相变材料微胶囊的制备及提纯

相变材料微胶囊的制备及提纯
相变材料微胶囊的制备及提纯

微胶囊石蜡相变材料

一种石蜡相变储能材料及其制备方法 WO 2012075747 A1 摘要: 权利要求(10) 一种石蜡相变储能材料,其特征在于,包含石蜡、高密度聚乙烯、表面活性剂十二烷基苯磺酸钠、成膜材料海藻酸钠、交联剂无水氯化钙,各组分的重量百分比为石蜡48%~56.7%,高密度聚乙烯14.2%~32%,十二烷基苯磺酸钠4-5.7%,海藻酸钠10.4%-15.6%,无水氯化钙5.6%-7.8%。根据权利要求1所述的一种石蜡相变储能材料,其特征在于所述石蜡相变储能材料是毫米级胶囊相变材料。根据权利要求1所述的一种石蜡相变储能材料,其特征在于所采用的石蜡的熔点为室温。 一种制造权利要求1所述的石蜡相变储能材料的方法,其特征在于,制造步骤如下:(1)首先以石蜡为芯材,高密度聚乙烯为支撑材料,采用熔融法制备微胶囊相变材料,具体过程为:将石蜡和高密度聚乙烯的混合物加热到全部熔融后,取出搅拌均匀,放在空气中冷却至凝固定型,然后粉碎成粒径小于200微米的微胶囊相变材料;(2)采用薄膜包衣技术制备出毫米级胶囊相变材料:①将上述微胶囊相变材料置入包衣机内,调节转速为20~30r/min,喷入质量浓度为2~3%的十二烷基苯磺酸钠表面活性剂用于润湿表面,让切粒滚动3~4min;②将质量浓度为4~6%海藻酸钠水溶液均匀喷洒于混合料中,同时开热风干燥,待水分蒸干掉90%左右时,喷入质量浓度为8~12%氯化钙水溶液,包裹10~15min后,待水分蒸干后再喷入海藻酸钠水溶液;③重复第②步操作,直至胶囊表面光亮为止,进一步干燥后,冷却,出料,制得毫米级胶囊相变材料。根据权利要求4所述的一种方法,其特征在于,所述步骤(1)中石蜡和高密度聚乙烯的混合物加热到138-142℃。一种石蜡相变储能混凝土,其特征在于,含有重量含量为100份的水泥,45~52份的水,95~105份的砂,190~210份的碎石,50~322份的毫米级胶囊相变材料。根据权利要求6所述的石蜡相变储能混凝土,其特征在于,组分中还含有纤维增强材料,所述纤维增强材料为16~24份的钢纤维或8-12份的玄武岩纤维。一种制备权利要求6所述石蜡相变储能混凝土的方法,其特征在于,先将砂、水泥、碎石、毫米级胶囊相变材料按比例投入搅拌机中进行干拌,使胶囊相变材料均匀分散于前述干拌的混合物中,然后加水进行湿拌,制得相变储能混凝土。根据权利要求8所述一种制备方法,其特征在于,先将砂、水泥、碎石、毫米级胶囊相变材料按比例投入搅拌机中干拌30-40秒,然后加水湿拌3-4分钟即可。根据权利要求8所述一种制备方法,其特征在于,先将钢纤维或玄武纤维与碎石一起投入搅拌机搅拌30-40秒,使纤维分散在石子中,再将砂、水泥、毫米级胶囊相变材料按比例投入搅拌机干拌30-40秒,然后加水和减水剂湿拌3-4分钟即可。说明一种石蜡相变储能材料及其制备方法技术领域本发明属于相变储能材料技术领域,具体涉及一种石蜡相变储能材料及其制备方法。背景技术现有的建筑材料多为常物性材料,其热容远达不到理想节能建筑围护结构所要求的热容,导致室内温度波幅度较大,热舒适性低。将相变材料与混凝土相结合,制成相变储能混凝土,用它作外墙体材料,利用相变材料在相变过程中吸能和释能的特点实现能量的利用与转换,有利于建筑物室内温度的调控,可以大大增加围护结构的蓄热作用,使建筑物室内和室外之间的热流波动幅度被减弱,作用时间延迟,改善室内热环境,达到节能与舒适的目的。目前在建筑节能中应用比较广泛的石蜡相变储能材料在与建筑材料结合时采用直接渗透法和囊化封装法。技术问题直接渗透法虽然操作简单,但发生相变时产生的液体易发生泄漏或腐蚀基体材料,而现有的囊化封装只能达到纳米和微米级(统称为微胶囊相变材料),其主要存在以下问题: 1.相变储能建筑材料的耐久性和实用性问题。微胶囊相变材料在不断的循环相变过程中出现热物理性质的退化,发生相变时仍有液体泄漏和腐蚀基体材料的现象,表现为在材料表面结霜,不能长期使用,不能大量掺入相变材料,缺乏实用价值。 2.相变储能建筑材料的储热性能问题。微胶囊封装法的单位重量相变材料含量低,储热能力小,同

