundhoff et al . identified 19 previously reported pre-miRNAs plus 4 novel EBV pre-miRNA that were mapped to the BHRF1 and BART regions,respectively (44). Instead of using the common small RNA cloning method, the author utilized a new strategy to identify viral miRNAs based on a newly developed algorithm (virMir)combining with a microarray-based experimental approach. To address the expression profiling of EBV miRNAs, Cai et al . investigated a number of distinct cell lines latently infected with EBV as well as the NPC tumor C15 that was passaged in nude mice. The author indicated that the EBV miRNAs were differentially expressed in multiple latently infected cell lines with different types of viral latency (I, II, III), and the expression of several EBV miRNAs were increased after induction of lytic replication. Recently, a new report by Edwards et al . indicated that the pre-miRNAs within the first four introns of the BART transcript were processed from the primary transcript prior to its complicated splicing events (28). Despite these studies, the expression pattern of EBV miRNAs in clinical samples was also investigated (57,68,93).Cai et al . inferred that the viral miRNAs should be conserved during long-term evolution if they were to play important role in viral life cycle. Rhesus lymphocryptovirus (rLCV), another γ1 herpesvirus, which has 65% sequence homology with EBV but is thought to be evolutionarily separated from EBV at least 13 million years ago (36), was investigated to validate the hypothesis. As expected, up to 16 pre-miRNAs were identified from the latently infected rhesus B cell line. A notable feature is that 8 miRNAs from 6 rLCV pre-miRNAs are highly conserved or almost completely conserved through sequence comparison between

rLCV and EBV (16).

In γ2 herpesviruses, there are several viruses that have been shown to encode multiple miRNAs

in the genomes, including KSHV, rhesus rhadinovirus (RRV) and murine herpesvirus 68

(MHV68) (15,44,73,78,81). KSHV, a recently discovered virus recognized as a causative agent

of Kaposi’s sarcoma, is also linked to several other lymphoproliferative disorders including

primary effusion lymphomas (PEL) and Multicentric Castleman’s Disease (MCD) (2,18,34).

As a prototype of the genus of Rhadinoviruses , whether this virus encodes miRNAs as EBV

became an interesting question. Studies from four independent groups led to the identification

of a total of 12 pre-miRNAs. Similar to the cluster pattern of EBV miRNAs, 10 of 12 pre-

miRNAs are clustered in a 4-kb intronic region between ORF-K12 and ORF71. Shortly after

the first miRNA work on EBV, Pfeffer et al . extended their interest to other members of

herpesviruses including HCMV, MHV68 and KSHV (73). Using the same strategy in the EBV

study, Pfeffer et al . cloned 10 KSHV pre-miRNAs, 5 of which were further confirmed by

Northern-blot hybridization. In this study, KSHV-miR-K12-10 was found to be resided in

ORF-K12 (kaposin) and has two variants with a single nucleotide difference at the position 2

of mature miRNA sequence, which might also affect the transcript of kaposin, but has no

changes for the miRNA containing DNA fragments cloned from viral genome. The author

reasoned that the single nucleotide conversion might be caused by a dsRNA-specific

deaminase, which was partially confirmed by subsequent work of Candy et al . describing the

existence of RNA editing in kaposin transcript (35). Another interesting finding of this special

miRNA is that its expression level is increased more than 6 folds following induction of lytic

replication, while the majority of KSHV miRNAs are not affected by lytic induction. Except

for the work of Pfeffer et al ., the two reports by Cai et al . and Samols et al . identified 10 and

9 pre-miRNAs, respectively (15,78). Subsequently, Groundhoff et al . reported the

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

identification of 12 KSHV miRNAs, of which one miRNA, miR-K12, was missed in previous

investigations (44).

RRV is closely related to KSHV, and serves as an animal model for studying the infection and latency of gamma herpesviruses in a host closely related to human (69). Schafer et al . cloned and analyzed the miRNAs encoded by RRV. In this study, 7 pre-miRNAs were identified (81). In contrast to EBV and rLCV, while the genomic positions of RRV miRNAs are located in the similar region of KSHV, none of them has sequence homolog to KSHV miRNAs (81).MHV68, the third γ2-herpesvirus found to encode miRNAs, is closely related to EBV and KSHV. MHV68 infection of mice provides a useful small animal model of gamma herpesviruses (84). As part of the work by Pfeffer et al ., 9 pre-miRNAs were cloned from an infected B cell line. All these miRNAs are clustered within a 6-kb region, which also contains 8 tRNA genes. The genomic location pattern of the MHV68 miRNAs has suggested that these miRNAs might be transcribed by Pol III rather than Pol II as normally found for other cellular and viral miRNAs.Functions of miRNAs Encoded by Herpesviruses Viral miRNAs have been thought to play very important regulatory roles in viral life cycle.Viral miRNAs provide an attractive and economic strategy to facilitate viral growth by inhibiting host and viral genes without inducing immune responses commonly caused by viral proteins. Although more than 100 viral miRNAs have been identified, the functions of the majority of viral miRNAs remain unclear.To date, the popular algorithms for cellular miRNA target prediction are based on the conservation of binding sites or seeds among different species, which is usually not present among viral miRNAs. Microarray approach has been used but can only compare the changes of gene expression profiles at the mRNA level. It seems that the cellular genes, in most cases,

are not affected by cellular and viral miRNAs at the mRNA level, but rather, at translation

stage. Because of the lack of accurate algorithm for target prediction of viral miRNAs, and the

lack of efficient and high throughout methods for target validations, elucidation of the

regulatory functions of viral miRNAs remains a daunting task. While microarray approach will

undoubtedly miss the most of the targets, it is still the only reproducible way to simultaneously

compare the expression profiles of more than 20,000 genes, which could provide information

of the targets regardless at the mRNA or protein level when combined with other approaches

such as pathway analysis and target confirmation.

Regulation of host genes by viral miRNAs

It is conceivable the viral miRNAs regulate the components of host immune system to avoid

the immune surveillance and subsequent immune clearance to virus. Thus, viral miRNAs

provide a novel immune-evasion mechanism for virus survival in the host. For most of

algorithms developed for target prediction of mammalian miRNAs, the most important feature

is the consideration of the evolutionary conservation of the binding sites in different species.

But for targets of viral miRNAs, it does not seem to be the case because of the strict host range

limitation for most of the known viruses. Stern-Ginossar et al . developed an algorithm for

miRNA target prediction, which is based on the observation that the more miRNA binding

sites exist within the 3′UTR of a potential target mRNA, the more likely this candidate is the

real target. Although this limited algorithm will undoubtedly miss a considerable number of

actual targets with only one binding site, an immune-related gene, MICB was successfully

predicted to be the target gene of HCMV-miR-UL112 with a high-ranking score. MICB is a

ligand for the NKG2D type II receptor. Binding of the ligand activates the cytolytic response

of natural killer (NK) cells, CD8 alphabeta T cells, and gammadelta T cells which express the

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

receptor (37,75). Stern-Ginossar et al . transduced a number of tumor cell lines that endogenously express MICB with a lentivirus-based HCMV-miR-UL112 expression construct. The author found the protein level of MICB was reduced in these tested tumor cell lines without significant change at the mRNA level, which indicated the specific regulation of MICB by the HCMV-miR-UL112. Additional experiments confirmed that HCMV-miR-UL112-mediated reduction of MICB indeed affected its interaction with NKG2D receptor,leading to less efficient killing by the natural killer cells. Subsequent functional binding site studies of MICB 3′UTR provided strong evidences that MICB is directly targeted by the HCMV-miR-UL112. Previous studies have shown that the UL16 protein encoded by HCMV can bind to MICB resulting in intracellular sequestration of NKG2D ligands and reduction of the cell susceptibility to natural killer cells (20,26). All these findings suggest a complicated and cooperative mechanism by which a virus evades the attack of the host immune system (92).EBV encodes multiple miRNAs differentially expressed in distinct cell lines and clinical samples. The complicated expression patterns of EBV miRNAs implicate the complexity of their functions. CXCCL-11/I-TAC , the interferon-inducible T-cell attracting chemokine, has been recently shown to be a potent antitumor actor (50,95). It was also predicted to be a putative cellular target gene of BHRF1-3 miRNA based on the published data that show CXCCL-11/I-TAC contains a 100% complimentary sequence to the BHRF1-3 miRNA sequence in its 3′UTR. To prove the prediction, Xia et al . tested the expression level of CXCCL-11/I-TAC in two different cell lines with significant difference in BHRF1-3 miRNA level, and found that the expression level of CXCCL-11/I-TAC inversely correlates with the level of the BHRF1-3miRNA (93). Further experiments using BHRF1-3 miRNA sense and anti-sense oligos showed significant changes of CXCCL-11/I-TAC expression in a dose-dependent fashion. Despite these observations, the failure to identify the mRNA binding sites renders difficult to judge whether CXCCL-11/I-TAC is indeed the direct target of the BHRF1-3 miRNA. Nevertheless, the BHRF1-3 miRNA-mediated suppression of CXCCL-11/I-TAC may still be regarded as a

potential immune evasion mechanism in EBV-infected lymphomas.

