660MW超临界汽轮机设计说明

660MW超临界汽轮机设计说明
660MW超临界汽轮机设计说明

660MW超临界汽轮机设计说明

1 概述

哈汽公司660MW超临界汽轮机为单轴、三缸、四排汽、一次中间再热、凝汽式机组。高中压汽轮机采用合缸结构,低压积木块采用哈汽成熟的600MW超临界机组积木块。应用哈汽公司引进三菱技术制造的1029mm末级叶片。机组的通流及排汽部分采用三维设计优化,具有高的运行效率。机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。

机组设计有两个主汽调节联合阀,分别布置在机组的两侧。阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大的降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。调节阀为柱塞阀,出口为扩散式。来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后通入四个喷嘴室。导汽管通过挠性进汽套筒与喷嘴室连接。

进入喷嘴室的蒸汽流过冲动式调节级,做功后温度明显下降,然后流过反动式高压压力级,做功后通过外缸下半上的排汽口排入再热器。

再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回中压部分,中压调节阀通过挠性导汽管与中压缸连接,因此降低了各部分的热应力。

蒸汽流过反动式中压压力级,做功后通过高中压外缸上半的出口离开中压缸。出口通过连通管与低压缸连接。

高压缸与中压缸的推力是单独平衡的,因此中压调节阀或再热主汽阀的动作对推力轴承负荷的影响很小。

汽轮机留有停机后强迫冷却系统的接口。位于高中压导汽管的疏水管道上的接头可永久使用,高中压缸上的现场平衡孔可临时使用。

汽轮机的外形图及纵剖面图见图1。

图1 汽轮机外形及纵剖面图哈尔滨汽轮机厂有限责任公司 2

2哈汽公司超临界汽轮机业绩

哈汽公司采用三菱公司超临界汽轮机技术处于世界领先水平,对于同一等级的600MW超临界机组,目前为哈汽公司已经制造投运了多台超临界汽轮机,已经拥有丰富的制造和运行经验。