相变材料

相变材料 夏红芳环境工程一班 2220083741 摘要:由于全球能源和环境问题的日益加剧,能源节约和环境的改善已成为当今迫切解决的问题,相变节能材料受到很大重视和广泛研究。本文主要介绍了相变材料的概念、特点、恒温机理及分类,然后讨论了它在各领域的主要运用,并展望了其良好前景和未来研究的方向。 关键词:相变材料节能恒温建筑采暖 1 前言 近年来,随着全球能源危机的日益加剧,节约能源、有效利用能源逐渐成为人们追求的目标。相变材料的节能应用很早就受到重视,许多发达国家对此进行了大量的研究和开发[1]。我国的科研机构亦对此课题进行大量的研究并发表了许多论文。但由于生产材料的成本过高和稳定性等原因,其应用受到限制。近年来由于材料的研究取得重大进展,相变材料的成本大大降低,稳定性也已达到上万个相变周期而不改变其特性,这使得应用相变材料节能达到了实用阶段[2]。从可持续发展战略出发,研究如何在满足当前经济飞快发展的需求,尽可能地提高对能源的有效利用率,对于当前的能源形势具有重大的意义[1]。 2 相变材料 相变材料PCMs( Phase Change Materials)是指在一定狭窄明确的温度范围,即通常所说的相变范围内可以改变物理状态,如从固态转变为液态或从液态变为固态的材料[3]。在相变过程中,体积变化很小,热焓高,因此以潜热形式从周围环境吸收或释放大量热量,热的吸收量或释放量比一般加热和冷却过程要大得多,而此时PCMs的温度保持不变或恒定。因此它是一种利用相变潜热来贮能和放能的化学材料。

我们最常见的相变材料非水莫属了,当温度低至0°C 时,水由液态变为固态(结冰)。当温度高于0°C时水由固态变为液态(溶解)。在结冰过程中吸入并储存了大量的冷能量,而在溶解过程中吸收大量的热能量。冰的数量(体积)越大,溶解过程需要的时间越长[3]。这是相变材料的一个最典型的例子。从以上的例子可看出,相变材料实际上可作为能量存储器。这种特性在节能,温度控制等领域有着极大的意义。因此,相变材料及其应用成为广泛的研究课题。 3 相变材料的分类 相变材料并不是科学家发明的一种新型材料,而是以各种形式存在于自然界中。迄今为止,已有超过500 种的天然和合成相变材料被人们掌握和了解[4]。按相变材料的科学属性划分,相变材料一般可以分为:无机水合盐相变材料、有机相变蓄能材料、复合相变蓄能材料。 3.1 无机类 无机类相变材料主要有结晶水合盐类、熔融盐类等其中最典型的是结晶水合盐类,它们有较大的熔解热和固定的熔点(实际上是脱出结晶水的温度变化: 脱出的结晶水使盐溶解而吸热,降温是其发生逆过程,吸收结晶水而放热)。通常 是中、低温相变蓄能材料。具有代表性的有:Na 2SO 4 ·10H 2 O , MgCl 2 ·6H 2 O 等 水合盐类。无机类相变材料通常具有使用范围广、导热系数大(与有机类相变材料相比)、溶解热较大、密度大(单位体积的储热密度大) 、一般成中性、价格较便宜等优点。但是,这类材料通常存在过冷现象、相分离两个问题[4]。 3.2 有机类 有机相变蓄能材料是利用晶体之间的转变来吸热或放热,典型的有石蜡、酯酸类和高分子化合物。有机类相变材料具有的优点有: 在固体状态时成型性较好,一般不容易出现过冷现象和相分离。而缺点是: 导热系数小,单位体积的储能能力较小,熔点较低,不适于高温场合中应用[4]。 3.3 复合类 复合相变材料主要指性质相似的二元或多元化合物的一般混合体系或低共熔体系,形状稳定的固液相变材料,无机有机复合相变材料等[5][14]。复合相变蓄热材料一般有分为两种,一种利用无机物作为网络状基质以维持材料的形状、力学性能,而有机物作为相变材料嵌在无机网络结构里面,这样通过有机物的相变来吸收和释放能量;另一种纤维复合蓄热材料,它是将导热纤维制成蓬松团置入金属容器或模腔中,并加入相变蓄热材料的复合材料。复合相变材料既能有效克服单一的无机物或有机物相变储热材料存在的缺点,又可以改善相变材料的应用效果以及拓展其应用范围。但是混合相变材料也可能会带来相变潜热下降,或在长期的相变过程中容易变性等缺点。 此外,还有一些其他分类方法,按相变温度的范围,将相变材料分为三类: 高温、中温和低温相变材料。按相变材料的组成成份将相变材料分为两类: 有机类和无机类。按相变的方式,将相变材料分为四类:固——固相变、固——液相变、固——气相变、及液——气相变材料。由于后两种相变方式在相变过程中,伴随有大量气体的存在,使材料体积变化较大。因此,尽管它们相变焓较大,但在实际中很少应用[4]。常用的就是固——固相变和固——液相变材料。 4 相变材料蓄能机理 相变材料具有在一定温度范围内改变其物理状态,发生吸热和放热的反应。当环境温度高于某相变温度时,材料吸收并储存能量,以降低环境