Like EBV, KSHV also encodes a number of miRNAs clustered in an intergenic region in the

genome. Recently, several studies reported that KSHV miRNAs could target cellular genes

(38,79,83). These findings shed light on how KSHV miRNAs may regulate cellular genes and

contribute to KSHV-induced malignancies. Samons et al . attempted to identify cellular genes

targeted by KSHV miRNAs. Briefly, a cluster of 10 KSHV miRNAs were cloned and stably

expressed in 293T cells. A microarray analysis was then performed to detect differential

expression profiles as a result of overexpression of the viral miRNAs. Several potential cellular

targets with significant changes at mRNA level were identified, and one of them,

thrombospondin 1 (THBS1), was confirmed (79). THBS1, an extracellular glycoprotein, has

antiproliferative, antiangiogenic, and immune modulatory activities (9). THBS1 is poorly

expressed in KS lesions and KSHV-infected cells, and known to inhibit KS cells and HIV-1

Tat-induced angiogenesis (88). Samons et al . observed a significant decrease of THBS1 protein

in 293T cells expressing the KSHV miRNA cluster. The reduction of THBS1 could be

translated into reduced TGF-beta activity. Further evidences indicated that THBS1 is targeted

by multiple KSHV miRNAs.

MiRNA orthologs are commonly seen among different metazoan eukaryotes, but for viral

miRNAs, it has rarely happened. Two recent studies all showed that KSHV-miR-K12-1 not

only shares the same seed sequence with the cellular miR-155, but also shares a set of target

genes, indicating that miR-K12-11 is an ortholog of human miR-155 (38,83). miR-155 is

derived from the non-coding transcript of the BIC gene (29) and is thought to be an oncomir

due to an observation that overexpression of this miRNA led to cancer in a transgenic mice

model (21). The finding that KSHV miR-K12-11 is an ortholog of miR-155 suggests that miR-

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

K12-11 may play an important role in the development of KSHV-associated lymphomas by

hijacking the same targets of miR-155. Interestingly, with the exception of BACH-1, no overlap

of cellular targets of miR-K12-11 was identified by microarray analysis in these studies,

possibly because of the use of different experimental cell lines. Gottwein et al . also presented

a list of potential cellular orthologs of other viral miRNA, which remains to be further

confirmed.

Regulation of viral genes by viral miRNAs The life cycle of all herpesviruses have two distinct phases, latency and lytic replication. In latent phase, only a few of viral genes are expressed; while in lytic phase, almost all the viral genes are expressed (77). Viral miRNAs encoded by herpesviruses may directly target viral transcripts to regulate viral life cycle.Umbach et al . recently found several viral miRNAs in or near the LAT region of HSV-1. miR-H2, miR-H3 and miR-H4 were mapped to the complimentary strand of several ICP transcripts indicating that these miRNAs might regulate the expression of ICP transcripts. ICP0 is an activator of viral genes, and is required for efficient initiation of lytic infection and reactivation from latency (31). The expression of ICP0 is sufficient to increase lysis of HSV infected cells by natural killer cells (19). Since miR-H2 is antisense to ICP0 transcripts, it is conceivable that HSV-1 may inhibit the expression of ICP0 via miR-H2 to maintain latent infection, and evade the immune responses. To test this hypothesis, an ICP0 expression plasmid and a miR-H2-3p expression plasmid were co-transfected into 293T cells, resulting in a significant reduction of ICP0 protein expression. The sequence of mature miR-H2 does not perfectly match those in the ICP0 transcripts, inferring the absence of siRNA cleavage of the target mRNAs. In indeed,the ICP0 transcript was almost unaffected in the study. miR-H3 and miR-H4 are transcribed antisense to ICP34.5, but the possible effect of miR-H3 and miR-H4 on ICP34.5 has not been investigated. A recent study by Umbach et al . showed that miR-H6, with partial complementarity to ICP4 transcript, acts as a suppressor of the ICP4 protein expression without

cleaving of its transcript (89). A similar study by Tang et al . showed that HSV-2 miR-I,

transcribed antisense to ICP 34.5, efficiently inhibits the expression of ICP34.5 through the

siRNA-mediated suppression mechanism (87). Together, results from the HSV-1 and HSV-2

studies indicate that, despite viral miRNAs are 100% complementary to the transcripts, they

might not inhibit the expression of the genes on the opposite strand in the same fashion.

To study whether HCMV miRNAs target its viral genes, Grey et al . (41) applied a

computational approach to predict the potential binding sites within the 3′UTR of viral

transcripts. Since there was no existing HCMV 3′UTR database available due to the lack of

experimental data, the author had to establish a putative 3′UTR database of HCMV transcripts.

The 3′UTR of viral transcripts was defined as the sequence from the 3′ end of each annotated

ORF to the first typical poly (A) signal, which inevitably excluded some of the complicated

splicing events of viral transcripts. Following the prediction and comparison with another

closely related chimpanzee cytomegalovirus (CCMV), 14 3′UTR were predicted to contain

putative binding sites for miR-UL112-1 in both HCMV and CCMV. All 14 putative 3′UTR

were then inserted into a luciferase reporter and tested for the inhibitory effect of miR-UL112-1,

leading to the identification of 3 positive targets, IE72 (UL123, IE1), UL120/121 and

UL112/113. IE72 is an HCMV IE locus product required to execute the viral transcriptional

program (64). Additional studies confirmed that the IE72 protein could be specially repressed

by miR-UL112-1 at the translation stage without affecting its RNA level. Previous data showed

that when the IE72 expression level is high during the early HCMV infection phase, miR-

UL112-1 expression is low (40). Grey et al . further examined whether this repressing effect

could affect the viral life cycle by transfecting a synthetic miR-UL112-1 RNA duplex into cells

prior to viral infection. He found that the levels of both IE72 expression and viral DNA

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

replication was reduced (41). Similar results were reported in another study, in which Murphy

et al . (67) used the Monte Carlo simulation to predict the potential viral target for HCMV

miRNAs. The IE72 was further examined because of its important function in HCMV life

cycle. By labeling the proteins with 35S, Murphy et al . found that the newly synthesized IE72

protein had longer half-life in HCMV-infected cells. In this study, the author also made

prediction of targets for miRNAs of other herpesviruses. Among some of these putative targets

of viral miRNAs are BZLF1 and BRLF1 for EBV, and ORF-K8 and RTA (ORF50) for KSHV.

EBV is the first virus known to encode miRNAs, but how EBV miRNAs regulate its own viral

transcripts had been unclear until two recent reports examined their targets (4,62). EBV-

encoded LMP1 is an important factor for EBV-related malignancies. LMP-1 induces cell

growth and transformation at low expression level; however when it is expressed at high level,

it causes growth inhibition (30). Bioinformatics analysis by Lo et al . showed that the 3′UTR

of LMP1 contains binding sites to several BART miRNAs. Reporter assay with luciferase

plasmids embedded with multiple target sequence identified 3 BART miRNAs, including

BART16, 17-5p and 1-5p, which target LMP1. In this study, the entire BART cluster 1 miRNAs

cloned in an expression vector or individual synthetic BART miRNAs were co-transfected

with a LMP1 expression vector containing the 3′UTR of LMP1. The results showed a

significant reduction of LMP1 protein. High level of NF-κB activity, which is the major

pathway activated by LMP1, is believed to be essential for the survival and growth of EBV-

transformed cells (13,32,51,55). Results of this study indicate that low level of LMP1 was

sufficient to activate the NF-κB pathway, but increased level of LMP1 would actually reduce

the NF-κB activity. Thus, the BART cluster 1 miRNAs appear to fine-tune the NF-κB activity

through LMP1. Together, this delicate interaction might serve as parts of the

immunomodulatory mechanism to maintain viral latency.

The EBV-encoded BALF5 is a viral DNA polymerase, which is essential for viral DNA

replication (33). miR-BART2 transcribed antisense to the BALF5 transcript has perfect

complementary match to the BALF5 3′ UTR, and thus may target this mRNA for degradation

(74). Barth et al . confirmed that miR-BART2 indeed could inhibit the activity of a luciferase

reporter containing the BALF5 3′UTR, and reduce the endogenous BALF5 protein level in

EBV-infected cells. The expression levels of miR-BART2 and BALF5 were inversely

correlated. While miR-BART2 is expressed in latency, BALF5 is not present during latent

infection. In contrast, an increase in the miR-BART2 level in EBV-infected cells undergoing

lytic replication resulted in a ~50% reduction in the BLAF5 protein level and ~20% reduction

of virus production. These results clearly illustrate a strategy by which the virus inhibits the

expression of viral lytic genes through viral miRNAs to maintain latency.Conclusion

Recent studies on the viral miRNAs have revealed many functions in regulating cellular and

viral activities, including the cell proliferation, differentiation, cell apoptosis, viral gene

expression and virus replication. However, it is still early to construct the entire networks of

functions performed by viral miRNAs. Further development of better target prediction

algorithms combined with high throughput validation methods should promise better

understanding of the roles of these newly discovered fascinating small molecules.

References

1. Ahmed M, Lock M, Miller CG, et al. Regions of the herpes simplex virus type 1 latency-associated

transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol

2002;76:717–729. [PubMed: 11752162]

NIH-PA Author Manuscript NIH-PA Author Manuscript

NIH-PA Author Manuscript

2. Aluigi MG, Albini A, Carlone S, et al. KSHV sequences in biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi’s sarcoma. Res Virol 1996;147:267–275.[PubMed: 8880996]

3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–297.[PubMed: 14744438]

4. Barth S, Pfuhl T, Mamiani A, et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF

5. Nucleic Acids Res 2008;36:666–675. [PubMed:18073197]5. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409:363–36

6. [PubMed: 11201747]6. Biggs, PM.; Milne, BS. Biological properties of a number of Marek’s disease virus isolates. In: Biggs,PM.; de The, G.; Payne, LN., editors. Oncogenesis and Herpesviruses. IARC; Lyon, France: 1972. p.88-94.

