挤压成型工艺基本介绍

挤压成型工艺基本介绍
挤压成型工艺基本介绍

5 挤压成型工艺

5.1 挤压概述

定义:所谓挤压,就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。

优点::

(1 )具有最强烈的三向压应力状态;

(2 )生产范围广,产品规格、品种多;

(3 )生产灵活性大,适合小批量生产;

(4 )产品尺寸精度高,表面质量好;

(5 )设备投资少,厂房面积小;

(6 )易实现自动化生产。

缺点:

(1 )几何废料损失大;

(2 )金属流动不均匀;

(3 )挤压速度低,辅助时间长;

(4 )工具损耗大,成本高。

适用范围:

(1)品种规格繁多,批量小;

(2)复杂断面,超薄、超厚、超不对)复杂断面,超薄、超厚、超不对称;

(3)低塑性、脆性材料。

5.2挤压的基本方法及特点

挤压的方法可按照不同的特征进行分类,有几十种。

最常见的有6种方法:正向挤压、反向挤压、侧向挤压、连续挤压、玻璃润滑挤压和静液挤压。

最基本的方法仍然是正向挤压(简称正挤压)和反向挤压(简称反挤压)。

如下所示为挤压的分类

a.正向挤压

b.方向挤压

c.侧向挤压

d.连续挤压

e.玻璃润滑挤压

f.静液挤压

正向挤压:

定义:金属的流动方向与挤压杆(挤压轴)的运动方向相同的挤压生产方法。

特征:变形金属与挤压筒壁之间有相对运动,二者之间有很大的滑动摩擦。引起挤压力增大;使金属变形流动不均匀,导致组织性能不均匀;限制了挤压速度提高;加速工模具的

磨损。

反向挤压:

定义:金属的流动方向与挤压杆(或模子轴)的相对运动方向相反的挤压生产方法。

特征:变形金属与挤压筒壁之间无相对运动,二者之间无外摩擦。

特点:挤压力小;金属变形流动均匀;挤压速度快。但制品表面较正挤压差;外接圆尺寸较小;设备造价较高;辅助时间较长。

5.3 热挤压、冷挤压、温挤压

5.4 挤压设备、挤压模具及设计

5.4.1 挤压设备

按传动类型分液压和机械传动两大类。

(1)机械传动挤压机又分为统机械传动挤压机和现代机械传动挤压机。

传统机械传动挤压机以前曾用于挤压钢材和冷挤压方面,现在已不采用。钢材和冷挤压方面,现在已不采用。

目前以CONFORM挤压机为代表的新一代机械传动挤压机得到了广泛应用。

(2)液压传动挤压机是当前应用最广泛的挤压设备。又分为水压机和油压机,目前应用最广泛的是油压机,但大吨位设备仍以水压机为主。

5.5挤压模设计

挤压模可按模孔压缩区的断面形状、挤压产品的品种、模孔的数目、挤压方法及工艺特点、模具结构等不同形式进行分类。归纳起来可分为四大类:

整体模

模子是由一块钢材加工制造成。广泛用于挤压普通型材、棒材、管材。

整体模按模孔压缩区的断面形状可分为7种:平模、锥模、平锥模、双锥模、流线模、平流线模、碗形模,各模如下图所示。最常用的是平模和锥模。

平模:挤压铝合金型材、棒材,镍合金,铜合金管、棒材。

锥模:挤压铝合金管材,高温合金钨、钼、锆等。

拆卸模

由数块拼装组成一整体模子,用于生产阶段变断面型材(见下图)。模子是由大头和小头两部分构成。而这两部分又分别由多块组装而成。

组合模

生产内径较小的管材,各种形状的空心型材。

舌形模:所需的挤压力较小,焊合室中延伸系数大,主要用于挤压硬合金空心型材。但挤压残料较多。

平面分流模:多用于挤压变形抗力低、焊合性能好的软合金空心型材。残料较少。

型材模设计

挤压型材的断面是非常复杂的,有各式各样。

其特点是:绝大多数断面是不对称的;型材断面与锭坯断面不相似;型材断面各部位壁厚差大;多数带有各种形状的空心。其结果造成金属流动不均匀,出现各种缺陷,易造成模具的早期失效及损坏。

模具设计中要解决的两个主要问题:金属流速不均;模具强度。

1—调整金属流速的主要措施

(1)合理布置模孔

a、具有两个以上对称轴的型材,型材、具有两个以上对称轴的型材,型材的重心布置在模子中心。

b、具有一个对称轴,且断面壁厚差较、具有一个对称轴,且断面壁厚差较大的型材,型材重心相对模子中心偏移一定距离,且将金属不易流动的壁薄部位靠近模子中心

c、壁厚差不太大,但断面较复杂的型、壁厚差不太大,但断面较复杂的型材,将型材外接圆的圆心,布置在模子中心。

d、对于断面尺寸较小,或轴对称性很差、对于断面尺寸较小,或轴对称性很差的型材,可以采用多孔模排列

如下所示为不对称型材的单孔模排列。

(2)确定合理的工作带长度

型材断面壁厚不同,可采用不等长工作带。即:型材断面壁厚处的工作带长度大于壁薄处。也就是说比周长小的部分工作带长度大于比周长大的部分。

(3)设计阻碍角或促流角

阻碍角—在型材壁厚处的模孔入口处做一个小斜面,以增加金属的流动阻力,该斜面与模子轴线的夹角叫阻碍角,如图5-27所示。阻碍角一般取3°~ 12°,最大不超过15。

促流角—在型材壁较薄、金属不易流动的模孔入口端面处做一个促流斜面,该斜面与模子平面间的夹角叫促流角,促流角一般取3°~10°。

(4)采用平衡模孔

挤压某些对称性很差的型材(如异形偏心管),而模子上只能布置一个型材模孔时,为了平衡金属流速,采用平衡模孔方式。

(5)设计附加筋条

挤压宽厚比很大的壁板型材时,如果对称性很差,可采用附加筋条或工艺余量的方式平衡金属流速。

(6)设计导流模或导流腔

在型材模的前面,增加一个导流模或直接在型材模孔入口端加工一导流腔,迫使金属流向流动阻力大的模孔入口处。

5.6挤压工模具材料的选择

目前,在挤压铝合金时,最常用的工模具材料有钼钢和钨钢两大类。

钼钢:导热性较好,对热裂纹不太敏感,韧性较好。典型代表5CrNiMo和4Cr5MoSiV1钢。钨钢:具有较好的耐高温性能,但韧性较低。典型代表3Cr2W8V钢。

挤压工具材料的合理选择

(1)根据被挤压金属的性能选择最合适、最经济的工模具材料。

我国通常选用5CrNiMo、5CrNiW、5CrMnMo、3Cr2W8V、4Cr5MoSiV1等作为基本工具材料。其中4Cr5MoSiV1作为挤压铝合金的模具材料,3Cr2W8V作为挤压铜合金的模具材料。