相变材料微胶囊在建筑材料中的应用

相变材料微胶囊在建筑材料中的应用相变材料应用于建筑的研究开始于1982年,由美国能源部太阳能公司发起。1988年起由美国能量储存分配办公室推动此项研究。Lane 在其著作《太阳能储存———潜热材料》一书中对20世纪80 年代初以前相变材料和容器的发展作了总结。 20世纪90年代以相变材料处理石膏板、墙板与混凝土构件等建筑材料的技术发展起来了,随后,相变材料在石膏板、墙板与混凝土构件的研究和应用得到了发展,主要目的是增强轻质结构的热容。美国Neeper估计相变墙板能转移居民空调负荷中90%的显热负荷到用电 低谷期,可降低30%的设备容量。Oakbridge 国家实验室在1990年得出结论:在太阳房中,相变墙板能明显降低附加能量的消耗,回报期大约是5年。日本的Kanagawa大学和Tokyo Denki大学的研究人员对相变墙板的储热性能进行了研究。他们得出了相变墙板的使用使得热负荷更加平缓,辐射域更加舒适,用电量下降,有消减峰负荷的可能的结论。 国内对相变建筑材料的研究起步较晚,张寅平研究了无水乙酸钠和尿素的共混物,其相变温度在28~31℃。同济大学则主要以工业级的硬脂酸丁酯为相变材料进行建筑节能混凝土材料的研究。近两年,北京广域相变科技有限公司与国内几家顶尖的专题研究相变材料的高校结合,共同研制相变材料微胶囊,为相变材料在建筑保温材料中的应用开拓了更广阔的天地。 相变材料微胶囊是相变材料装入直径1~500μm的微小容器内

(图一)。微胶囊通常为球形外观,其中,外层的裹附材质我们成为囊壁,囊壁多采用无机或有机高分子材料,在特殊条件下也可以用金属材料,内部的相变材料被称为囊芯。采用微胶囊对相变材料进行封装这一技术,近年来得到了国内外专家们的广泛关注,相变材料做成微胶囊再遇建筑材料掺混有以下优点: 1、可增大相变材料热传递过程中的表面积和传导率。 2、相变过程在微胶囊内完成,可极大的消除“相分离”现象。 3、提高相变材料的稳定性,降低一些相变材料的毒性和挥发 性。 4、提高相变材料的耐久性,增加其使用寿命。 5、相变材料微胶囊便于封装,可满足绿色环保新型材料的要 求。 6、通过选择合适的胶囊囊壁材料,可以避免相变材料与建筑 材料不相容性造成的对建筑材料热性能与承重能力的影 响。 图一

聚丙烯酸基相变材料微胶囊的制备和表征

聚丙烯酸基相变材料微胶囊的制备和表征1 单新丽,王建平,张兴祥 改性与功能纤维天津市重点实验室,天津工业大学功能纤维所,天津(300160) E-mail:shanxinli143@https://www.360docs.net/doc/415858794.html, 摘要:本文成功制备了甲基丙烯酸甲酯-甲基丙烯酸共聚物为壁材,正十八烷为囊芯的相变材料微胶囊。采用扫描电子显微镜(SEM),差示扫描量热仪(DSC),热重分析仪(TG)分别考察了正十八烷微胶囊(MC18)的表观形貌及粒径大小、相变热性能、热稳定性能等。试验结果表明,采用苯乙烯-马来酸酐共聚物钠盐为乳化剂时,所得MC18结构完好,平均粒径为18 μm;芯材与壁材的投料比为2:1时,所得MC18的囊芯含量为66.5 wt%,相应热焓为147 J·g-1,耐热温度高达238 o C。 关键词:微胶囊;正十八烷;热稳定性 0 引言 利用相变材料的相变潜热进行能量的储存或释放的研究,在能源利用和材料科学领域一 直十分活跃。将相变材料微胶囊化是实现相变材料永久固态化的手段之一,可解决相变材料 的易疲劳,腐蚀性,不良气味,流动性及相变材料与周围材料界面等问题,同时具可有更大 的传热面积和更高的传热速率[1, 2],使提高能源利用率,创造舒适清新的人类环境成为可能。相变材料微胶囊已被广泛应用到节能建筑材料,调温纤维,织物,泡沫,涂层, 太阳能存储 循环利用等领域[3-6]。 蜜胺及脲醛树脂为壁材的相变材料微胶囊由于制备工艺简单且产品性能优良[6],研究 性论文占总的相变材料微胶囊论文的70%以上。然而胶囊壁不可避免的残留致癌和致敏物 质甲醛[7-9],并且不可能完全去除(因为甲醛作为一种反应单体)。在生产和使用过程对人类 的健康和环境构成威胁,因此研制环保的相变材料微胶囊成为该领域研究者关注的重点。英 国汽巴公司申请了制备聚丙烯酸类的颗粒状组合物的专利[10],德国巴斯夫公司将环保的聚 丙烯酸类囊壁的相变材料微胶囊成功地应用到了旧房屋的节能改造领域中[11],但均对此类 胶囊的制备方法和性能的详细报道很少。本文成功制备了聚丙烯酸树脂为囊壁,正十八烷为 囊芯的相变材料微胶囊,并对 其性能进行了表征。 1.实验部分 1.1 实验药品 甲基丙烯酸(C4H6O2,纯度90%),甲基丙烯酸甲酯(C5H8O2,纯度99.5%),均为天 津市科密欧化学试剂公司提供,两单体分别用浓度10%的氢氧化钠溶液洗涤以去除阻聚剂 和减压蒸馏法提纯;正十八烷(C18H38),纯度99%,进口;乳化剂SMA(固含量为19%的 苯乙烯-马来酸酐共聚树脂乳液),上海皮革化工厂产品;过氧化二苯甲酰(C14H10O4, 纯度99%),过硫酸钾(K2S2O8,纯度99.5%),均为引发剂,分别为天津化学试剂一厂和天津市 化学试剂三厂产品;氢氧化钠(NaOH),分析纯,为天津市化学试剂三厂产品。 1.2 正十八烷微胶囊的制备 1本课题得到国家自然科学基金(50573058)、天津市科技计划项目(09ZCKFGX02200)和中国博士后自然 科学基金(20070410764)的资助。