7. Bloom DC. HSV LAT and neuronal survival. Int Rev Immunol 2004;23:187–19

8. [PubMed:14690860]8. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006;13:1097–1101. [PubMed: 17099701]

9. Bornstein P. Thrombospondins as matricellular modulators of cell function. J Clin Invest 2001;107:929–934. [PubMed: 11306593]10. Buck AH, Santoyo-Lopez J, Robertson KA, et al. Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 2007;81:13761–13770. [PubMed: 17928340]11. Burnside J, Bernberg E, Anderson A, et al. Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 2006;80:8778–8786. [PubMed: 16912324]12. Burnside J, Ouyang M, Anderson A, et al. Deep sequencing of chicken microRNAs. BMC Genomics 2008;9:185. [PubMed: 18430245]13. Cahir-McFarland ED, Davidson DM, Schauer SL, et al. NF-kappa B inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci USA

2000;97:6055–6060. [PubMed: 10811897]

14. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated

transcripts that can also function as mRNAs. Rna 2004;10:1957–1966. [PubMed: 15525708]

15. Cai X, Lu S, Zhang Z, et al. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral

microRNAs in latently infected cells. Proc Natl Acad Sci USA 2005;102:5570–5575. [PubMed:15800047]

16. Cai X, Schafer A, Lu S, et al. Epstein-Barr virus microRNAs are evolutionarily conserved and

differentially expressed. PLoS Pathog 2006;2:e23. [PubMed: 16557291]

17. Cesarman E, Moore PS, Rao PH, et al. In vitro establishment and characterization of two acquired

immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 1995;86:2708–2714.

[PubMed: 7670109]

18. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-

associated Kaposi’s sarcoma. Science 1994;266:1865–1869. [PubMed: 7997879]

19. Chisholm SE, Howard K, Gomez MV, et al. Expression of ICP0 is sufficient to trigger natural killer

cell recognition of herpes simplex virus-infected cells by natural cytotoxicity receptors. J Infect Dis 2007;195:1160–1168. [PubMed: 17357052]

20. Cosman D, Mullberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to

CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 2001;14:123–133. [PubMed: 11239445]

21. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-

grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006;103:7024–7029.

[PubMed: 16641092]

22. Cui C, Griffiths A, Li G, et al. Prediction and identification of herpes simplex virus 1-encoded

microRNAs. J Virol 2006;80:5499–5508. [PubMed: 16699030]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

23. Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell 2004;16:861–865. [PubMed: 15610730]24. Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432:231–235. [PubMed: 15531879]25. Dolken L, Perot J, Cognat V, et al. Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 2007;81:13771–13782. [PubMed: 17942535]26. Dunn C, Chalupny NJ, Sutherland CL, et al. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 2003;197:1427–1439. [PubMed: 12782710]27. Dunn W, Trang P, Zhong Q, et al. Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol 2005;7:1684–1695. [PubMed: 16207254]28. Edwards RH, Marquitz AR, Raab-Traub N. Epstein-Barr Virus BART miRNAs are Produced from a Large Intron Prior to Splicing. J Virol. 200829. Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas.Proc Natl Acad Sci USA 2005;102:3627–3632. [PubMed: 15738415]30. Eliopoulos AG, Dawson CW, Mosialos G, et al. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator.Oncogene 1996;13:2243–2254. [PubMed: 8950992]31. Everett RD. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 2000;22:761–770. [PubMed: 10918307]32. Feuillard J, Schuhmacher M, Kohanna S, et al. Inducible loss of NF-kappaB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood 2000;95:2068–2075. [PubMed: 10706876]33. Fixman ED, Hayward GS, Hayward SD. trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 1992;66:5030–5039. [PubMed: 1321285]34. Gaidano G, Castanos-Velez E, Biberfeld P. Lymphoid disorders associated with HHV-8/KSHV infection: facts and contentions. Med Oncol 1999;16:8–12. [PubMed: 10382936]

35. Gandy SZ, Linnstaedt SD, Muralidhar S, et al. RNA editing of the human herpesvirus 8 kaposin

transcript eliminates its transforming activity and is induced during lytic replication. J Virol

2007;81:13544–13551. [PubMed: 17913828]

36. Gerner CS, Dolan A, McGeoch DJ. Phylogenetic relationships in the Lymphocryptovirus genus of

the Gammaherpesvirinae. Virus Res 2004;99:187–192. [PubMed: 14749184]

37. Gonzalez S, Groh V, Spies T. Immunobiology of human NKG2D and its ligands. Curr Top Microbiol

Immunol 2006;298:121–138. [PubMed: 16329186]

38. Gottwein E, Mukherjee N, Sachse C, et al. A viral microRNA functions as an orthologue of cellular

miR-155. Nature 2007;450:1096–1099. [PubMed: 18075594]

39. Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of

microRNAs. Nature 2004;432:235–240. [PubMed: 15531877]

40. Grey F, Antoniewicz A, Allen E, et al. Identification and characterization of human cytomegalovirus-

encoded microRNAs. J Virol 2005;79:12095–12099. [PubMed: 16140786]

41. Grey F, Meyers H, White EA, et al. A human cytomegalovirus-encoded microRNA regulates

expression of multiple viral genes involved in replication. PLoS Pathog 2007;3:e163. [PubMed:17983268]

42. Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic

Acids Res 2008;36:D154–158. [PubMed: 17991681]

43. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference

regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001;106:23–34. [PubMed: 11461699]

44. Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarray-based approach

identifies novel microRNAs encoded by human gamma-herpesviruses. Rna 2006;12:733–750.

[PubMed: 16540699]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

45. Gupta A, Gartner JJ, Sethupathy P, et al. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 2006;442:82–85. [PubMed: 16738545]46. Hafner M, Landgraf P, Ludwig J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 2008;44:3–12. [PubMed: 18158127]47. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404:293–296. [PubMed: 10749213]48. Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing.Genes Dev 2004;18:3016–3027. [PubMed: 15574589]49. Henderson G, Peng W, Jin L, et al. Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript. J Neurovirol 2002;8(Suppl 2):103–111.[PubMed: 12491160]50. Hensbergen PJ, Wijnands PG, Schreurs MW, et al. The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother 2005;28:343–351. [PubMed: 16000952]51. Hiscott J, Kwon H, Genin P. Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest 2001;107:143–151. [PubMed: 11160127]52. Hutvagner G. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett 2005;579:5850–5857. [PubMed: 16199039]53. Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834–838.[PubMed: 11452083]54. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056–2060. [PubMed: 12154197]55. Izumi KM, Kieff ED. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA 1997;94:12592–12597. [PubMed:9356494]56. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell

2003;115:209–216. [PubMed: 14567918]

57. Kim do N, Chae HS, Oh ST, et al. Expression of viral microRNAs in Epstein-Barr virus-associated

gastric carcinoma. J Virol 2007;81:1033–1036. [PubMed: 17079300]

58. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D.

melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004;14:2162–2167. [PubMed:15589161]

59. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature

2003;425:415–419. [PubMed: 14508493]

60. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation: stepwise processing and subcellular localization.

Embo J 2002;21:4663–4670. [PubMed: 12198168]

61. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J

2004;23:4051–4060. [PubMed: 15372072]

62. Lo AK, To KF, Lo KW, et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs.

Proc Natl Acad Sci USA 2007;104:16164–16169. [PubMed: 17911266]

63. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science 2004;303:95–

98. [PubMed: 14631048]

64. Mocarski, ES., Jr; St Pass, RF. Cytomegaloviruses. In: Knipe, DM., editor. Fields Virology. Kluwer/

Lippincott Williams & Wilkins; Philadelphia, PA: 2007. p. 2701-2772.

65. Molnar A, Schwach F, Studholme DJ, et al. miRNAs control gene expression in the single-cell alga

Chlamydomonas reinhardtii. Nature 2007;447:1126–1129. [PubMed: 17538623]

66. Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs: a novel class of ribonucleoproteins containing

numerous microRNAs. Genes Dev 2002;16:720–728. [PubMed: 11914277]

67. Murphy E, Vanicek J, Robins H, et al. Suppression of immediate-early viral gene expression by

herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA 2008;105:5453–5458. [PubMed: 18378902]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

68. Navarro A, Gaya A, Martinez A, et al. MicroRNA expression profiling in classic Hodgkin lymphoma.Blood 2008;111:2825–2832. [PubMed: 18089852]69. O’Connor CM, Kedes DH. Rhesus monkey rhadinovirus: a model for the study of KSHV. Curr Top Microbiol Immunol 2007;312:43–69. [PubMed: 17089793]70. Patterson CE, Shenk T. Human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J Virol 1999;73:7126–7131. [PubMed: 10438798]71. Peckham CS. Cytomegalovirus infection: congenital and neonatal disease. Scand J Infect Dis Suppl 1991;80:82–87. [PubMed: 1666449]72. Perng GC, Jones C, Ciacci-Zanella J, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 2000;287:1500–1503. [PubMed: 10688801]73. Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family.Nat Methods 2005;2:269–276. [PubMed: 15782219]74. Pfeffer S, Zavolan M, Grasser FA, et al. Identification of virus-encoded microRNAs. Science 2004;304:734–736. [PubMed: 15118162]75. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003;3:781–790. [PubMed: 14523385]76. Rickinson, AB.; Kieff, E. Epstein-Barr virus. In: Knipe, HPMDM., editor. Fields virology. Lippincott,Williams & Wilkins; Philadelphia, PA: 2001. p. 2575-2627.77. Roizman, B.; Pellett, PE. The family Herpesviridae: a brief introduction. In: Howley, DMKPM.,editor. Fields Virology. 4. Lippincott Williams & Wilkins; Philadelphia, PA: 2001. p. 2381-2397.78. Samols MA, Hu J, Skalsky RL, et al. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 2005;79:9301–9305.[PubMed: 15994824]79. Samols MA, Skalsky RL, Maldonado AM, et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 2007;3:e65. [PubMed: 17500590]80. Sawtell NM, Thompson RL. Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol 1992;66:2157–2169. [PubMed: 1312626]

81. Schafer A, Cai X, Bilello JP, et al. Cloning and analysis of microRNAs encoded by the primate

gamma-herpesvirus rhesus monkey rhadinovirus. Virology 2007;364:21–27. [PubMed: 17451774]

82. Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex.