(2)根据产品品种、形状和规格选择合适的工模具材料。

挤压圆棒和圆管时,可选用中等强度的5CrNiMo、5CrMnMo、5CrNiW钢;

挤压复杂形状的空心型材和薄壁管材时,选用高强度的3Cr2W8V、4Cr5MoSiV1钢;

对于形状极其复杂的空心型材及宽厚比大于50的壁板型材,则要选用更高级的材料,如日本的AF31钢。

(3)根据挤压方法、工艺条件与设备结构选择工模具材料。

冷挤压时的挤压速度快,受冲击作用大,模具要有高的强度和良好的韧性,如选用3Cr2W8V、硬质合金材料。

静液挤压时模具处于高压液体包围之中,呈预应力状态,同时挤压力较小。

穿孔挤压时的针尖应选用良好的抗激冷激热的材料。

无润滑挤压时模具的耐磨性、表面硬度、可氮化性能应比润滑挤压时好。

(4)根据挤压工模具的结构形状和尺寸选择模具材料。

挤压管、棒、普通实心型材的平面模,一般可用5CrNiMo或4Cr5MoSiV1钢。

形状复杂的特殊型材模、舌型模、平面分流模等,用4Cr5MoSiV1、3Cr2W8V或更高级的材料。

一般情况下,5CrNiW、5CrNiMo 、5CrMnSiMoV等制造挤压筒。但制造小型挤压筒、高比压挤压筒、扁挤压筒时,内套选用3Cr2W8V或4Cr5MoSiV1,中套选用5CrNiMo,外套可选用45号锻钢。

组合式挤压杆、针支承等,其工作部分采用3Cr2W8V或4Cr5MoSiV1钢,基座部分采用5CrNiMo。

另外,还要根据工模具的尺寸大小选择材料。对于承受重载荷的小尺寸工模具选用3Cr2W8V、4Cr5MoSiV1或更高级的材料;对于大尺寸、质量超过300kg的模具和500kg的基本工具,一般不宜选用3Cr2W8V钢,最好选用4Cr5MoSiV1钢。

提高挤压工具的使用寿命的途径

(1)改进工具结构形状。

(2)制定和严格控制合理的挤压工艺参数。

(3)合理预热和冷却挤压工具。

(4)合理安装挤压工具。

(5)改善挤压工具材料的制造和加工工艺

塑料挤出成型工艺

塑料挤出成型工艺 塑料挤出机的挤出方法一般指的是在200度左右的高温下使塑料熔解,熔解的塑料再通过模具时形成所需要的形状。挤出成型要求具备对塑料特性的深刻理解和模具设计的丰富经验、是一种技术要求较高的成型方法。挤出成型是在挤出机中通过加热、加压而使物料以流动状态连续通过口模成型的方法,也称为“挤塑”。与其他成型方法相比,具有效率高、单位成本低的优点。挤出法主要用于热塑性塑料的成型,也可用于某些热固性塑料。 挤出的制品都是连续的型材,如管、棒、丝、板、薄膜、电线电缆包覆层等。此外,还可用于塑料的混合、塑化造粒、着色、掺合等。挤出的产品可称为“型材”,由于横截面形状大多不规则,因此又称为“异型材”。 塑料挤出机故障分析

塑料挤出机是一种常见的塑料机械设备,在日常操作挤出机的过程中,挤出机会出现各种各样的故障,影响塑料机械正常生产,下面我们就对挤出机故障分析。 塑料挤出机故障分析:主机电流不稳 1、生产原因:(1)喂料不均匀。(2)主电机轴承损坏或润滑不良。(3)某段加热器失灵,不加热。(4)螺杆调整垫不对,或相位不对,元件干涉。塑料挤出机 2、处理方法:(1)检查喂料机,排除故障。(2)检修主电机,必要时更换轴承。(3)检查各加热器是否正常工作,必要时更换加热器。(4)检查调整垫,拉出螺杆检查螺杆有无干涉现象。 塑料挤出机故障分析:主电机不能启动 1、产生原因:(1)开车程序有错。(2)主电机线程有问题,熔断丝是否被烧环。(3)与主电机相关的连锁装置起作用 2、处理方法:(1)检查程序,按正确开车顺序重新开车。(2)检查主电机电路。(3)检查润滑油泵是否启动,检查与主电机相关的连锁装置的状态。油泵不开,电机无法打开。(4)变频器感应电未放完,关闭总电源等待5分钟以后再启动。(5)检查紧急按钮是否复位。塑 料挤出机故障分析:机头出料不畅或堵塞

PVC管材挤出工艺流程

PVC管材挤出工艺流程 PVC塑料是一种多组分塑料,根据不同的用途可加入不同添加剂,因组分不同,PVC制品呈现不同的物理力学性能,针对不同场合应用。而PVC塑料管在塑料管中所占的比例较大。PVC管材分硬软两种,RPVC管是将PVC树脂与稳定剂、润滑剂等助剂混合,经造粒后挤出机成型制得,也可采用粉料一次挤出成型。RPVC管耐化学腐蚀性与绝缘性好,主要输送各种流体,以及用作电线套管等。RPVC管易切割、焊接、粘接、加热可弯曲,因此安装使用非常方便。SPVC管是由PVC树脂加入较大量增塑剂和一定量稳定剂,以及其他助剂,经造粒后挤出成型制造。SPVC管材具有优良的化学稳定性,卓越的电绝缘性和良好的柔软性和着色性,此种管常用来代替橡胶管,用以输送液体及腐蚀性介质,也用作电缆套管及电线绝缘管等。 PVC硬管 1、原料选择及配方 硬管生产中树脂应选用聚合度较低的SG-5型树脂,聚合度愈高,其物理力学性能及耐热性愈好,但树脂流动性差,给加工带来一定困难,所以一般选用黏度为(~)×10-3Pa?s的SG-5型树脂为宜。硬管一般采用铅系稳定剂,其热稳定性好,常用三盐基性铅,但它本身润滑性较差,通常和润滑性好的铅、钡皂类并用。加工硬管,润滑剂的选择和使用很重要,既要考虑内润滑降低分子间作用力,使熔体黏度下降有利成型,又要考虑外润滑,防止熔体与炽热的金属粘连,使制品表面光亮。内润滑一般用金属皂类,外润滑用低熔点蜡。填充剂主要用碳酸钙和钡(重晶石粉),碳酸钙使管材表面性能好,钡可改善成型性,使管材易定型,两者可降低成本,但用量过多会影响管材性能,压力管和耐腐蚀管最好不加或少加填充剂。 2、工艺流程 RPVC管的成型使用SG-5型PVC树脂,并加入稳定剂、润滑剂、填充剂、颜料等,这些原料经适当的处理后按配方进行捏合,若挤管采用单螺杆挤出机,还应将捏合后的粉料造成粒,再挤出成型:若采用双螺杆挤出机,可直接用粉料成型,RPVC管材工艺流程如下: 生产流程原料+助剂配制→混合→输送上料→强制喂料→锥型双螺杆挤出机→挤出模具→定