热适应复合相变材料的制备与热性能

热适应复合相变材料的制备与热性能 尹辉斌1,高学农1,丁静2,张正国1 (1华南理工大学传热强化与过程节能教育部重点实验室, 广东广州 510640; 2中山大学工学院, 广东广州 510006) 摘要:热适应复合材料是具有适合要求的热导率或热膨胀系数的一种复合材料。本文选取导热系数高且密度低的膨胀石墨作为无机支撑材料,石蜡作为有机相变材料,制备出高导热系数和储热密度的热适应复合相变材料。采用扫描电镜(SEM)、比表面和孔径分布测定仪(BET)、差示扫描量热仪(DSC)、偏光显微镜(POM)和Hot Disk热常数分析仪等多种测试技术,对复合相变材料进行了分析研究,实验证明该复合相变材料具有形状稳定、导热率高、储热密度大等特点。通过储/放热实验和500次热循环实验研究了复合材料的传热性能和热稳定性,复合相变材料的储热时间和放热时间分别比纯石蜡缩短了76.8%和86.1%,并具有良好的热稳定性和使用寿命。 关键词:电子散热;热适应;相变材料;热性能 中图分类号:TK512. 4 文献标识码:A Preparation and thermal properties of thermal adaptation composite materials YIN Huibin1, GAO Xuenong1, DING Jing2, ZHANG Zhengguo1 (1 Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou 510640,Guangdong,China; 2 School of Engineering, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China) Abstract:Thermal adaptation composite materials are composite materials with required thermal conductivity or coefficient of thermal expansion. A kind of thermal adaptation composite materials is prepared by using paraffin as the phase change material and porous expanded graphite of high thermal conductivity as the supporting material. The thermal properties of the composite materials are characterized by means of SEM, BET, DSC, POM and Hot Disk. It is shown that the composite materials have favorable heat capacity and high thermal conductivity. The heat transfer performance and thermal stability of the composite materials are then investigated by heat storage and release experiments and thermal cycle experiments of 500 times. Their heat storage period and heat release period are shortened 76.8%and 86.1%, respectively, compared with that of the paraffin. The composite materials also have excellent thermal stability and service life. Key words:electronic cooling; thermal adaptation; phase change material; thermal property 引言 随着电子及通讯技术的迅速发展,高性能芯片和大规模及超大规模集成电路的使用越来越广泛。电子器件芯片的功率不断增大,而体积却逐渐缩小,且大多电子芯片的待机发热量低而运行时发热量大,瞬间温升快。因此,抗热冲击和散热问题已成为芯片技术发展的瓶颈。 相变温控是利用相变材料的相变过程储存或释放热量,从而实现对物体的温度控制[1]。相变储热材料由于具有蓄能密度大、蓄放热过程近似等温、过程易控制等优点,备受研究者的关注,而提高其热性能更成为了研究热点[2-4]。热适应复合材料就是通过对复合材料进行组分与其含量的选择和排列取向的设计,而使之具有适合要求的热导率或热膨胀系数的一种复合材料[5]。近年来,应用热适应复合相变材料进行电子元件的散热技术在国外已受到广泛重视,并在航