Cell 2003;115:199–208. [PubMed: 14567917]

83. Skalsky RL, Samols MA, Plaisance KB, et al. Kaposi’s sarcoma-associated herpesvirus encodes an

ortholog of miR-155. J Virol 2007;81:12836–12845. [PubMed: 17881434]

84. Speck SH, Virgin HW. Host and viral genetics of chronic infection: a mouse model of gamma-

herpesvirus pathogenesis. Curr Opin Microbiol 1999;2:403–409. [PubMed: 10458986]

85. Staras SA, Dollard SC, Radford KW, et al. Seroprevalence of cytomegalovirus infection in the United

States, 1988–1994. Clin Infect Dis 2006;43:1143–1151. [PubMed: 17029132]

86. Stevens JG, Wagner EK, Devi-Rao GB, et al. RNA complementary to a herpesvirus alpha gene mRNA

is prominent in latently infected neurons. Science 1987;235:1056–1059. [PubMed: 2434993]

87. Tang S, Bertke AS, Patel A, et al. An acutely and latently expressed herpes simplex virus 2 viral

microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci USA.2008

88. Taraboletti G, Benelli R, Borsotti P, et al. Thrombospondin-1 inhibits Kaposi’s sarcoma (KS) cell

and HIV-1 Tat-induced angiogenesis and is poorly expressed in KS lesions. J Pathol 1999;188:76–

81. [PubMed: 10398144]

89. Umbach JL, Kramer MF, Jurak I, et al. MicroRNAs expressed by herpes simplex virus 1 during latent

infection regulate viral mRNAs. Nature 2008;454:780–783. [PubMed: 18596690]

90. Vancikova Z, Dvorak P. Cytomegalovirus infection in immunocompetent and immunocompromised

individuals--a review. Curr Drug Targets Immune Endocr Metabol Disord 2001;1:179–187.

[PubMed: 12476798]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

91. Whitley, RJ. Herpes simplex viruses. In: Knipe, DM.; Griffin, DE.; Lamb, RA.; Martin, MA.;Roizman, B.; Straus, SE., editors. Fields virology. 4. Lippincott Williams & Wilkins; Philadelphia,Pa: 2001. p. 2461-2509.92. Wilkinson GW, Tomasec P, Stanton RJ, et al. Modulation of natural killer cells by human cytomegalovirus. J Clin Virol 2008;41:206–212. [PubMed: 18069056]93. Xia T, O’Hara A, Araujo I, et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11by ebv-mir-BHRF1-3. Cancer Res 2008;68:1436–1442. [PubMed: 18316607]94. Xu H, Yao Y, Zhao Y, et al. Analysis of the expression profiles of Marek’s disease virus-encoded microRNAs by real-time quantitative PCR. J Virol Methods 2008;149:201–208. [PubMed:18355930]95. Yang X, Chu Y, Wang Y, et al. Vaccination with IFN-inducible T cell alpha chemoattractant (ITAC)gene-modified tumor cell attenuates disseminated metastases of circulating tumor cells. Vaccine 2006;24:2966–2974. [PubMed: 16503368]96. Yao Y, Zhao Y, Xu H, et al. Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J Virol 2007;81:7164–7170. [PubMed:17459919]97. Yao Y, Zhao Y, Xu H, et al. MicroRNA profile of Marek’s disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol 2008;82:4007–4015. [PubMed:18256158]98. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011–3016. [PubMed: 14681208]99. Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 2003;100:9779–9784. [PubMed: 12902540]100. Zhao T, Li G, Mi S, et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 2007;21:1190–1203. [PubMed: 17470535]

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

按键精灵插件使用说明

函数说明: 1.TransformWindow(窗口句柄) 功能:转换窗口,对要取后台图色数据的窗口使用该函数后才能取后台图色数据。如果是DX图形绘图的窗口,DX绘图区域必须有部分移到屏幕外,否则无法使用。转换窗口后,有些窗口(特别是大多数游戏的)要等待一会儿才能用其它函数可靠地取到后台图色数据,等待的时间要大于画面两次刷新的时间间隔。转换后到取消转换前,可以无限次使用取到后台图色数据的命令,即通常只需要转换一次。 参数: 1)窗口句柄:整型数。 2.UnTransformWindow(窗口句柄) 功能:取消窗口转换,DX图形绘图的窗口,用过TransformWindow后,必须用UnTransformWindow取消窗口转换才能让DX绘图完全移到屏幕中,否则后很严重(不会损坏电脑的),自己试下就知道了。 参数: 1)窗口句柄:整型数。 3.GetPixelColor(窗口句柄,横坐标,纵坐标)[颜色值] 功能:获得指定点的颜色 参数: 1)窗口句柄:整型数。 2)横坐标:整型数,窗口客户区坐标。 3)纵坐标:整型数,窗口客户区坐标。 返回值: 颜色值:整型数。 例子: Plugin hwnd=Window.Foreground() Plugin Window.Move(hwnd,-30,10) Plugin BGCP2_02.TransformWindow(hwnd) Delay 200 Plugin color=BGCP2_02.GetPixelColor(hwnd,0,0) MsgBox CStr(Hex(color)),4096,"颜色" Plugin BGCP2_02.UnTransformWindow(hwnd) Plugin Window.Move(hwnd,10,10) 4.CmpColor(窗口句柄,横坐标,纵坐标,颜色,颜色最大偏差)[是否满足条件] 功能:判断指定点的颜色,后台的IfColor 参数: 1)窗口句柄:整型数。 2)横坐标:整型数,窗口客户区坐标。 3)纵坐标:整型数,窗口客户区坐标。 4)颜色:整型数。 5)颜色最大偏差:整型数。游戏中不同电脑上显示的颜色会有点偏差,这个参数用于兼容这种情况,它设置的是RGB各颜色分量偏差的最大允许值,取值范围是0-255,0是无颜色偏差。 返回值: 是否满足条件:布尔值,布尔值是用来表达是真是假的,指定点的颜色满足条件就返回真,否则返回假。 例子: Import "BGCP2_02.dll" Plugin hwnd=Window.Foreground() Plugin Window.Move(hwnd,-30,10) Plugin BGCP2_02.TransformWindow(hwnd) Delay 200 Plugin tj=BGCP2_02.CmpColor(hwnd,6,5,&HFF7F00,30) If tj=true MsgBox "满足条件",4096 Else MsgBox "不满足条件",4096 EndIf Plugin BGCP2_02.UnTransformWindow(hwnd) Plugin Window.Move(hwnd,10,10) 5.FindColor(窗口句柄,左边界,上边界,右边界,下边界,颜色,颜色最大偏差,查找方式,横坐标,纵坐标) 功能:找色 参数: 1)窗口句柄:整型数。 2)左边界,整型数,用于设置找色范围,找色区域左上角的横坐标(窗口客户区坐标)。 3)上边界,整型数,用于设置找色范围,找色区域左上角的纵坐标(窗口客户区坐标)。 4)右边界,整型数,用于设置找色范围,找色区域右下角的横坐标(窗口客户区坐标)。 5)下边界,整型数,用于设置找色范围,找色区域右下角的纵坐标(窗口客户区坐标)。

学习游戏脚本制作:按键精灵里的if语句教程

学习游戏脚本制作:按键精灵里的if语句教程 来源:按键学院【按键精灵】万万没有想到……有一天居然会栽在if语句手里。 First—小编的凄惨经历 小编今早写脚本,由于无意间将if语句中的end if错删了,弹出了这样的错误提示: “(错误码0)没有找到合法的符号。” 看到这个提示,小编以为是哪个逗号不小心写成中文逗号,没成想丢了个end if也是出现这样的提示。 好在代码不多,所以错误点容易找到,那……如果,代码多达几百上千条的时候呢?眼泪马上掉出来~ 今天在这里和童鞋们一起来了解下,按键里的夫妻组合,看看这些夫妻被分开之后都会出现什么样的可怕情况: Second—一夫一妻制 If……end if判断语句 If判断语句,有分为两种: 1、 if语句条(条模式) 当判断完之后,要执行的语句只有一条的时候,使用if语句条

例如: If 1 > 0 Then MessageBox"Hello~" // If语句条,不需要添加end if //条模式的时候,if语句还是单身,不是夫妻组合 2、 if语句块(块模式) 当判断完之后,要执行的语句有很多条的时候,使用if语句块 例如: If 1 > 0Then MessageBox"Hello~" MessageBox"Hello~" End If //块模式的时候,if语句是已婚状态,夫妻组合。如果这个时候缺少了end if 就会出现下面的错误提示: 拓展:if语句块中then 可以省略 例如: If 1 >0 MessageBox"Hello~" MessageBox"Hello~"