铝挤压成型的工艺特点及其优缺点分析

发布时间:2017-05-12 铝挤压成型定义 铝挤压成型是对放在模具型腔(或挤压筒)内的金属坯料施加强大的压力,迫使金属坯料产生定向塑性变形,从挤压模具的模孔中挤出,从而获得所需断面形状、尺寸并具有一定力学性能的零件或半成品的塑性加工方法。 铝挤压成型的分类 按金属塑变流动方向,挤压可以分为以下几类: 正挤压:生产时,金属流动方向与凸模运动方向相同 反挤压:生产时,金属流动方向与凸模运动方向相反 复合挤压:生产时,坯料一部分金属流动方向与凸模运动方向相同,另一部分金属流动方向与凸模运动方向相反 径向挤压:生产时,金属流动方向与凸模运动方向成90度 铝挤压成型的工艺特点 1、在挤压过程中,被挤压金属在变形区能获得比轧制锻造更为强烈和均匀的三向压缩应力状态,这就可以充分发挥被加工金属本身的塑性; 2、挤压成型不但可以生产截面形状简单的棒、管、型、线产品,还可以生产截面形状复杂的型材和管材; 3、挤压成型灵活性大,只需要更换模具等挤压工具,即可在一台设备上生产形状规格和品种不同的制品,更换挤压模具的操作简便快捷、省时、高效; 4、挤压制品的精度高,制品表面质量好,还提高了金属材料的利用率和成品率; 5、挤压过程对金属的力学性能有良好的影响; 6、工艺流程短,生产方便,一次挤压即可或得比热模锻或成型轧制等方法面积更大的整体结构件,设备投资少、模具费用低、经济效益高; 7、铝合金具有良好的挤压特性,特别适合于挤压加工,可以通过多种挤压工艺和多种模具结构进行加工。

铝挤压成型的优点 1、提高铝的变形能力。铝在挤压变形区中处于强烈的三向压应力状态,可以充分发挥其塑性,获得大变形量。 2、制品综合质量高。挤压成型可以改善铝的组织,提高其力学性能,其挤压制品在淬火时效后,纵向(挤压方向)力学性能远高于其他加工方法生产的同类产品。与轧制、锻造等加工方法相比,挤压制品的尺寸精度高、表面质量好。 3、产品范围广。挤压成型不但可以生产断面形状简单的管、棒、线材,而且还可以生产断面形状非常复杂的实心和空心型材、制品断面沿长度方向分阶段变化的和逐渐变化的变断面型材,其中许多断面形状的制品是采用其他塑性加工方法所无法成形的。挤压制品的尺寸范围也非常广,从断面外接圆直径达500-1000mm 的超大型管材和型材,到断面尺寸有如火柴棒大小的超小型精密型材。 4、生产灵活性大。挤压成型具有很大的灵活性,只需更换模具就可以在同一台设备上生产形状、尺寸规格和品种不同的产品,且更换工模具的操作简单方便、费时小、效率高。 5、工艺流程简单、设备投资少。相对于穿孔轧制、孔型轧制等管材与型材生产工艺,挤压成型具有工艺流程短、设备数量与投资少等优点。 铝挤压成型的缺点 1、制品组织性能不均匀。由于挤压时金属的流动不均匀(在无润滑正向挤压时尤为严重),致使挤压制品存在表层与中心、头部与尾部的组织性能不均匀现象。 2、挤压工模具的工作条件恶劣、工模具耗损大。挤压时坯料处于近似密闭状态,三向压力高,因而模具需要承受很高的压力作用。同时,热挤压时工模具通常还要受到高温、高摩擦作用,从而大大影响模具的强度和使用寿命。 3、生产效率较低。除近年来发展的连续挤压法外,常规的各种挤压方法均不能实现连续生产。一般情况下,挤压速度远远低于轧制速度,且挤压生产的几何废料损失大、成品率较低。 总结 近年来,由于各行业对小型化、轻量化的追求,铝及铝合金型材被广泛应用于建筑、交通运输、电子电器、航天航空等行业。因此铝挤压制品的比例也迅速增加,据资料显示,挤压加工制品中铝及铝合金制品约占70%以上。

冷挤压成形过程的有限元分析

冷挤压成形过程的有 限元分析 姓名:某某 班级: 学号: 指导老师: 完成时间:

摘要:本文以汽车铝合金缸套作为研究对象,对其挤压成型工艺进行了有限元分析。研究不同的挤压速度对合金的等效应力、挤压力、等效塑性应变和最大剪切应力的影响。研究结果表明,在挤压过程中,挤压速度对等效塑性应变和挤压力有明显影响,并且在模具拐角处产生了应力集中。 关键字:挤压速度;有限元分析;冷挤压;铝合金缸套;挤压力。引言: 在铝合金缸套的成形工艺中,将喷射沉积成形高硅铝合金管挤压成厚壁管是关键性技术。由于工艺复杂,参数较多,使用传统实验方法,将需要大量的时间、人力、物力,从而导致成本高、制造周期厂长。采用数值模拟技术则可以很好的解决这一问题。通过数值模拟,可以对成形过程进行分析,研究不同工艺参数对成形的影响,从而确定工艺参数,继而降低生产成本,极高经济效益。在金属塑性成形的数值模拟方法上主要有上限元法(Upper Bound Method)、边界元法(Boundary Element Method)和有限元法(Finite Element Method)。上限元法常用于较为简单的准稳态变形问题;而边界元法主要用于模具设计分析和温度计算;对于大变形的体积成形,变形过程呈非稳态,形状、边界、材料性质等都会发生很大的变化,有限元法可由实验和理论方法给出的本构关系、边界条件、摩擦关系式,按变分原理推导出场方程根据离散技术建立模型,从而实现对复杂成形问题进行数值模拟、分析成形过程中应力应变分布及其变化规律,由此提供较为