以聚氨酯为壁材的相变微胶囊的设备制作方法与设计方案

本技术涉及一种以聚氨酯为壁材的相变微胶囊的制备方法。先将二异氰酸酯单体与小分子二元醇、大分子二元醇和亲水性单体反应,合成以异氰酸根封端的聚氨酯预聚体,然后将相变材料分散在聚氨酯预聚体中,加水制成含相变材料的聚氨酯预聚体分散液,最后与水溶性胺通过界面聚合法制备以聚氨酯为壁材的相变微胶囊。本技术的有益效果是:本技术提供了一种以水性聚氨酯预聚体与水溶性胺通过界面聚合法制备成以聚氨酯为壁材的相变材料微胶囊的方法,该方法制备的相变微胶囊具有制备方法简单,可控性强,不含乳化剂,并可依据使用领域来调节相变微胶囊的性能,环境友好的特点。 技术要求 1.一种以聚氨酯为壁材的相变微胶囊的制备方法,包括以下步骤: (1)聚氨酯预聚体的制备 将小分子二元醇、大分子多元醇和亲水扩链剂加到反应容器中,脱水,冷却到室温后加 入二异氰酸酯和催化剂,在一定温度下,反应若干小时,得聚氨酯预聚体;过程中粘度 增大可适量加入溶剂,降低预聚体粘度; (2)含相变材料的聚氨酯预聚体分散液的制备 待预聚体温度降至50℃以下,加入碱及二异氰酸酯,搅拌均匀后,逐滴加入相变材料, 搅拌分散;最后,加入去离子水,搅拌分散,得含相变材料的聚氨酯预聚体分散液;(3)以聚氨酯为壁材的发泡微胶囊的制备 在上述分散液中,逐滴加入有机胺水溶液,在常温下扩链反应,得到以聚氨酯为壁材的 相变微胶囊乳液;或将微胶囊乳液逐滴滴入稀盐酸溶液中,破乳,抽滤,洗涤,干燥, 得聚氨酯为壁材的相变微胶囊颗粒。

(1)中所述的小分子二元醇为乙二醇、一缩二乙二醇、二缩三乙二醇、丙二醇、一缩二丙二醇、丁二醇、戊二醇、己二醇、辛二醇、异戊二醇、新戊二醇、孟二醇、苯二甲醇、1,4-丁烯二醇、聚乙二醇(分子量低于1000)中的一种或几种;所述的大分子多元醇为大分子二元醇,具体为:聚乙二醇、聚四亚甲基醚二醇(聚四氢呋喃二醇)、聚丙二醇二元醇、聚己二酸乙二醇酯二醇、聚己二酸丙二醇酯二醇、聚己二酸丁二醇酯二醇、聚己二酸新戊二醇酯二醇、聚己二酸环己烷二甲醇酯二醇、聚己内酯二醇、聚碳酸酯二醇、聚氧化丙烯二醇、聚氧化乙烯二醇中的一种或几种;大分子三元醇,具体为:聚醚三元醇(聚氧化丙烯三醇)、聚酯三元醇中的一种或几种;分子量为1000~10000。 3.根据权利要求1所述的一种以聚氨酯为壁材的相变微胶囊的制备方法,其特征是,步骤(1)、步骤(2)中所述的二异氰酸酯为二苯基甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、萘-1,5-二异氰酸酯(NDI)、2,6-二异氰酸酯己酸甲酯(LDI)、1,6-己基二异氰酸酯(HDI),二环己基甲烷二异氰酸酯(HMDI)、甲基环己基二异氰酸酯(HTDI)、苯二亚甲基二异氰酸酯(XDI)中的一种或几种。 4.根据权利要求1所述的一种以聚氨酯为壁材的相变微胶囊的制备方法,其特征是,步骤(1)中所述的亲水扩链剂为二羟甲基丙酸(DMPA)和二羟甲基丁酸(DMBA)中的一种或几种,用量为步骤(1)中参与反应的单体总量的0.5%~80%。 5.根据权利要求1所述的一种以聚氨酯为壁材的相变微胶囊的制备方法,其特征是,步骤(1)中所述的小分子二元醇与大分子多元醇的重量比例为:(1:0)~(1:20);二异氰酸酯单体与多元醇按照摩尔比NCO:OH=(1.2~5.0):1进行投料;所述溶剂为丙酮、丁酮、甲苯、1-甲基-2-吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)的一种或几种;所述的溶剂的用量为单体总质量的0~100%。

微胶囊相变材料储热_释热特性及传热过程强化

中国矿业大学徐海学院 本科生毕业设计 姓名:学号: 学院:中国矿业大学徐海学院 专业:热能与动力工程 设计题目:微胶囊相变材料储热/释热特性及传热过程强化专题: 指导教师:职称: 2015 年6月徐州

中国矿业大学徐海学院毕业设计任务书 专业年级学号学生姓名 任务下达日期:2014年12 月20 日 毕业设计日期:2015年1月20日至2015年6月10日 毕业设计题目:微胶囊相变材料储热/释热特性及传热过程强化 毕业设计专题题目: 毕业设计主要内容和要求: 1、查阅关于相变储能材料的文献资料,完成论文开题报告; 2、完成3000字以上的英文文献翻译; 3、熟练掌握各种实验仪器的使用方法; 4、通过添加导热材料对微胶囊相变材料进行强化传热。分析实验数据,找出强化效果最好的导热材料; 5、搭建微胶囊相变材料储放热实验平台,对其储放热特性进行测试。得出数据,分析不同因素对微胶囊相变材料换热过程的影响。 指导教师签字:

郑重声明 本人所呈交的毕业设计,是在导师的指导下,独立进行研究所取得的成果。所有数据、图片资料真实可靠。尽我所知,除文中已经注明引用的内容外,本毕业设计的研究成果不包含他人享有著作权的内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。本论文属于原创。本毕业设计的知识产权归属于培养单位。 本人签名:日期:

中国矿业大学徐海学院毕业设计指导教师评阅书 指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:指导教师签字: 年月日