End If For……next循环语句 例子: For i=1 To 10 //这里的脚本可以循环10次 Next 拓展:如果,循环体里不需要用到循环次数值,例如,需要打开十个记事本,可以这样写: For 10 RunApp "Notepad.exe" Next 当for循环语句缺少next的时候,会出现下面的错误提示: Do……Loop 循环语句 Do……Loop循环语句分为两种情况: 1、前判断 Do While条件 Loop

C#中如何调用按键精灵插件

C#中如何调用按键精灵插件 原来是为了在游戏外挂中发送键盘鼠标消息,自己写个sendmessage或者是postmessage又比较麻烦。于是google了一下,发现现在很多脚本工具都有这个功能,其中按键精灵的一个叫361度的插件已经有这个的实现,还验证过了。为什么不拿来己用呢?首先分析一下按键精灵插件的接口,发现: 插件的功能函数没有直接暴露出来,而是通过一个GetCommand的函数返回一个函数描述结构。 接下来看看这个结构: 上面这个结构我已经是转换成C#的对应结构了,原结构可以查看按键精灵提供的插件C++接口源代码。 这个结构里面的handlerFunction 实际上是指向函数的入口点,也就是一个函数指针,每个函数都一样是2个参数: typedef int (*QMPLUGIN_HANDLER)(char *lpszParamList, char *lpszRetVal); 转换为C#中相应的委托为: delegate void Invoker(string parameters, StringBuilder returnValue); 大家注意到,有两个参数,c++原型中都是char*类型,转换为C#的delegate后第一个为string,第二个为StringBuilder。这是因为parameters是in的,dll中不会对这个参数做修改,而returnValue是out的,dll返回时候要把返回值写入这个StringBuilder的缓冲区。 原本的想法是用C++写一个桥来调用dll,不过在.net 2.0 中,框架直接提供了

Marshal.GetDelegateForFunctionPointer 来转换一个函数指针为一个委托,这就方便多拉。请看下面代码,注意看BGKM_ExecuteCommand 这个函数里面的东西。 using System; using System.Collections.Generic; using System.Text; using System.Runtime.InteropServices; namespace WJsHome.Game.Utility { public class QMacro { [DllImport("BGKM5.dll", EntryPoint = "GetCommand")] static extern IntPtr BGKM_GetCommand(int commandNum); [StructLayout(LayoutKind.Sequential)] class QMPLUGIN_CMD_INFO { public string commandName; public string commandDescription; public IntPtr handlerFunction; public uint paramNumber; } delegate void Invoker(string parameters, StringBuilder returnValue); static string BuildParameters(params object[] parameters) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < parameters.Length; i++) { sb.Append(parameters[i].ToString());

按键精灵脚本制作教程: HSV搞定偏色!

按键精灵脚本制作教程:HSV搞定偏色! 来源:按键学院【按键精灵】 院刊《如何识别渐变色或半透明的文字》中, 我们分享了如何通过设置偏色来查找渐变文字, 我们使用的是RGB方式,然后配合偏色计算器来计算出偏色的。 今天我们换个方式,不使用偏色计算器,依靠肉眼对颜色的感觉,看看能不能搞定偏色~ HSV颜色模型 了解HSV颜色模型前,我们先来看看RGB颜色模型 RGB颜色空间采用物理三基色表示:红、绿、蓝 任何一个颜色都是有三基色混合而成的。但是,人的视觉不适应这种颜色体制, 人的肉眼看颜色,不可能像机器一样,分析出颜色里含有多少比重的红、绿、蓝 肉眼看颜色,是通过由色相(Hue,简H),饱和度(Saturation,简S)和色明度(Value,简V)来识别我们看到的是什么颜色。

HSV就是用色相,饱和度和色明度来形容颜色,所以它适合人的视觉。 这个色彩缤纷的圆锥形就是HSV的色彩空间。 我们举个例子好好的理解下它。 例如,我们要找的颜色是,下图中红色点的颜色: 怎样才能描述这个颜色在圆锥里的位置呢? 首先要看圆锥的平面圆,这是一个被颜色块分割了的圆。(这个圆表示的是色相 H)图中为了便于查看,只分了几个大块,实际上,圆的360度每一度都表示着一种颜色。

我们看到了,我们要找的颜色它是在紫色的那一块。 接着我们看圆锥被切开的那个口子, 横向数进去,我们看到,红色点的颜色位于紫色块的第五个位置, 而且,我们发现,越靠近圆锥心,颜色就越淡,好像被掺和了水一样变得不纯洁了。这就是颜色的纯度,即饱和度S 。 最后,我们看圆锥被切开的口子,往圆锥底部而下的变化。 越往下颜色就越暗淡。 这就是颜色的亮度即色明度V 我们发现我们要找的点是在最亮的地方。 三步骤我们就确定了颜色的所在位置。 那么,真正应用到偏色里要怎么应用呢? 我们找个实例操作下~ 偏色处理

(完整版)按键精灵默认插件命令大全

目录 插件命令面板 - BKgnd后台控制 (6) KeyPress 按键 (6) KeyDown 按下 (7) KeyUp 弹起 (8) LeftClick 左键单击 (9) LeftDoubleClick 左键双击 (10) LeftDown 左键按下 (11) LeftUp 左键弹起 (12) RightClick 右键单击 (13) RightDown 右键按下 (14) RightUp 右键弹起 (15) MiddleClick 中键单击 (16) SendString 发送字符串 (17) MoveTo 鼠标移动 (18) GetPixelColor 得到指定点颜色 (19) FindColor 区域找色 (20) FindColorEx 模糊找色 (21) FindCenterColor 中心找色 (22) 插件命令面板 - Color颜色 (23) ColorToRGB 颜色转RGB (23) GetRGB 得到RGB分量合并值 (23) ColorToHSL 颜色转HSL (24) CountColor 区域搜索颜色数量 (25) FindMutiColor 区域多点找色 (26) FindShape 区域多点找形状 (27) 插件命令面板 - Console控制台 (27) Open 打开 (28) Close 关闭 (29) ReadLine 读取一行 (29) WriteLine 写入一行 (29)

WaitKey 等待按键 (30) 插件命令面板 - Encrypt加解密 (30) Md5String 字符串MD5加密 (30) Md5File 文件MD5加密 (31) 插件命令面板 - File文件 (31) CloseFile 关闭文件 (31) CopyFile 复制文件 (31) CreateFolder 创建文件夹 (32) DeleteFile 删除文件 (32) DeleteFolder 删除文件夹 (33) ExistFile 判断文件(旧) (33) GetFileLength 得到文件长度 (33) IsFileExit 判断文件 (34) MoveFile 移动文件 (35) OpenFile 打开文件 (35) ReadFile 读取文件 (36) ReadFileEx 读取文件 (36) ReadINI 读取键值 (37) ReadLine 读取一行 (37) ReNameFile 重命名文件 (38) SeekFile 设置文件的当前读写位置 (38) SelectDirectory 弹出选择文件夹对话框 (39) SelectFile 弹出选择文件对话框 (39) SetAttrib 设置文件属性 (40) SetDate 设置文件日期时间 (41) WriteFile 写入文件 (41) WriteFileEx 写入文件 (41) WriteINI 写入键值 (42) WriteLine 写入一行 (42) 插件命令面板 - Media多媒体 (43) Beep 蜂鸣器 (43) Play 播放 (44)

按键精灵插件帮助

1.什么是按键精灵的插件 按键精灵的插件是由按键精灵官方或用户自己提供的一种功能扩展。由于按键精灵本身只提供脚本制作过程中最常用的功能,而不可能面面俱到。所以,如果您稍懂一点Visual C++编写程序的知识,就可以通过自己写按键精灵插件,实现比较特殊、高级的功能,如文件读写、注册表访问,等等。如果您愿意,还可以把自己写的插件提交给我们,我们可以在按键精灵的最新版中捆绑您编写的插件,和大家共同分享您的智慧! 按键精灵的插件是通过动态链接库(DLL)的形式提供的。这些动态链接库必须满足一定的规范,并且放在按键精灵所在路径的plugin文件夹下。在按键精灵启动的时候,会自动加载plugin文件夹下的每个插件。每个插件可以包含多个“命令”,每个命令则可以看作是一个独立的函数或者子程序。比如我们提供的文件相关操作插件File.dll,就提供了ExistFile(判断文件是否存在)、CopyFile(复制一个文件)、DeleteFile(删除一个文件)等多个命令。 目前按键精灵的插件只能使用Visual C++编写。您不需要懂得很高深的Visual C++编程技巧,也不需要知道插件的技术细节。因为我们已经提供了一个“模板”插件,您只需要在这个模板上按照下文所述的步骤进行一点点修改,一个属于您自己的插件就完成了。我们推荐您使用Visual C++ 6.0,也可以用Visual C++.NET。 值得说明的是,由于技术原因,按键精灵的插件目前还不能用Visual Basic、Delphi、JBuilder等常见的开发工具编写。但是有聪明的用户使用VBScript脚本和ActiveX DLL的形式,同样实现了按键精灵的功能扩展,典型的例子如Ringfo大虾制作的QMBoost等等。严格说来,这种功能扩展不能称为按键精灵的插件,但是我们同样欢迎这种类型的功能扩展。 2. 如何制作一个插件 2.1.准备动手 为按键精灵写一个插件其实非常简单,只需要您有一点Visual C++编程的知识就够了。如果您懂Visual C++编程,就请跟我一步一步的来完成一个简单的插件。 首先得计划一下,我们的插件完成什么功能,再考虑一下这个插件都需要具有哪些命令。这里假设我们的插件是用于字符串操作的,名字就叫String.dll,这个插件目前暂时只有一个命令,名字叫StrLen,是用于得到字符串长度的。也就是说,用户通过使用我们提供的StrLen 命令,传入一个字符串,我们给他返回这个字符串的长度。 具体的说,用户可能将来会在按键精灵中这样调用我们的插件命令: Dim length as integer Plugin length=String.StrLen(“Hello, world”) 如果您熟悉按键精灵,那么对第一句话不会陌生,它的意思是定义一个叫length的整数变量。第二句的意思,我们来解析一下:

按键精灵教程

变量!神奇的小柜子 变量就是会变化的量。就像一个小柜子,我们可以在柜子里装载不同的东西,而当我们需要找到这些东西的时候,只要记住柜子的名字就可以了。 使用变量的方法是:先定义(给柜子起名)、再赋值(将物品放进柜子)、最后使用(根据柜子名字找到放在其中的物品)。 使用Dim命令定义变量,例如: Dim str1 //定义变量str1 Dim var1=22 //定义变量Var1,并且赋值为22 例子1:使用变量设置输出文字的内容 1、下面红色的是3行脚本,请把他复制到“源文件”当中 Dim str1 str1 = "你很聪明" SayString str1 2、Dim str1 就是定义变量,也就是说我们创建了一个小柜子,给他起名为str1 3、str1 = "你很聪明" 就是赋值,我们把"你很聪明"这几个字放到str1这个小柜子里 4、SayString str1 表示我们输出str1这个变量的内容,也就是说把str1这个小柜子里的内容拿出来交给SayString 这个命令去使用。 5、如果你希望修改喊话的内容,只要修改str1这个小柜子里的内容就可以了。 例子2:变量的一些用法 a=1 把数字1放进柜子a中。 b="你猜对了吗?" 把字符串你猜对了吗?放进柜子b中。字符串必须用""包含。 dc=3.14159265 把小数放进柜子dc中。 num1=1 num1=33 num2=55 sum=num1+num2 首先把33和55分别放入num1和num2中。然后把他们取出来,做加法操作(加法是由CPU来处理的),把结果放在sum中。结果sum等于88 num1=1 num1=33 num1被给值为1,然后又给值为33。此时,num1中存储是的33。1就被覆盖掉了。没有了:) sum=sum+1 这句不等同于数学的加法,也是初学者不容易理解的地方。我们只要想,把sum拿出来和1做加法,再放回sum中就可以了。sum原来的值是88,做完加法后,sum等于89。 pig=1 pig=pig*3+pig 能猜出pig最后等于几么?1*3+1。结果是4 例子3:使用变量输入1到100的数字 VBSCall RunApp("notepad") Delay 2000 a=1

学会用按键精灵制作游戏脚本之前后台坐标关联教程

学会用按键精灵制作游戏脚本之前后台坐标关联教程 来源:按键学院【按键精灵】 各位大大在切换前后台命令的时候,有没有遇到坐标切换呢~ 有没有发现前后台的命令,对同一个窗体内容,居然坐标不同!! 今天~院刊就跟大家普及下前台坐标与相对应的后台坐标知识~ 什么是前台坐标和后台坐标呢? 什么是前台坐标? 以屏幕左上角的坐标为起点(0,0,从而获取到的各个窗体的坐标,就是前台坐标。 什么是后台坐标? 以窗口左上角为起点(0,0,从而获取到的这个窗体内的相对坐标,就是后台坐标。 如图: 我们来举个栗子吧,例如txt文本里的输入文字的起始点。

至此,各位大大知道前后台坐标的联系了吧。一个是绝对坐标(前台),一个是相对坐标(后台)。 那么如何进行前后台坐标的切换呢 从上图里,聪明机智的小伙伴们就会发现:如果知道了前台坐标,也知道了窗口左上角的值。那么窗口客户区内的 任意后台的坐标,不是都可以通过以下计算来获得了: 后台x坐标=客户区前台x坐标-客户区左上角前台x坐标 后台y坐标=客户区前台y坐标-客户区左上角前台y坐标 如何获得客户区前台的x,y坐标呢? 我们使用按键精灵自带的窗体插件命令:GetWindowRect来获取。 命令名称: GetWindowRect 窗口边框大小 命令功能:得到窗口句柄的边框大小(包括标题栏 命令参数:参数1 整数型,窗口句柄

返回值:字符串型,边框大小(包括标题栏 注:返回为:边框窗口左角X坐标|边框窗口左上角Y坐标|边框窗口右下角X坐标 |边框窗口右下角Y坐标 //下面这句是得到窗口句柄的边框大小(包括标题栏 sRect = Plugin.Window.GetWindowRect(句柄 将你所要获取的窗口句柄填入括号内就可以啦~ 范例举例: 举个萌萌哒的例子:向记事本特定位置输入文字。 例如我要往“hello”和“按键精灵”中间插入文字: 2014-9-17 18:03 上传 下载附件(8 KB 思路: 每次打开记事本的位置,有可能会有变化。而我们又不能每次都要去获取它的坐标再改脚本,这样太费力了。所以呢,只要锁定了记事本,知道了目标在记事本中的相对位置就可以操作啦。 同理,寻找游戏里的物品目标,前台不稳定。后台命令也是基于相对坐标的。 1. 先找到目标窗体的左上角坐标 (通过窗体插件命令:GetWindowRect来获取) 2. 再找到目标窗体内,“hello”和“按键精灵”中间的坐标 (为了方便,我们用抓抓获取。在游戏中,可以通过找图找色来获取前台坐标)

学会用按键精灵制作用脚本运行可执行程序

学会用按键精灵制作脚本之RunApp 运行命令教程: 用脚本运行可执行程序 来源:按键学院【按键精灵】Runapp命令,看上去是不是觉得so easy ?不就是runapp 某个程序的路径,然后就可以打开这个程序了吗?老话怎么说来着,越简单的东西越是不简单。Runapp使用起来也是处处暗藏杀机滴。 Runapp命令是个啥? 命令名称RunApp 运行 命令功能启动一个程序或者打开一个文件 命令参数参数1 字符串型,要运行的程序或者文件 重头杀机——你所要启动的程序是带参数的,runapp 不支持启动带参数的程序。 首先,我们可以使用进程查看工具,查看下我们要启动的程序是否是带有参数的。

然后,我们打开进程查看工具,然后点击我们要查看的程序,例如QQ程序。 图1的是QQ的快捷键方式属性;图2是进程工具查看到的QQ程序信息;图3是进程工具界面如果是带有参数的程序,用进程工具打开之后,弹出的图2界面,在程序路径后面会出现参数。 例如:F:\桌面\程序目录\Not.exe $-fl$ 解决方法之一: 1. 鼠标右键,创建快捷方式 1)右击创建好的快捷方式——>属性: 2)“目标内容”填写目标文件路径及参数: 3)F:\桌面\程序目录\Not.exe $-fl$

4)“起始位置”填写目标文件夹: 5)F:\桌面\程序目录 (用进程查看工具查看,有的情况下会发现,程序所在的位置并不是程序的目录,这里要注意确认,一定要填写程序的其实位置,程序所在的目标文件夹的位置) 如图所示: 2. 使用RunApp启动这个快捷方式,例如在此快捷方式在桌面时。 Call RunApp("C:\Users\Death\Desktop\Not.exe.lnk") 经过上面的两步就可以达到预想的目的了。 解决方法之二:

按键精灵图文教程

手把手教你用“按键精灵”图文教程 类型:转载 按键精灵是一个可以模拟电脑操作的软件,您在电脑上的一切动作都可以让按键精灵模拟执行,完全解放您的双手。按键精灵可以帮你操作电脑,不需要任何编程知识就可以作出功能强大的脚本。 如果你还为一些枯燥、繁琐的电脑操作而烦恼,按键精灵绝对会是你最好的帮手。 那么,按键精灵具体能帮我们干什么呢?我们来列举几个例子来说明下。 * 网络游戏中可作脚本实现自动打怪,自动补血,自动说话等; * 办公族可用它自动处理表格、文档,自动收发邮件等; * 任何你觉得“有点烦”的电脑操作都可以替你完成。按键精灵第一个实现了“动动鼠标就可以制作出脚本”的功能。我们不希望为了使用一个小软件而去学习编程知识,考虑到这些,所以按键精灵完全界面操作就可以制作脚本。按键精灵的脚本是纯粹的TXT文件,即使是目前新增了插件功能,也引入了数字签名的机制。因此我们可以放心的使用网站上的脚本而不用担心会有病毒。 脚本就是一系列可以反复执行的命令.通过一些判断条件,可以让这些命令具有一定的智能效果.我们可以通过”录制”功能制作简单的脚本,还可通过”脚本编辑器”制作更加智能的脚本.今天我们就通过录制一个最简单的脚本,来手把手的教大家使用按键精灵。 上网一族一般开机后会先看看自己邮箱,或者看看自己博客;每天如此,可能都有些烦了。现在好了,把这些繁杂的事情交给按键精灵吧。今天我们就来录制一个自动登录博客,并对整个页面进行浏览的脚本。 首先,我们打开“按键精灵”。其运行界面如下(图1): 图1 运行界面 打开软件后点击工具栏上“新建”项(如图2);之后进入“脚本编译器”界面(如图3)。