图2 哈汽公司超临界业绩表

序号 国家电厂名称 机组 容量压力 温度 转速 排汽压力 末叶长度投运旁路容量 启动方式

MW MPa ℃/℃ rpm kPa mm 时间%BMCR

1 中国 沁北电厂 #1#

2 600 24.2 566/566 3000 4.9 1029 2003HP30% HP/IP

2 中国 西柏坡电厂 #1#2 600 24.2 538/566 3000 4.9 1029 2006HP30% HP/IP

3 中国汕头电厂 #1 600 24.2 566/566 3000 4.9 1029 2005HP30% HP

4 中国太仓电厂 #1#2 600 24.2 566/566 3000 4.9 1029 2006HP30% HP

5 中国潮州三百门电厂 #1~#4 600 24.2 566/56

6 3000 4.9 1000 2006HP30% HP/IP

6 中国三门峡电厂 #1#2 600 24.2 566/566 3000 4.9 1000 2006HP30% HP/IP

7 中国宁德电厂 #1#2 600 24.2 566/566 3000 4.9 1000 2006HP30% HP/IP

8 中国乌沙山电厂 #1~#4 600 24.2 566/566 3000 4.9 1000 2005HP30% HP/IP

9 中国阳逻电厂 #1#2 600 24.2 566/566 3000 4.9 1029 2006HP30% HP

10 中国庄河电厂 #1#2 600 24.2 566/566 3000 4.9 1000 2007HP30% HP/IP

11 中国双鸭山电厂 #1#2 600 24.2 566/566 3000 4.9 1000 2007HP30% HP/IP

12 中国平顶山姚孟电厂 #1#2 600 24.2 566/566 3000 4.9 1000 2007HP30% HP/IP

13 中国辽宁清河电厂 #1 600 24.2 566/566 3000 4.9 1000 2008HP30% HP/IP

14 中国鹤岗电厂 #1 600 24.2 566/566 3000 4.9 1000 2007HP30% HP/IP

15 中国沁北电厂二期 #1#2 600 24.2 566/566 3000 4.9 1029 2008HP30% HP/IP

16 中国巢湖电厂#1#2 600 24.2 566/566 3000 4.9 1000 2008HP30% HP/IP

17 中国康平电厂 #1#2 600 24.2 566/566 3000 4.9 1000 2008HP30% HP

18 中国宣城电厂 #1 600 24.2 566/566 3000 4.9 1000 2008HP30% HP/IP

19 中国九台电厂 #1#2 660 24.2 566/566 3000 4.9 1029 2008HP30% HP

哈尔滨汽轮机厂有限责任公司 2

序号 国家电厂名称 机组 容量压力 温度 转速 排汽压力 末叶长度投运旁路容量 启动方式

MW MPa ℃/℃ rpm kPa mm 时间%BMCR

20 中国当涂电厂 #1#2 660 24.2 566/566 3000 4.9 1029 2008HP30% HP

哈尔滨汽轮机厂有限责任公司 3

3 轮结汽机主要构

3.1 叶片

汽轮机通流包括1个反向布置的带有部分进汽的冲动式调节级,9级反向布置的反动式高压压力级,6级正向布置的反动式中压压力级,2×2×7双分流的低压压力级。

冲动式调节级在宽阔的负荷变化范围内有较高的运行效率,机组有较好的负荷适应性。调节级动叶采用三支为

一组的三胞胎叶片,强度好,在高温、高压下运行可靠。中间级采用高效率的全三维设计的反动式叶片,通过控制设计参数(反动度,流量和流动角度)来使损失最小化。反动式叶片通道,蒸汽流动速度相对较慢,摩擦损失较低,具有较好的空气动力效率。见图3、图4。

反动式机组构造简单,采用轮鼓式转子和径向密封。由于采用径向密封,轴向间隙大,故允许转子和汽缸之间有较大的胀差,保证机组启动灵活。

低压末几级的疏水,采用了特殊的疏水收集器结构。在隔板外环的疏水收集器设计中充分考虑到水滴的轨迹,达到最好的疏水效果。末级隔板采用了疏水槽结构。见图5。

低压末叶片为1029mm,为减小末级叶片水蚀,末级动叶的进汽边嵌入司太立合金;保证静叶和动叶之间合适的间隔,以使水滴形成较好的水雾;

此外从湿汽区抽出蒸汽排

图3 全三维设计静、动叶片

图4 全三维设计叶片流场示意图

图5 低压疏水结构

到给水加热器,适当设计给水加热器的抽汽口,以使抽取的蒸汽水分最大。在末级动叶的顶部导流板上设置疏水槽。

所有的叶片都仔细设计,具有足够的振动强度裕度。特别是长叶片,设计时考虑自振频率、工作转速、1-6节径数无三重点共振。在开发这些叶片时,相同的叶片和叶轮均进行了全比例的转动频率试验,并且确认叶片组运行时无三重点共振。末级叶片采用耐腐蚀和侵蚀合金制造,严格控制质量保证较好的振动阻尼特性。 3.2 转子

高中压转子采用具有高蠕变断裂强度的实心合金钢锻件加工而成。在高压端连接一个独立的短轴,装有推力盘、主油泵叶轮和超速跳闸装置。

低压转子同样采用高抗拉强度的实心合金钢锻件加工而成,具有很好的延展性。 转子直径和轴承跨距合理选择,使转子的临界转速远离工作转速。转子表面的几何结构进行详细的设计,使转子的瞬时热应力和弯曲应力的应力集中最小。

高中压转子中压进汽区由来自调节后的节流蒸汽进行冷却,冷却蒸汽覆盖在转子的表面,高温再热蒸汽不会接触转子。见图6。

当装有叶片的整个转子加工完成后,需做超速试验和精确动平衡试验。

高中压转子和1号低压转子之间装有刚性的法兰联轴器。1号低压转子和2号低压转子通过中间轴刚性联接、2号低压转子和发电机转子通过联轴器刚性联接。

转子系统由安装在前轴承箱内的推力轴承定位,并有8个支撑轴承支撑。 3.3 汽缸

合理的汽缸的结构类型和支撑方式,保证在热态膨胀自如,且热变形对称,从而使扭曲变形降到最小。最优的排汽涡壳设计,压力损失最小。

高中压外缸是由合金钢铸件制成,在水平中分面分为两半形成上,下半。 高压内缸同样是合金钢铸件,在水平中分面分为两半形成上,下半。内缸支撑在外缸水平中分面上,通过定位销在顶部和底部导向,以保持中心线的准确位置,并在同时允许零件根据温度变化自由膨胀和收缩。

高压汽轮机的喷嘴室也由合金钢铸成,并通过水平中分面形成了上下两半。它采用

图6 冷却蒸汽示意图

中心线定位,支撑在内缸中分面处。喷嘴室的轴向位置由上下半的凹槽与内缸上下半的凸台配合定位。上下两半内缸上均有滑键,决定喷嘴室的横向位置。这种结构可以保证喷嘴室根据主蒸汽温度变化沿汽轮机轴向正确的位置收缩或膨胀。主蒸汽进汽管与喷嘴室之间通过弹性密封环滑动连接,这样可把温度引起的变形降到最低限度。外缸上半及内缸下半可采用顶起螺钉抬高,直到进汽管与喷嘴室完全脱离,然后按常规方法用吊车吊起。在拆卸外缸上半或内缸下半时,尽量保持进汽密封处蒸汽室的形状,当汽缸放下时与密封环同心。