相变材料

相变材料的种类 摘要:相变储能材料对于能源的开发与应用具有重要意义。综述了相变储能材料的分类、相变特性、并展望其今后的发展方向。 关键字:无机相变材料;有机相变材料;储能;进展; 前言 相变材料是指随温度变化而改变形态并能提供潜热的物质。相变材料由固态变为液态或由液态变为固态的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。相变材料可分为有机和无机相变材料。亦可分为水合相变材料和蜡质相变材料。相变材料具有在一定温度范围内改变其物理状态的能力。相变材料的分类相变材料主要包括无机PCM 、有机PCM 和复合PCM 三类。根据相变的方式不同,又可分为固—固相变,固液相变, 固气相变,液气相变.由于后两种相变方式在相变过程中伴随有大量气体存在,使材料体积变化较大,因此尽管它们有很大的相变热,但实际应用较少。根据使用的温度不同又可分为低温,中温,高温三种。 无机相变材料 固 -液相变材料是指在温度高于相变点时 ,物固相变为液相吸收热量 ,当温度下降时物相又由液相变为固相放出热量的一类相变材料。目前 , 固 -液无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度 ,从几百摄氏度至几千摄氏度 ,因而相变潜热较大。固 -固相变储能材料是利用材料的状态改变来储、放热的材料。目前 ,此类无机盐高温相变储能材料已研究过的有SCN NH 4,2KHF 等物质。2KHF 的熔化温度为 196 ℃,熔化热为 142 kJ/kg;SCN NH 4从室温加热到 150 ℃发生相变时 ,没有液相生成 ,相转变焓较高 ,相转变温度范围宽 ,过冷程度轻 ,稳定性好 ,不腐蚀 ,是一种很有发展前途的储能材料。 无机盐高温相变复合储能材料近年来 ,高温复合相变储能材料应运而生 ,其既能有效克服单一的无机物或有机物相变储能材料存在的缺点 ,又可以改善相变材料的应用效果以及拓展其应用范围。因此 ,研制高温复合相变储能材料已成为储能材料领域的热点研究课题之一。目前,已研究的无机盐高温复合相变材料

复合相变材料及其设备制作方法与相关技术

图片简介: 本技术涉及相变材料技术领域,尤其涉及一种复合相变材料及其制备方法。本技术介绍了一种复合相变材料,该复合相变材料将相变材料作为内核,透明高分子材料具有良好的机械强度和织性模量,凝胶聚合物作为壳层将相变材料限域保护起来,可以阻止其泄露,还能增加相变材料的换热面积,使其便于储存和运输;透明高分子材料具有高的透光度,胆甾相液晶的颜色的温敏变化可以显示出来,液晶颜色的变化温度与相变材料的相转化温度范围匹配,实现相变材料的“可视化”;一维导热材料具有很好导热能力,其位于壳层与核层之间径向排列的阵列纳米结构,阵列的纳米结构能使热量沿着导热材料传输,能够很好的提升相变材料的充放热速度,减少了热量的损失。 技术要求 1.一种复合相变材料,其特征在于,所述复合相变材料呈核壳结构; 所述核壳结构中的壳层为含有胆甾相液晶的凝胶聚合物,核层为相变材料,所述壳层与所述核层之间径向负载有一维导热材料; 所述凝胶聚合物由透明高分子材料制得。 2.根据权利要求1所述的复合相变材料,其特征在于,所述核层的粒径为90-150μm,壳层的厚度为10~30μm,一维导热材料的厚度为20-30μm。

3.根据权利要求1所述的复合相变材料,其特征在于,所述相变材料为石蜡型相变材料; 所述一维导热材料选自铜纳米线、碳纤维或碳纳米管; 所述胆甾相液晶包括向列相液晶和手性掺杂剂。 4.根据权利要求3所述的复合相变材料,其特征在于,所述向列相液晶为BHR-59001,所述手性掺杂剂为S-811。 5.根据权利要求3所述的复合相变材料,其特征在于,所述石蜡型相变材料为十四烷、十八烷或二十烷。 6.根据权利要求5所述的复合相变材料,其特征在于,所述透明高分子材料为明胶和/或阿拉伯胶。 7.权利要求1至6任意一项所述的复合相变材料的制备方法,其特征在于,包括以下步骤: 步骤1:利用Stober法将相变材料、十六烷基三甲基溴化氨在水和醇的混合溶剂中,加入硅源进行反应,得到二氧化硅包覆的相变材料; 步骤2:将所述二氧化硅包覆的相变材料浸入一维导热材料分散液中,搅拌、干燥,得到一维导热材料/二氧化硅/相变材料; 步骤3:将所述一维导热材料/二氧化硅/相变材料浸泡于氢氟酸中,得到一维导热材料/相变材料; 步骤4:将透明高分子材料、所述一维导热材料/相变材料、胆甾相液晶和水进行混合,冷冻干燥,得到复合相变材料。 8.根据权利要求7所述的制备方法,其特征在于,所述相变材料与所述硅源的质量比为(30~50):1; 所述一维导热材料与所述相变材料的质量比为1~3:4。 9.根据权利要求7所述的制备方法,其特征在于,所述透明高分子材料、所述一维导热材料/相变材料、所述胆甾相液晶和所述水的用量比为8g:(25~35)g:5g:95mL。 10.根据权利要求7所述的制备方法,其特征在于,所述胆甾相液晶包括向列相液晶和手性掺杂剂; 所述向列相液晶与所述手性掺杂剂的质量比为5:(0.5~1.5)。 技术说明书 一种复合相变材料及其制备方法