按键精灵命令

WQM按键精灵插件说明书 1.插件简介 WQM按键精灵插件作为按键精灵的一个插件,为按键精灵提供对WQM的全方位的控制功能,同时也能够提供对WQM中网页的全面控制功能。 2.插件功能说明 WQM插件提供三类控制命令:WQM全局控制命令、WQM浏览控制命令、页面控制命令,后台键盘鼠标命令,后台找色命令,全局控制命令,JS扩展命令 2.1.全局控制命令 1)Bind(WQM进程名) 功能:绑定最后一个正在运行的WQM进程,如果没有找到就启动一个WQM进程并绑定 参数:WQM进程名 返回值:进程ID 2)Tips(字符串) 功能:在托盘区显示一个气泡提示信息; 参数:提示信息; 返回值:无 3)SetSize(窗口宽度,窗口高度) 功能:将WQM窗口设置为指定大小; 参数: 参数1:窗口宽度; 参数2:窗口高度; 返回值:无 4)Save(网页地址,保存的文件路径) 功能:将指定url保存为文件; 参数: 参数1:需要保存的网页地址; 参数2:需要保存的文件路径; 返回值:无 2.2.浏览控制命令 1)Go(网页地址) 功能:当前标签页打开Url指定的网页;此操作是一个阻塞操作,如果网页没有打开,脚本不能继续执行。如果超过全局超时设定,将导致脚本中止; 参数: 参数1:需要打开的网页地址 参数2 布尔型:是否强制从服务器读取,默认为读取页面,可能读取本地缓存。 返回值:无 2)Back() 功能:当前标签的网页浏览向后退, 参数:无; 返回值:无 3)Forward()

功能:当前标签页前进; 参数:无; 返回值:无 4)Refresh(指定是否强制刷) 功能:刷新当前标签页 参数:参数1:指定是否强制刷新当前标签页,0表示正常刷新,1表示强制刷新返回值:无 5)TabNew () 功能:在WQM中新建一个标签页,并跳转到该标签页上; 参数:无 返回值:无 6)TabGoto(标签页) 功能:跳转到WQM中指定需要的标签页上 参数:整数类型; 返回值:无 7)TabClose() 功能:关闭当前标签页 参数:无 返回值:无 8)ScrollTo(水平滚动条位置,垂直滚动条位置) 功能:将当前网页滚动到指定位置; 参数: 参数1:水平滚动条位置; 参数2:垂直滚动条位置; 返回值:无 9)ClearHistory() 功能:清除浏览器的历史记录,无需跳出确认对话框; 参数:无 返回值:无 10)ClearTemp() 功能:清空IE临时文件 参数:无 返回值:无 11)ClearCookie() 功能:清除IE所有的Cookie 参数:无 返回值:无 12)GetUrl() 功能:返回当前页面的URL地址 参数:无 返回值:字符串,当前页面的URL地址 2.3.页面控制命令 1)HtmlClick(网页元素特征串) 功能:点击网页中的按钮或链接,或者是其他元素,无ID请指定tag;

按键精灵自动化办公插件

按键精灵自动化办公插件 来源:按键学院【按键精灵】“圣诞快乐~~” 在小编的印象里,圣诞节一般都是呵气成霜的日子。今年不一样哈,圣诞节天气还是十分暖和的。不知道童鞋们的城市是不是有在下雪,小编已经好久没有看见过雪花了~ 圣诞感言就到这里。今天小编要和大家分享的是一款办公插件。 懒人办公插件 在之前的院刊中,也分享过懒人办公插件。想必有不少童鞋都有使用过。 那么,是什么原因让小编忍不住再次要分享这个插件呢? 近期,懒人插件作者lxj1985 再次更新了插件,更新之后的插件更加给力,让小编忍不住想要分享给大家。 懒人插件更新内容 1、完善了EXCEL表格处理功能。 2、WORD类的处理功能重新编写,使其更适用于使用者。 3、ACCESS类不光可以操作ACCESS,还能对其他类别的数据库进行一定程度的操作。

4、编写了一份详细的的帮助文档,不光是在编程中用的上,在手动办公的过程中也能用的上这份帮助文档。 帮助文档的内容,作者大大写得非常的详细,每个命令的使用都附有例子说明: 使用方法 【调用懒人插件的方式有两种】 方法1: 1、将插件dll文件放在按键精灵安装目录下的plugin文件夹中。 2、打开按键精灵即可在按键精灵的插件命令中,找到新增的懒人插件命令,选择命令即可使用。

方法2: 如果插件(LazyOffice.dll)放在c:\test目录,使用以下代码对插件进行注册: Set ws = CreateObject("Wscript.Shell") ws.run "regsvr32 c:\test\LazyOffice.dll /s" 然后创建对象: //主脚本中使用插件命令,在脚本起始位置创建一次对象即可,如果有多开线程或者在控件事件中使用命令,则需在线程中控件事件中再次创建对象。 Set LazyExcel= CreateObject("Lazy.LxjExcel")//使用excel功能要创建的对象 Set LazyWord= CreateObject("Lazy.LxjWord")//使用word功能要创建的对象 Set LazyAccess= CreateObject("Lazy.LxjAccess")//使用Access功能要创建的对象 注意:帮助文档中的命令说明示例,是以第二种注册插件创建对象的方法。 第一种方法和第二种方法,代码上书写上的区别: Call https://www.360docs.net/doc/3c13703272.html,zyOffice.ExcelWrite(参数1,参数2,参数3,参数4,参数5)//第一种方法 Call 对象名.ExcelWrite(参数1,参数2,参数3,参数4,参数5)//第二种方法 单元格列名形式转换 ●○有的命令是以A1,A2 这样的形式来指定需要操作的区域,例如修改表格背景色的命令:Call LazyExcel.ExcelRange(1,"A1:D5","背景颜色",6,Index)

按键精灵经典教程

按键精灵经典教程 一、键盘命令(2~5页) 二、鼠标命令(5~13页) 三、控制命令(13~22页) 四、颜色/图像命令(22~28页) 五、其他命令(28~355页)五、网游脚本实例(35~最后)

一、键盘命令 命令名称:GetLastKey 检测上次按键命令功能:检测上次按键 命令参数:参数1 整数型,可选:变量名 返回值:无 脚本例子:(8.x语法) 复制代码 1.//脚本运行到这一行不会暂停,调用的时候立即返回,得到调用之前最后一次 按下的按键码保存在变量Key里。 2.Key=GetLastKey() 3.If Key = 13 Then 4. Msgbox "你上次按下了回车键" 5.End If 脚本例子:(7.x语法) 复制代码 1.//脚本运行到这一行不会暂停,调用的时候立即返回,得到调用之前最后一次 按下的按键码保存在变量Key里。 2.GetLastKey Key 3.If Key = 13 4. Msgbox "你上次按下了回车键" 5.EndIf 命令名称:KeyDown 按住 命令功能:键盘按住 命令参数:参数1 整数型,键盘虚拟码(8.X支持按键字符) 参数2 整数型,次数 返回值:无 脚本例子:(8.x语法) 复制代码 1.//KeyDown、KeyDownS、KeyDownH 2.//KeyDownS: 超级模拟方式,兼容性更强,对键盘和鼠标没有特别的要 求,PS2(圆口)和USB接口的键盘都可以使用 3.//KeyDownH: 硬件模拟方式,仅支持PS(圆口)的键盘点击查看使用硬件模

4.KeyDown 65,1 5.//65是A键的按键码,上面的语句表示按住A键1次 6. 7.KeyDown "A",1 8.//上面的支持按键字符,语句表示按住A键1次 脚本例子:(7.x语法) 复制代码 1.//KeyDown、KeyDownS、KeyDownH 2.//KeyDownS: 超级模拟方式,兼容性更强,对键盘和鼠标没有特别的要 求,PS2(圆口)和USB接口的键盘都可以使用 3.//KeyDownH: 硬件模拟方式,仅支持PS(圆口)的键盘点击查看使用硬件模 拟方式的注意事项 4.KeyDown 65,1 5.//65是A键的按键码,上面的语句表示按住A键1次 命令名称:KeyPress 按键 命令功能:键盘按键 命令参数:参数1 整数型,键盘虚拟码(8.X支持按键字符) 参数2 整数型,次数 返回值:无 脚本例子:(8.x语法) 复制代码 1.//KeyPress、KeyPressS、KeyPressH 2.//KeyPressS: 超级模拟方式,兼容性更强,对键盘和鼠标没有特别的要 求,PS2(圆口)和USB接口的键盘都可以使用 3.//KeyPressH: 硬件模拟方式,仅支持PS(圆口)的键盘点击查看使用硬件 模拟方式的注意事项 4.KeyPress 65,1 5.//65是A键的按键码,上面的语句表示按A键1次 6. 7.KeyPress "A",1 8.//上面的支持按键字符,语句表示按A键1次 脚本例子:(7.x语法) 复制代码 1.//KeyPress、KeyPressS、KeyPressH 2.//KeyPressS: 超级模拟方式,兼容性更强,对键盘和鼠标没有特别的要 求,PS2(圆口)和USB接口的键盘都可以使用 3.//KeyPressH: 硬件模拟方式,仅支持PS(圆口)的键盘点击查看使用硬件