可靠的主要成形参数。 ANSYS软件是由美国ANSYS公司研制、开发的大型通用有限元分析软件。该软件提供了丰富的结构单元、接触单元、热分析单元及其它特殊单元,能解决结构静力、结构动力、结构非线性、结构屈曲、疲劳与断裂力学、复合材料分析、压电分析、热分析、流体动力学、声学分析、电磁场分析、耦合场分析、优化设计等诸多问题,它广泛地应用于国防、航空航天、汽车、船舶、能源、机械电子工程等领域中,是应用最为广泛的有限元软件。此外,ANSYS具有友好的图形用户界面和强大的二次开发功能,使用方便。 冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。目前,冷挤压技术紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日

冷挤压技术

冷挤压技术工艺与发展 班级:材加11-A2 姓名:于鸿超 学号:120113203002

冷挤压技术工艺与发展 摘要:模具是现代工业生产的主要工艺设备之一,其设计制造技术代表了一个国家的工业设计制造技术的发展水平。本文对冷冲压相关概念和技术进行了论述,明确了冲压工艺与模具制造技术的发展方向。 关键词:模具冷冲压工业设计 挤压是迫使金屑块料产生塑性流动,通过凸模与凹模间的间隙或凹模出口,制造空心或断面比毛坯断面要小的零件的一种工艺方法。如果毛坯不经加热就进行挤压,便称为冷挤压。冷挤压是无切屑、少切屑零件加工工艺之一,所以是金屑塑性加工中一种先进的工艺方法。如果将毛坯加热到再结晶温度以下的温度进行挤压,便称为温挤压。温挤压仍具有少无切屑的优点。 改革开放以来,随着国民经济的高速发展,市场对模具的需求量不断增长。近年来,模具工业一直以15%左右的增长速度快速发展,模具工业企业的所有制成分也发生了巨大变化,除了国有专业模具厂外,集体、合资、独资和私营也得到了快速发展。浙江宁波和黄岩地区的“模具之乡”;广东一些大集团公司和迅速崛起的乡镇企业,科龙、美的、康佳等集团纷纷建立了自己的模具制造中心;中外合资和外商独资的模具企业现已有几千家。 随着与国际接轨的脚步不断加快,市场竞争的日益加剧,人们已经越来越认识到产品质量、成本和新产品的开发能力的重要性。而模具制造是整个链条中最基础的要素之一,模具制造技术现已成为衡量一个国家制造业水平高低的重要标志,并在很大程度上决定企业的生存空间。 冷挤压技术发展的初期是非常缓慢的,长期以来只对几种软金属(铅和锡)进行挤压。直到19纪末20世纪初,才开始挤压较硬的有色金属(锌、铝、紫铜、黄铜等)至于钢的挤压,由于冷挤压时需要很大的压力,在当时不能解决挤压钢用的模具材料、合适的润滑剂与大吨位的压力机等问题,长时间一直认为挤压钢是十分困难甚至是不可能的。 1906年,英国人科斯利特(T.W.coslett)发现用磷酸盐处理钢件制品是一种较理想的防锈方法,但工序繁多,而经济效益又差,故未被广泛采用。不过,这种防锈法的出现却极大地激发了人们去研究更简单而有效的新方法的积极性。到后来,用自动连续装置对钢毛坯进行磷酸锌防锈处理只需要两分钟。经磷酸锌处

挤压成型工艺基本介绍

5 挤压成型工艺 5.1 挤压概述 定义:所谓挤压,就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。 优点:: (1 )具有最强烈的三向压应力状态; (2 )生产范围广,产品规格、品种多; (3 )生产灵活性大,适合小批量生产; (4 )产品尺寸精度高,表面质量好; (5 )设备投资少,厂房面积小; (6 )易实现自动化生产。 缺点: (1 )几何废料损失大; (2 )金属流动不均匀; (3 )挤压速度低,辅助时间长; (4 )工具损耗大,成本高。 适用范围: (1)品种规格繁多,批量小; (2)复杂断面,超薄、超厚、超不对)复杂断面,超薄、超厚、超不对称; (3)低塑性、脆性材料。 5.2挤压的基本方法及特点 挤压的方法可按照不同的特征进行分类,有几十种。 最常见的有6种方法:正向挤压、反向挤压、侧向挤压、连续挤压、玻璃润滑挤压和静液挤压。 最基本的方法仍然是正向挤压(简称正挤压)和反向挤压(简称反挤压)。 如下所示为挤压的分类

a.正向挤压 b.方向挤压 c.侧向挤压 d.连续挤压 e.玻璃润滑挤压 f.静液挤压 正向挤压: 定义:金属的流动方向与挤压杆(挤压轴)的运动方向相同的挤压生产方法。 特征:变形金属与挤压筒壁之间有相对运动,二者之间有很大的滑动摩擦。引起挤压力增大;使金属变形流动不均匀,导致组织性能不均匀;限制了挤压速度提高;加速工模具的 磨损。

反向挤压: 定义:金属的流动方向与挤压杆(或模子轴)的相对运动方向相反的挤压生产方法。 特征:变形金属与挤压筒壁之间无相对运动,二者之间无外摩擦。 特点:挤压力小;金属变形流动均匀;挤压速度快。但制品表面较正挤压差;外接圆尺寸较小;设备造价较高;辅助时间较长。 5.3 热挤压、冷挤压、温挤压 5.4 挤压设备、挤压模具及设计 5.4.1 挤压设备 按传动类型分液压和机械传动两大类。 (1)机械传动挤压机又分为统机械传动挤压机和现代机械传动挤压机。 传统机械传动挤压机以前曾用于挤压钢材和冷挤压方面,现在已不采用。钢材和冷挤压方面,现在已不采用。 目前以CONFORM挤压机为代表的新一代机械传动挤压机得到了广泛应用。 (2)液压传动挤压机是当前应用最广泛的挤压设备。又分为水压机和油压机,目前应用最广泛的是油压机,但大吨位设备仍以水压机为主。 5.5挤压模设计

内花键冷挤压成型工艺浅论

内花键冷挤压成形工艺应用 浅析 浙江XX机电有限公司技术部 二〇一五年十月一日

目录 内容页次概述: (3) 一、冷挤压技术的发展趋势 (3) 二、充分发挥冷挤压工艺优势内花键加工难题得到解决 (3) 三、冷挤压成形模具制造难点 (4) 四、冷挤压模具制造分析研究 (4) 五、挤压件材料研究和分析 (5) 六、冷挤压工艺流程的研究和分析 (6) 七.总结 (6)