微胶囊相变储能材料制备工艺

微胶囊相变储能材料制备工艺 1概述 1.1MCPCM定义 相变材料是利用物质发生相变时需要吸收或放出大量热量的性质来储热[1]。微胶囊相变材料(MCPCM)是应用微胶囊技术在固-液相变材料微粒表面包覆一层性能稳定的高分子膜而构成的具有核壳结构的新型复合材料,它是利用聚合物作壁材,相变物质为芯材制备的微小颗粒,具有储热温度高、设备体积小、热效率高以及放热为恒温过程等优点,利用MCPCM 这种储热、放热作用,可以调整、控制工作源或材料周围环境的温度[2]。在MCPCM中发生相变的物质被封闭在球形胶囊中,从而可有效解决相变材料的泄漏、相分离以及腐蚀性等问题,有利于改善相变材料的应用性能,并可拓宽相变蓄热技术的应用领域[3]。相变材料在产生相变时能够吸收发热体的热量,使其温度不再升高或升高较小;当发热体不工作时,其温度降低,相变材料可以恢复原来的相结构,因此可以多次重复使用。 1.2MCPCM的组成 微胶囊粒子的形态多种多等形状[4]。微胶囊是直径在1~500μm的微小“容器”,它主要由囊芯和组成。微胶囊囊芯可以是固体、液体或气体,可以由一种或多种物质组成。囊芯应具有潜热大、无毒性、化学稳定性及热稳定性等特点。目前,可作为微胶囊囊芯的相变材料主要有结晶水合盐和石蜡,此外还有直链烷烃、聚乙二醇、短链脂肪酸等[5]。壁材通常是天然或合成的高分子材料或无机物,有单层和多层的。壁材的选择依据囊芯的性质、用途而定。 囊壁材料为无机和有机高分子材料。无机壁材有无机盐(如硅酸钙等)和金属;有机壁材主要是高分子材料,如脲醛树脂、聚氨酯、聚甲基丙烯酸甲酯等。有时为了提高囊壁的密闭性或热、湿稳定性,可将几种壁材联合使用[6]。 1.3MCPCM的分类 MCPCM可从不同角度进行分类,根据材料的化学组成分类可分为无机MCPCM、有机MCPCM和混合MCPCM;根据储热的温度范围分类可分为高温MCPCM、中温MCPCM和低温MCPCM,高温MCPCM主要是一些熔融盐、金属合金;中温MCPCM主要是一些水合盐、有机物和高分子材料;低温MCPCM主要是冰、水凝胶;根据储能方式分类可分为显热式MCPCM、化学能转化式MCPCM和潜热式MCPCM;根据贮热过程中材料相态的变化方式分类可分为固-液MCPCM、固-固MCPCM、固-气MCPCM和液-气MCPCM[7]。 1.4MCPCM的特性 MCPCM具有如下的特性[6]:(1)提高了传统相变材料的稳定性。传统相变材料稳定性差,易发生过冷和相分离现象。形成微胶囊后,这些不足会随着胶囊微粒的变小而得到改善。(2)强化了传统相变材料的传热性。MCPCM颗粒微小且壁薄(0.2~10μm),提高了相变材料的热传递和使用效率。(3)改善了传统相变材料的加工性能。MCPCM颗粒微小,粒径均匀,易于与各种高分子材料混合构成性能更加优越的复合高分子相变材料。(4)微胶囊相变材料便于封装,可以降低相变材料的毒性,绿色环保。 1.5MCPCM的应用 MCPCM在相变过程中,内核发生固液相变,而其外层的高分子膜保持为固态,因此该类相变材料在宏观上表现为固态微粒。MCPCM能够在10~800℃的温度范围内,吸收或放出50~200J/g的热量,而且在吸、放热量过程中,温度几乎不发生变化,这种独特的热性能已经得到了研究人员较为广泛的重视,应用领域正在迅速扩大[8]。MCPCM的应用主要可以分为两个方向:一是利用其相变时的潜热,把它与传热流体混合,提高传热流体的热容,用于热量传输、冷却剂等;二是利用其相变温控特性,将其应用于纺织品、建筑物、军事目标等,提高热防护性或者调节温度[9]。微胶囊相变材料降低了相变物质对设备的腐蚀性,阻止了相变物质的流动,防止了相分离,提高了材料的使用效率,拓宽了相变材料的应用领域。 2MCPCM的主要制备工艺