按键精灵选项卡的使用

按键精灵选项卡的使用 一、选项卡介绍 (1)创建选项 QUI的选项卡其实就是一个分页功能的控件和VB的SSTab控件的功能是一样的。 二、选项卡的属性 选项卡总共有11个属性,包含4个基本属性和5个位置属性,2个其他属性。 基本属性分别是:名称(Name)、显示(Visable)、有效(Enabled)、自定义。 位置属性分别是:左边(Left)、上边(Top)、宽度(Width)、高度(Height)、显示顺序(ZOrder)。 其他属性:字体、初始选项(Tab)。 三、选项页的使用 (1)创建选项 1.先创建一个选项TabControl1。

选项卡创建后默认有两个选项,分别是“选项页1”,“选项页2”。那我人如何来改变选项卡的数量和名称? 2.点击属性栏上的【自定义】的更多选项设置后面的三个小点点。 点击完成后就可以看到“选项卡控件设置页面”了。 在这里可以通过页面上面的“增加”、“删除”、“上移”、“下移”来控制标签页的数量和顺序,也可以双击标签名然后修改标签的名称。 3.点击增加,新增一个标签。默认名称是“选项页3”。后面增加的标签名称为“选项页4”,以此累加上去。

4.也可以删除标签,比如删除“选项页2”。或者是把“选项页3”移动到最顶端。 5.在标签页设置界面修改的时候,窗体上的标签页是不会改变的。如果想让它确实产生效果,修改完成后,点击界面下方的【确定】。 然后就可以看到窗体上的标签页按照我们修改的发生了变化。 以上就是修改标签页里面标签内容的方法了。

那它是否像我们之前所说的,能够达到分页的效果? 6.先选择"Tab3"。然后在"Tab3"中创建一个按钮。 创建完成后,再点击"Tab1",会看到Button1其实已经看不到了。 那在运行的时候是不是也是这样子的? 7.设置QUI为脚本界面,设置标签页的初始选项为0。也就是从左边数起第一个标签,也可以设置成1,这个下标的上限为当前标签页的标签数量。 然后保存脚本,进入调试,显示界面。 点击"Tab3","Tab1"。如果不出意外,看到的情况跟在编辑的时候是一样的。 (2)复制/剪贴/粘贴 既然分页里面可以创建控件,那可以把现成的控件直接拖到分页里面去?答案当然是否定的。 那有什么方法可以把已经创建好的控件拖到分页里面去? 最最常用的方法就是把控件剪贴,然后选择某一个标签页再粘贴进去。 粘贴成功后,这个控件就在会在这个标签的左上角。 比如,我们把一个输入框粘贴到其他中一个标签当中,粘贴后默认放在标签的左上角,然后再拖到我们想要放的那个位置去。

(完整版)按键精灵常用脚本命令汇集

//~~~~~~~~~~{[做后台的准备]}~~~~~~~~~~~ //下面,用标题名来找父窗口 Hwnd = Plugin.Window.Find(0, "无标题- 记事本") //下面,根据父窗口来找子窗口(找对了标题名才有效) HwndEx = Plugin.Window.FindEx(Hwnd, 0, 0, 0) //下面,用程序名来找父窗口 Hwnd = Plugin.Window.Find("Notepad", 0) //下面,根据父窗口来找子窗口(找对了类名才有效) Hwnd = Plugin.Window.FindEx(Hwnd, 0, "Edit", 0) //~~~(也可以改指定程序的标题名来得来句柄)~~~ //下面,将指定程序名的标题名变为变量 Hwnd = Plugin.Window.Find("Notepad", 0) //改变窗口标题 Call Plugin.Window.SetText(Hwnd,"AJJL") //*********》之后可加第一种父子窗口就OK了《********* //~~~如果以上都不行,只剩下最后一种方法~~~~ //下面,鼠标指向的程序定为Hwnd这个变量(不过一定要加标记,否则变为假后台) hwnd=Plugin.Window.MousePoint() Rem star Goto star //区域模糊找色 //(XY,是坐标)(后面的是句柄,左X,上Y,右X,下Y,16位颜色,找的方式,相似度)XY = Plugin.Bkgnd.FindColorEx(Hwnd, 0, 0, 20, 20, "FFFFFF", 0, 0.9) //将XY坐标变为变量,再折分成X坐标和Y坐标。 MyArray = Split(XY, "|") X = Clng(MyArray(0)): Y = Clng(MyArray(1)) //后台判色 Color = Plugin.Bkgnd.GetPixelColor(hwndex,300,150) If color = "020503" Then //根据固定32位地址的值加红蓝(HP少于就。。。) Val = Plugin.Memory.Read32Bit(Hwnd, &H400000) //注意格式:符号&+字母H+8位地址 If clng(val)<=clng(HP)

按键精灵录制教程

脚本就是一系列可以反复执行的命令.通过一些判断条件,可以让这些命令具有一定的智能效果.我们可以通过”录制”功能制作简单的脚本,还可通过”脚本编辑器”制作更加智能的脚本.今天我们就通过录制一个最简单的脚本,来手把手的教大家使用按键精灵。 上网一族一般开机后会先看看自己邮箱,或者看看自己博客;每天如此,可能都有些烦了。现在好了,把这些繁杂的事情交给按键精灵吧。今天我们就来录制一个自动登录博客,并对整个页面进行浏览的脚本。 首先,我们打开“按键精灵”。其运行界面如下(图1): 打开软件后点击工具栏上“新建”项(如图2);之后进入“脚本编译器”界面(如图3)。现在就可以正式开始编译脚本了。

在脚本编译器界面上,左键点击工具栏上“录制”项,会出现这样的情况:进入桌面,并出现一个小的对话框(如图4)。 在这个小的对话框中,左侧红色圆按钮是录制的开始,第二个蓝色方按钮是录制结束,第三个是存储录制内容。在录制过程中该对话框可以随意移动,不会影响录制结果。 我们来点击红色圆形按钮开始录制(图5)

开始录制后我们把这个小的对话框移至窗口右下角,然后用鼠标点击左下角任务栏的IE浏览器标志,来打开浏览器(如图6)。 随后在地址栏输入博客地址(如图7)

进入博客主页(如图8) 用鼠标拖动滚动条,浏览整个页面。 看完后关闭页面,然后点击录制对话框的蓝色方形停止键(如图9) 之后点击第三个按钮,来保存录制动作并进入脚本编译界面。现在我们可以看到在编译界面的中部,有“按键精灵录制的内容”这句话显示。这句话的下面有

“鼠标移动”、“延时”、“按键动作”等记录的录制过程中的各个动作。 现在就让我们来检验下刚才的一系列动作是否已经记录好。点击工具栏的“调试”按钮(如图11)。 进入调试对话框(如图12)。

按键精灵教程

按键精灵可以帮你操作电脑。不需要任何编程知识就可以作出功能强大的脚本。只要您在电脑前用双手可以完成的动作,按键精灵都可以替您完成。 按键精灵官方网站是:https://www.360docs.net/doc/3c13703272.html,/cn/qmacro 从编程的角度看,集合一些插件的脚本编辑、调试工具。代码不公开。生成的小精灵,模式化界面,界面中有广告,以此盈利。 使用环境 操作系统:Windows 98/98SE/Me/2000/XP/2003/Vista 软件支持:支持绝大多数软件,部分网络游戏中可能失效,但可尝试"神盾"功能,提高按键精灵的兼容性 按键精灵能帮我做什么? * 网络游戏中可作脚本实现自动打怪,自动补血,自动说话等 * 办公族可用它自动处理表格、文档,自动收发邮件等 * 任何你觉得“有点烦”的电脑操作都可以替你完成 上手指南 按键精灵是一个容易上手,但精通较难的软件。第一次接触它,自然会希望尽快熟悉它,让它为您工作。但如何上手呢?我来提供一些技巧 1、试:提供了免费试用,下载试用版安装后就可体验自带的例子。 2、学:上网看按键宝典,教程、实例统统都有,不懂还可上论坛提问。 3、用:边用边学,作出自己第一个脚本,你就入门啦~ 4、精:操作电脑的不便,都用脚本来解决,你的脚本也可以越来越聪明! 什么是脚本? 脚本就是一系列可以反复执行的命令.通过一些判断条件,可以让这些命令具有一定的智能效果. 如何制作脚本? 初学者可以通过”录制”功能制作简单的脚本,还可通过”脚本编辑器”制作更加智能的脚本. 如何使用脚本? 使用步骤如下: 1. 制作脚本:按照个人需求从网上搜集脚本或者自己制作脚本。如果您的脚本是从别的地方收集的,请先把脚本文件拷贝到按键精灵文件夹下的script文件夹中,然后再运行按键精灵。 2.选择有效的窗口:建议您选择“对所有窗口有效”。如果您只需要脚本当某个窗口在前台时有效,请选择窗口名称,比如“龙族” 3.让需要执行的脚本“有效”,只有“有效”一栏中勾中的脚本才会执行。 4.进入游戏(或者其他需要使用按键精灵的软件),在需要使用脚本的时候按下脚本的“快捷键”,按键精灵就会忠实的为您工作了。 5.希望脚本暂停的时候按下中止热键,即可暂停脚本. 什么是简单游? 简单游是一个拥有上千个按键精灵游戏脚本的软件平台,是按键精灵的网络游戏版.上网看简单游 什么是按键宝典? 按键宝典是兄弟工作组提供给用户的帮助大全,包含使用手册、经典脚本、各种动画教程等等。上网看按键宝典 什么是按键小精灵?

相关文档
最新文档