内花键冷挤压成形工艺浅析 概述: 冷挤压是精密属性体积成型技术中的一个重要组织部分。冷挤压是指在冷态下金属毛坯放入模具腔内,在强大的压力和一定的速度作用下迫使金属在模具腔中流动挤出,从而获得所需要形状、尺寸以及具有一定力学性能的挤压件。 一、冷挤压技术的发展趋势 在有关技术资料获悉,冷挤压技术早在18世纪末制造过程中就采用了这门技术。这门工艺已经在机械、仪表、电器、重轻工、军工等工业中较广泛的应用,已成为金属属性体积成形技术中不可缺少的重要加工手段之一,发达国家在轿车制造中约达到30%~40%是采用冷挤压工艺生产。我国工艺制造在60~70年代落后时期后通过改革开放期间大量的发达国家的制造业进入我国推动了我国制造业工艺水平,推动了我国在冷挤压这门工艺技术领域里发展,通过吸取国外的先进工艺使我国冷挤压生产工艺技术不断提高,逐渐成为中小锻件精化生产的发展方向。 二、充分发挥冷挤压工艺优势内花键加工难题得到解决 丰立公司是一家具备技术研究、生产、销售服务于一体的国家高新技术企业,是我国小模数锥齿轮行业的领军者;是国际知名厂商的优秀供应商;公司所生产的气动工具系列产品的机械传动结构是以齿轮传动。公司在发展过程积极的学习国内外的先进工艺技术与世界并举,研造客户需求的产品。对产品工艺设计积极采用冷挤压成型,发挥冷挤压节约原材料、提高劳动生产率、通过冷挤压的产品毛坯在少切削向不切削为目的来降低制造成本,更使产品的表面粗糙度Ra1.6~Ra0.8。公司近年快速的扩大采用冷挤压工艺赢得同行业、世界知名厂商的认可。通过这几年来,我们公司采用冷挤压工艺从筒状冷挤压扩张到齿轮坯挤压,对形状较复杂、切削加工较困难的产品,运用冷挤压工艺很容易加工成型。现已有三十余种产品采用冷挤压成形工艺,为公司生产率的提高起到很大作用。内花键是机械传动中的重要零部件,主要起连接和传动作用,广泛应用在机械制造领域,传统内花键形成方法主要有拉齿和插齿加工,起生产效率底,材料利用率底不能满足大批量生产需求。尤其是不串通盲孔内花键,无论是效率,质量都达不到用户满意。为保证内花键精度的同时提高花键的力学性能,公司采取冷挤压工艺解决

冷挤压成型工艺及模具设计作业

华中科技大学 课程考试答题本 姓名 学号 专业班级 考试科目 考试日期 评分 评阅人

冷挤压成型工艺及模具设计作业 一、结构分析 此零件为一个较长的阶梯轴,单向、多阶梯、无孔,有24°倒角X2,相对简明。材料为20Cr(合金结构钢)。 二、坯料设计与挤压前处理 下料:由零件结构分析可知:加工此零件宜选用实心棒状坯料,在锯床上锯切下料。

挤压前处理 1.软化处理:查表知,加热到860℃,保温14h,随炉冷却至300℃后空冷,密封光亮退火,硬度达到120-130HBS。 2.表面处理:参选碳钢与合金钢坯料的表面处理,即采用磷化处理,把钢坯料放在磷酸盐溶液中进行处理,金属表面发生溶解和腐蚀,形成一层很薄的磷酸盐盖层。 3.润滑处理:工业猪油或机油拌二硫化钼

三、工艺设计与对比分析 工艺方案一:A 正挤压+B 镦粗 (1)由UG 三维图测得零件体积Vp=256506.9079mm 3 修边余量体积Vx=Vp*(3%~5%) 毛坯体积取V0=Vx+Vp=(264202~269322mm 3) 由零件尺寸可以初步选取毛坯直径d0=36mm , h=260mm ,经验算知所选毛坯直径在上述范围之内。则设计第一步正挤压和第二步镦粗的模 具示意图如下图所示: 毛坯 凸模1 凹模1 凸模2 凹模2

则其相应的工步图为: 成形力计算与设备选择: A正挤压第一步:εA=(362-27.52)/27.52=41.6% 由下表知,单位挤压力取下端小值p=1400Mpa 则F=pA0=1400x3.14x362/4=1424KN B镦粗第二步:εA=(79.1-33.3)/79.1=57.8% 由下表可知,单位挤压力p=950Mpa 则F=pA0=950x3.14x362/4=966KN

冷 挤 压 成 形 技 术

冷挤压成形技术 冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。 冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。 目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。与其他加工工艺相比冷挤压有如下优点:1)节约原材料。冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。冷挤压的材料利用率一般可达到80%以上。 2)提高劳动生产率。用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。 3)制件可以获得理想的表面粗糙度和尺寸精度。零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。 4)提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。此外,合理的冷挤压工艺可使零件表面形成压应力而提高疲劳强度。因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。 5)可加工形状复杂的,难以切削加工的零件。如异形截面、复杂内腔、内齿及表面看不见的内槽等。 6)降低零件成本。由于冷挤压工艺具有节约原材料、提高生产率、减少零件的切削加工量、可用较差的材料代用优质材料等优点,从而使零件成本大大降低。 冷挤压技术在应用中存在的难点主要有: 1)对模具要求高。冷挤压时毛坯在模具中受三向压应力而使变形抗力显著增大,这使得模具所受的应力远比一般冲压模大,冷挤压钢材时,模具所受的应力常达2000MPa~2500MPa。例如制造一个直径38mm,壁厚5.6mm,高100mm的低碳钢杯形件为例,采用拉延方法加工时,最大变形力仅为17t,而采用冷挤压方法加工时,则需变形力132t,这时作用在冷挤压凸模上的单位压力达2300MPa以上。模具除需要具有高强度外,还需有足够的冲击韧性和耐磨性。此外,金属毛坯在模具中强烈的塑性变形,会使模具温度升高至250℃~300℃