微胶囊相变储能材料制备工艺现状

综述专论 于娜娜* 高志谨 王晓敏 李杨 摘要:微胶囊相变储能材料(MCPCM)是将微胶囊技术应用到相变材料中而形成的新型复合相变材料。文章介绍了微胶囊相变材料及其结构组成、特性、应用领域、制备方法,并对其发展前景进行了展望。 关键词:微胶囊;相变储能材料;制备工艺 中图分类号:TQ026 文献标识码:A 文章编号: T1672-8114(2012)02-009-05 (中北大学 化工与环境学院,山西 太原030051) 1 概述 1.1 MCPCM定义 相变材料是利用物质发生相变时需要吸收或放出大量热量的性质来储热[1]。微胶囊相变材料(MCPCM)是应用微胶囊技术在固-液相变材料微粒表面包覆一层性能稳定的高分子膜而构成的具有核壳结构的新型复合材料,它是利用聚合物作壁材,相变物质为芯材制备的微小颗粒,具有储热温度高、设备体积小、热效率高以及放热为恒温过程等优点,利用MCPCM这种储热、放热作用,可以调整、控制工作源或材料周围环境的温度[2]。在MCPCM中发生相变的物质被封闭在球形胶囊中,从而可有效解决相变材料的泄漏、相分离以及腐蚀性等问题,有利于改善相变材料的应用性能,并可拓宽相变蓄热技术的应用领域[3]。相变材料在产生相变时能够吸收发热体的热量,使其温度不再升高或升高较小;当发热体不工作时,其温度降低,相变材料可以恢复原来的相结构,因此可以多次重复使用。 微胶囊相变储能材料制备工艺现状 1.2 MCPCM的组成 微胶囊粒子的形态多种多样,大多为球形,但也有更豆、谷粒及无定形颗粒等形状[4]。微胶囊是直径在1~ 500μm的微小“容器”,它主要由囊芯和组成。 微胶囊囊芯可以是固体、液体或气体,可以由一种或多种物质组成。囊芯应具有潜热大、无毒性、化学稳定性及热稳定性等特点。目前,可作为微胶囊囊芯的相变材料主要有结晶水合盐和石蜡,此外还有直链烷烃、聚乙二醇、短链脂肪酸等[5]。壁材通常是天然或合成的高分子材料或无机物,有单层和多层的。壁材的选择依据囊芯的性质、用途而定。 囊壁材料为无机和有机高分子材料。无机壁材有无机盐(如硅酸钙等)和金属;有机壁材主要是高分子材料,如脲醛树脂、聚氨酯、聚甲基丙烯酸甲酯等。有时为了提高囊壁的密闭性或热、湿稳定性,可将几种壁材联合使用[6]。1.3 MCPCM的分类 M C P C M 可从不同角度进行分类,根据材料的化学组成分类可分为无机MCPCM、有机MCPCM和混合MCPCM;根据储热的温度范围分类可分为高温MCPCM、中温MCPCM和低温MCPCM,高温MCPCM 主要是一些熔融盐、金属合金;中温MCPCM主要是一些水合盐、有机物和高分子材料;低温MCPCM主要是冰、水凝胶;根据储能方式分类可分为显热式 作者简介:于娜娜(1987-),女,河北沧州人,中北大学化工与环境学 院在读硕士,主要研究方向:超重力场中的多相流传质与化学反应。

微胶囊文献综述

相变储能微胶囊性能的研究进展 摘要:首先介绍了微胶囊技术以及其发展历史和趋势,并综述了相变材料微胶囊芯材和壁材的选择、微胶囊的制备方法、性能改进以及其应用领域,最后对微胶囊相变材料的发展前景进行了展望。 关键字:微胶囊技术;制备方法;应用领域;研究进展 前言 微胶囊技术是一种用成膜材料把固体或液体、气体包覆形成微小粒子的技术。其制备技术始于20世纪50年代,最初是由美国国家现金出纳公司(NCR)的BarretGreen于1954年研究成功,并用于生产无碳复写纸,开创了微胶囊新技术的时代。60年代,利用相分离技术将物质包裹于高分子材料中,制成了能定时释放的微胶囊,推动了微胶囊技术的发展。尔后西欧、日本等国家花费了很大投资,在一些理论问题上取得了突破,并将微胶囊技术的应用领域拓宽到医药、农药、日化、感光材料、食品、生物制品等领域,使微胶囊技术在70年代中期迅猛发展。近年来,微胶囊技术发展越来越快,并且已在医学、药物、农药、染料、颜料、涂料、食品、胶粘剂、肥料等诸多领域得到了广泛的应用。目前,关于微胶囊方面的文献每年以数以千计的速度增长。运用此技术使许多传统产品提高了档次,具有更新的功能[1]。 1 微胶囊芯材和壁材的选择 1.1 芯材的选择 微胶囊由芯材和壁材两部分组成。目前,可作为微胶囊芯材材料的有结晶水合盐,直链烷烃、石蜡类、脂肪酸类、聚乙二醇等,其中结晶水合盐和石蜡类较为常用。结晶水合盐的熔点一般在0~100 ℃,具有储热密度高、导热系数大和相变体积变化小等优点,但是存在过冷、相分离和具有腐蚀性等缺点。其研究成果较少[2-3]。石蜡具有相变潜热大、化学稳定性好以及无毒性等优点,并且廉价易得,是最常用的芯材。短链脂肪酸、多元醇和酯类,具有和石蜡相似的物理和化学性质,也是较常用的芯材。有时为了得到不同温度范围的相变材料,可将几种材料进行复合。目前,已经微胶囊

相关文档
最新文档