复杂壳体冷挤压成形工艺与模具设计

1 绪论 (3) 1.1 本课题的目的和意义 (3) 1.2 本课题的主要研究内容 (4) 1.3 小结 (5) 2 复杂壳体冷挤压工艺的确定 (5) 2.1 冷挤压工艺概述 (5) 2.2挤压零件分析 (7) 3、挤压工艺分析 (9) 3.1 坯料尺寸的确定 (9) 3.2 毛坯软化处理 (10) 3.3 冷挤压毛坯表面处理与润滑 (10) 3.4变形程度计算 (13) 3.5确定挤压次数 (13) 4 挤压设备选择 (14) 4.1挤压力的确定 (14) 4.2挤压设备类型选择 (14) 4.3液压式压力机型号选择 (14) 5模具的结构型式及其主要零部件的设计 (15) 5.1冷挤压模具的结构分析 (15) 5.1.1冷挤压模具的组成部分 (16) 5.1.2对模具设计的要求 (16) 5.2冷挤压模具的结构特点 (17) 5.3 模具材料的选择 (17) 5.3.1冷挤压模具工作零件的材料要求 (17) 5.3.2冷挤模零件材料选取 (18) 5.4凸模设计 (18) 5.4.1 分流控制腔的设计 (19) 5.4.1.1 分流控制腔的结构形式及位置确定 (19) 5.4.1.2 控制腔高度尺寸(i h )的确定 (20) 5.4.2凸模的结构及尺寸 (20) 5.5凹模的设计 (21) 5.6卸料和顶出装置的设计 (23) 5.7 挤压模具模座的设计 (24) 5.7.1上模座的设计 (24) 5.7.2 下模座的设计 (26) 5.8导柱导套的设计 (27) 6、装配图 (29) 7 复杂壳体成形过程的有限元仿真 (31) 7.1有限元分析软件的背景介绍 (31) 7.1.1 DEFORM 的介绍 (31) 7.1.2 DEFORM 的功能 (32)

挤出成型培训资料

片材车间内部学习教材

目录第一节 概 述 第二节 挤出成型基本工艺流程 第三节 挤出成型原辅材料基础知识第四节 挤出成型过程的工艺控制第五节 挤出成型的辅助加工 第六节 挤出产品的后续加工

第一节 概 述 挤出成型是在挤出成型机中,塑料被加热、加压,通过一定形状的模具成型,然后经冷却定型、拉伸(也有不经过拉伸的)、卷取(或切割)成为具有一定截面形状的制品。 一条挤出生产线由两部分组成。第一部分是将塑料熔融挤到料筒末端的过程,第二部分是将已经塑化好的塑料熔体经过模头成型,再经过定型装置定型,再经过牵引、切断、或修整等工序而成为制品的过程。 在塑料加工领域中,挤出成型是应用最广泛的一种成型方法,与其他成型方法相比,具有如下优点: ①设备制造容易,成本低; ②可以连续化生产,生产效率高; ③设备的自动化程度高,劳动强度低; ④生产操作简单,工艺控制容易; ⑤挤出产品均匀,密实,质量高; ⑥对原料的适应性强,不仅大多数的热塑性塑料可以用语挤出成型,而且少数的热固性塑料也能适应; ⑦所生产的产品广泛,可一机多用,同一台押出机,只要更换辅机,就可以生产出不同的制品或半成品; ⑧生产线的占地面积小,而且生产环境清洁。 当然,挤出成型也有缺点: ①不能生产三维尺寸的产品; ②制品往往需要二次加工。 由于挤出成型的优点突出,因此,挤出成型在塑料加工行业中具有举足轻重的地位,热塑性塑料的95%可用螺杆式挤出机生产。 作为挤出成型工程技术人员及技术工人,必须掌握塑料熔体的基本性质。只有掌握了塑料熔体的基本性质,才能对挤出成型过程中的各种控制有理论上的依据,减少实际生产中的盲目性,减少调试时间。

挤出机和挤出成型工艺样本

挤出成型工艺和挤出机 1.挤出成型工艺 1.1 挤出成型工艺: 在挤出机中经过加热、加压而使物料以流动状态连续经过口模( 即机头) 成型的方法称挤出成型或挤塑。是塑料重要的成型方法之一。 1.2 挤出成型的特点: ①设备成本低, 制造容易, 投资少, 上马快。 ②生产效率高, 挤出机的单机产量较高, 产率一般在几公斤~5吨/小时。 ③连续化生产。能制造任意长度的薄膜、管、片、板、棒、单丝、异型材以及塑料与其它材料的复合制品等。 ④生产操作简单, 工艺控制容易, 易于实现自动化。占地面积小, 生产环境清洁, 污染少。 ⑤能够一机多用。挤出机也能进行混合、造粒。 1.3 挤出成型可分为两个阶段: 第一阶段是使固态塑料变成粘性流体( 即塑化) , 并在加压情况下, 使其经过特殊形状的口模, 而成为截面与口模形状相仿的连续体。 第二阶段则是用适当的处理方法使挤出的连续体失去塑性状态而变为固体, 即得到所需制品。 1.4 挤出成型工艺分类: 干法( 熔融法) —经过加热使塑料熔融成型 ①塑化方式 湿法( 溶剂法) —用溶剂将塑料充分软化成型( CN、 CA 及纺丝)

连续式: ②加压方式 间歇式: 2. 挤出设备 塑料的挤出, 绝大多数都是热塑性塑料, 而且又是采用连续操作和干法塑化的。故在设备方面多用螺杆式挤出机。螺杆式挤出机有单、双( 或多螺杆) 之分。大部分用单螺杆挤出机, 只是粉料, RPVC 95%以上都用双螺杆挤出机。 2.1 单螺杆挤出机 2.1.1 单螺杆挤出机的组成: 螺杆式挤出机, 借助螺杆旋转产生的压力和剪切力, 使物料充分塑化和均匀混合, 经过口模 柱塞式挤出机, 借助柱塞压力, 将事先塑化好 的物料挤出口模而成型。仅用于粘度特别大, 流动性极差的塑料。如: PTFE, 成型温度下, 粘度为1010~1014泊( 一般熔融塑料的粘度

PET的生产工艺及流程图

工艺控制略解 聚对苯二甲酸乙二酯(PET)吹塑瓶的生产按型坯的预成型不同可分为注射拉伸吹塑(简称注拉吹)和挤出拉伸吹塑(简称挤拉吹)。在这两种成型方法中,由于注拉吹工艺易控制,生产效率高,废次品少而较为通用。 PET吹塑瓶可分为两类,一类是有压瓶,如充装碳酸饮料的瓶;另一类为无压瓶,如充装水、茶、油等的瓶。 虽然生产厂家不同,但其设备原理相似,一般均包括供坯系统、加热系统、吹瓶系统、控制系统和辅机五大部分。吹塑工艺PET瓶吹塑工艺流程。影响PET瓶吹塑工艺的重要因素有瓶坯、加热、预吹、模具及环境等。 茶饮料瓶是掺混了聚萘二甲酸乙二酯(PEN)的改性PET瓶或PET与热塑性聚芳酯的复合瓶,在分类上属热瓶,可耐热80℃以上;水瓶则属冷瓶,对耐热性无要求。在成型工艺上热瓶与冷瓶相似。 、瓶坯: 制备吹塑瓶时,首先将PET切片注射成型为瓶坯,它要求二次回收料比例不能过高(5%以下),回收次数不能超过两次,而且分子量及粘度不能过低(分子量31000-50000,特性粘度-0.85cm/g) 、加热: 瓶坯的加热由加热烘箱来完成,其温度由人工设定,自动调节。烘箱中由远红外灯管发出远红外线对瓶坯辐射加热,由烘箱底部风机进行热循环,使烘箱内温度均匀。瓶坯在烘箱中向前运动的同时自转,使瓶坯壁受热均匀。 、预吹: 预吹是二步吹瓶法中很重要的一个步骤,它是指吹塑过程中在拉伸杆下降的同时开始预吹气,使瓶坯初具形状。这一工序中预吹位置、预吹压力和吹气流量是三个重要工艺因素。预吹瓶形状的优劣决定了吹塑工艺的难易与瓶子性能的优劣。正常的预吹瓶形状为纺锤形,异常的则有亚铃状、手柄状等,如图2所示。造成异常形状的原因有局部加热不当,预吹压力或吹气流量不足等,而预吹瓶的大小则取决于预吹压力及预吹位置。在生产中要维持整台设备所有预吹瓶大小及形状一致,若有差异则要寻找具体原因,可根据预吹瓶情况调整加热或预吹工艺。预吹压力的大小随瓶子规格、设备能力不同而异,一般容量大、预吹压力要小;设备生产能力高,预吹压力也高。 即使采用同一设备生产同一规格的瓶子,由于PET材料性能的差异,其所需预吹压力也不尽相同。玻纤增强的PET材料,较小的预吹压力即可使瓶子底部的大分子正确取向;另一些用料不当或成型工艺不适当的瓶坯,注点附近有大量的应力集中不易消退,如果吹塑,常会在注点处吹破或在应力测试中从注点处爆裂、渗漏。根据取向条件,此时可如所示把灯管移出2-3支至注点上方开启,给予注点处充分加热,提供足够热量,促使其迅速取向。对于已加热二次使用的瓶坯或存放时间超标的瓶坯,由于时温等差效应,二者成型工艺相似,与正常瓶坯相比,其要求的热量要少,预吹压力也可适当降低。

冷挤压成形设计

冷挤压课程作业 结构分析: 冷挤压件图如下图所示: 分析可知,挤压零件结构简单,为典型单向多台阶阶梯轴,并且除55Φ处有较大直径突变外,其余的直径变化均较小,且为倾斜台阶面过渡。 工艺设计: 根据零件结构特征,55Φ处台阶需要通过镦粗成形,其余台阶面可采用减径挤压方式,所以采用减径挤压和镦粗相结合的方式,具体选取以下两种方案对比分析: 1.镦挤复合,加工出55Φ,27.5Φ圆柱面,减径挤压出30.4Φ。工步图如下: 2.镦粗出55Φ圆柱面,依次减径挤压出30.4Φ,27.5Φ圆柱面。工步图如下:

坯料设计及挤压前处理: 坯料设计: 1.坯料形状和尺寸: 根据零件结构分析采用棒状坯料如图a 所示: 0P X V V V =+,取0.04X P V V = 由冷挤压件图可知P V =256478.64813 mm ,则0=V 266737.83 mm ,取坯料直径为d=36mm 由体积不变原则可得坯料尺寸为36262.1mm Φ?。 坯料如下所示: 2.坯料制备方法:毛坯直径较大且长,为保证毛坯的尺寸精度及形状精度,采用锯切下料。 材料:20Cr ,(合金结构钢):前处理如下: 1.软化处理:球化退火(加热到860°C ,保温14h ,随炉冷至300°C 后空冷) 2.表面处理:磷化处理(具体过程为化学去油(85℃)→流动冷水洗→酸洗去锈(65~75℃)→流动冷水洗→热水洗→磷化处理(85~95℃)→流动冷水洗→中和处理。) 3.润滑处理:皂化处理(工业皂片) 成形力计算及设备选择: 对于实心圆柱件,断面减缩率0`101 000000 100100A A A D D A D ε--= *=*,式中,A0为挤压变形前毛坯的横断面积,A1为挤压变形后工件的横断面积,D0为挤压变形前毛坯的横断直径,

冷挤压和冷镦基础知识介绍

冷镦、冷挤压基础知识介绍 冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。 冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。 目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。与其他加工工艺相比冷挤压有如下优点: 1)节约原材料。冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。冷挤压的材料利用率一般可达到80%以上。 2)提高劳动生产率。用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。 3)制件可以获得理想的表面粗糙度和尺寸精度。零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。 4)提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。此外,合理的冷挤压工艺可使零件表面形成压应力而提高疲劳强度。因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。 5)可加工形状复杂的,难以切削加工的零件。如异形截面、复杂内腔、内齿及表面看不见的内槽等。 6)降低零件成本。由于冷挤压工艺具有节约原材料、提高生产率、减少零件的切削加工量、可用较差的材料代用优质材料等优点,从而使零件成本大大降低。 冷挤压技术在应用中存在的难点主要有:

冷挤压工艺_正挤压模具设计说明

目录 第一章冷挤压工艺的特点及模具分类 (2) 一、冷挤压工艺 (2) 二、冷挤压模具特点 (2) 三、典型的冷挤压模具组成 (2) 四、冷挤压模具分类 (3) 五、冷挤压的特点 (3) 第二章模具工作部分设计 (5) 一、冷挤压模设计要求 (5) 二、正挤压凸模 (5) 三、正挤压凹模 (6) 第三章模具组成及工作过程原理 (8) 一、自行车前钢碗正挤压模具装配图 (8) 二、工作过程 (9) 第四章听课感受及意见与建议 (10) 一、感受 (10) 二、意见和建议 (10) 参考文献 (10)

第一章冷挤压工艺的特点及模具分类 一、冷挤压工艺 冷挤压的工艺过程是:先将经处理过的毛坯料放在凹模,借助凸模的压力使金属处于三向受压应力状态下产生塑性变形,通过凹模的下通孔或凸模与凹模的环形间隙将金属挤出。它是一种在许多行业广泛使用的金属压力加工工艺方法。 二、冷挤压模具特点 1、模具应有足够的强度和刚度,要在冷热交变应力下正常工作; 2、模具工作部分零件材料应具有高强度、高硬度、高耐磨性,并有一定的韧性; 3、凸、凹模几何形状应合理,过渡处尽量用较大的光滑圆弧过渡,避免应力集中; 4、模具易损部分更换方便,对不同的挤压零件要有互换性和通用性; 5、为提高模具工作部分强度,凹模一般采用预应力组合凹模,凸模有时也采用组合凸模; 6、模具工作部分零件与上下模板之间一定要设置厚实的淬硬压力垫板,以扩大承压面积,减小上下模板的单位压力,防止压坏上下模板; 7、上下模板采用中碳钢经锻造或直接用钢板制成,应有足够的厚度,以保证模板具有较高的强度和刚度。 三、典型的冷挤压模具组成 1、工作部分如凸模、凹模、顶出杆等; 2、传力部分如上、下压力垫板; 3、顶出部分如顶杆、反拉杆、顶板等;

冷挤压和冷锻简介介绍

冷镦、冷挤压基础知识介绍 发布日期:2007-03-16 浏览次数:54 冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。 冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。 目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。与其他加工工艺相比冷挤压有如下优点: 1)节约原材料。冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。冷挤压的材料利用率一般可达到80%以上。 2)提高劳动生产率。用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。 3)制件可以获得理想的表面粗糙度和尺寸精度。零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。 4)提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。此外,合理的冷挤压工艺可使零件表面形成压应力而提高疲劳强度。因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。 5)可加工形状复杂的,难以切削加工的零件。如异形截面、复杂内腔、内齿及表面

冷镦,冷挤压的基础知识

冷镦,冷挤压的基础知识 冷镦、冷挤压基础知识介绍 冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。 冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。 目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。与其他加工工艺相比冷挤压有如下优点:

1)节约原材料。冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。冷挤压的材料利用率一般可达到80%以上。 2)提高劳动生产率。用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。 3)制件可以获得理想的表面粗糙度和尺寸精度。零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。 4)提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。此外,合理的冷挤压工艺可使零件表面形成压应力而提高疲劳强度。因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。 5)可加工形状复杂的,难以切削加工的零件。如异形截面、复杂内腔、内齿及表面看不见的内槽等。 6)降低零件成本。由于冷挤压工艺具有节约原材料、提高生产率、减少零件的切削加工量、可用较差的材料代用优质材料等优点,从而使零件成本大大降低。 冷挤压技术在应用中存在的难点主要有: 1)对模具要求高。冷挤压时毛坯在模具中受三向压应力而使变

塑料异型材挤出工艺流程介绍

塑料异型材产品工艺流程介绍 一、工艺流程 PVC →各种助剂→高速搅拌捏合→挤出→冷却真空定型→牵引→定长切割→成品→检验→包装入库 二、主要设备 1、主机: 车间大部分机台使用的为SJZ65/132型双螺杆挤出机,长径比:1∶22 ,螺杆转速7r/ min~48r/ min ,螺杆的旋转方向: 异向向外旋转。 2、辅机: (1) 冷却定型装置:,由气水分流器、活动台板、调整机构组成。真空冷却段数:4 段,水环真空泵电机功率:10kW。 (2) 牵引装置:大平面橡胶带牵引。 (3) 锯切装置:配有计长装置,能跟踪切割的气动式锯切机。 (4) 堆放装置:气动式可翻转托架。 三、生产工艺要点 型材的挤出成型是利用螺杆旋转加压方式,连续地将塑化好的成型物料从挤出机料筒中挤入机头,熔融物料通过机头口模成型为与口模形状相仿的型坯,用牵引装置将成型制品连续地从模具中拉出,同时冷却定型,制得所需形状的制品。要获得外观与内在质量均优良的型材制品,需要对挤出工艺条件进行控制,控制要点主要为混料、成型温度、螺杆冷却与转速、挤出压力、冷却定型等。 混料 混料过程先将PVC 树脂以及配方计量加入其它组份加入到热混机,高速搅拌升温到120℃进行混合,混合均匀后,放到冷混机中边混料边冷却至45℃,形成松散、易

流动的粉状混合物,然后出料备用。混料时温度控制很重要,混合温度过高,物料易发粘、结块、塑化不均;混合温度过低,则物料混合不充分,达不到预塑目的。所以一般情况下,高温混合终点温度控制在(115~120) ℃,高混时间10min~15min ,冷混出料温度45 ℃。 挤出成型温度 生产产品选用的是有排气装置的异向向外旋转的双螺杆挤出机。挤出机经过预热、加料之后通过输送、排气、熔化等过程,将物料均匀塑化形成熔体,到达机头后进一步均化,通过机头压力,压实成型为密实的型坯,以流动状态连续通过口模成型。 挤出成型温度是促使成型物料塑化和熔体流动的必要条件,它对挤出成型过程中物料塑化、型材制品的质量和产量均有十分重要的影响。料筒和口模的温度是控制的重点,因为PVC 的加工温度与分解温度颇为接近,因此要严格控制。 通常挤出机的温度控制主要由料筒加料段到挤出段的温度控制,使物料从固态粉料或粒料逐渐被融化,达到物料良好的塑化状态。一般各段温度要根据挤出机的特点、物料的配方加工特性以及制品的质量要求来确定。挤出成型的温度一般指塑料熔体的温度,该温度很大程度上取决于料筒和螺杆温度,实际生产中位测量和控制方便,常用机筒温度来近似熔体温度,利用热电偶来测量控制。在用双螺杆挤出机挤出时,加料段的温度应高于树脂的熔融温度,加料段、压缩段、排气段和均化段的温度分布一般呈马鞍型曲线。 机头温度对挤出形成的影响很大。机头温度必须控制在合理的温度范围,才能获得良好的型材外观和力学性能,减小熔体出口膨胀,一般机头设定温度高于料筒温度。 根据配方要求, 挤出温度设定在170 ℃~180 ℃之间,过高PVC 就会分解变色,机头口模温度最高可达190 ℃~210 ℃。 螺杆冷却与螺杆转速 由于PVC 熔体粘度高,会因摩擦生出过多热量而引起螺杆粘料分解,使型材内壁粗糙,故采用螺杆冷却以减少PVC 熔体与螺杆表面的摩擦热,但冷却温度要控制在70~90 ℃,冷却温度过低,会减少挤出量和影响塑化质量,不利于产品质量。 螺杆转速时控制挤出速率、产量和制品质量的重要工艺参数。若提高螺杆转速和剪切速率、熔体表观粘度则下降,有利于物料均化,可以适当提高制品的冲击强度、弯曲强度及拉伸强度等力学性能;但螺杆转速过高,离模膨胀加大,物料在料筒内停留时间过短,也会影响制品的质量。

相关文档
最新文档