汽轮机高压隔板套和高中压进汽平衡环支撑在内缸的水平中分面上,并由内缸上下半的定位销导向。汽轮机中压1号隔板套﹑中压2号隔板套和低压排汽平衡环支撑在外缸上,支撑方式和内缸的支撑方式一样。

高中压外缸是由四只“猫爪”支托的,这四只“猫爪”与下半汽缸一起整体铸出,位于下半水平法兰的上部,因而使支承面与水平中分面齐平。在电端“猫爪”搭在位于轴承箱两侧的键上,并可以在其上自由滑动。轴承箱是落地的。在调端“猫爪”以同样方式搭在前轴承箱下半两侧的支承键上,并可以同样方式自由滑动。在前后端,高中压外缸与相邻轴承箱之间都用“H”型定中心梁连接,它们与汽缸及相邻轴承箱间由螺栓及定位销固定。这些定中心梁保证了汽缸相对于轴承箱正确的垂直向与横向位置。前轴承箱与台板之间轴向键(位于轴向中心线上),可在其台板上沿轴向自由滑动,但是它的横向移动却受到轴向键的限制,轴承侧面的压板限制了轴承座产生任何倾斜或抬高的倾向,这些压板与轴承座凸肩间留有适当的间隙,允许轴向滑动,每个“猫爪”与轴承座之间都用双头螺栓连接,以防止汽缸与轴承座之间产生脱空。螺母与“猫爪”之间留有适当的间隙,当温度变化时,汽缸“猫爪”能自由胀缩。

本机组具有两个低压缸。低压外缸全部由钢板焊接而成,为了减少温度梯度设计成3层缸。由外缸、1号内缸、2号内缸组成,减少了整个缸的绝对膨胀量。,汽缸上下半各由3部分组成:调端排汽部分、电端排汽部分和中部。各部分之间通过垂直法兰面由螺栓作永久性连接而成为一个整体,可以整体起吊。

低压缸调速器端的第1、2级隔板安装在隔板套内。此隔板套支撑在1号内缸上,第3、4、5级隔板安装在1号内缸内,第6、7级隔板安装在2号内缸内,内缸支撑在外缸上。

低压缸发电机端的第1-4级隔板安装在隔板套内,此隔板套支撑在1号内缸上,第5级隔板安装在1号内缸内,第6、7级隔板安装在2号内缸内,内缸支撑在外缸上。

排汽缸内设计有良好的排汽通道,由钢板压制而成。面积足够大的低压排汽口与凝汽器弹性连接。低压缸四周有框架式撑脚,增加低压缸刚性,撑脚座落在基架上承担全部低压缸重量,并使得低压缸的重量均匀地分在基础上。在一号低压缸撑脚四边通过键槽与预埋在基础内的锚固板配合形成膨胀的绝对死点。在蒸汽入口处,1号内缸、2号内缸通过1个环形膨胀节相连接,1号内缸通过1个承接管与连通管连接。内缸通过4个搭子支承在外缸下半中分面上,1号内缸、2号内缸和外缸在汽缸中部下半通过1个直销定位,以保证三层缸同心。为了减少流动损失,在进排汽处均设计有导流环。每个低压缸两端的汽缸盖上装有两个大气阀,其用途是当低压缸的内压超过其最大设计安全压力时,自动进行危急排汽。大气阀的动作压力为0.034—0.048Mpa(表压)。低压缸排汽区设有喷水装置,空转或低负荷、排汽缸温度升高时按要求自动投入,降低低压缸温度,保护末叶片。

3.4 轴承

汽轮机每根转子均有两个径向轴承支撑,整个轴系有一个推力轴承。它们均是强迫润滑型的。

高中压转子的径向轴承,采用无扭转4瓦可倾瓦支撑轴承,增强抵抗由于调节级负荷变化引起的蒸汽力的能力,提高轴系稳定性。见图7、8。

低压缸同样采用4瓦可倾瓦轴承,具有良好的对中性能。

推力轴承是自位式京士伯里型轴承。利用平衡桥的摇摆运动,使所有巴氏合金表面

图7、8 四瓦块可倾瓦轴承

载荷中心处在相同的平面内,使每一个瓦块受力均匀。见图9。

通过高中压转子上的推力盘,把转子推力传到瓦块上。机组的高中压缸反向流动、低压缸双分流结构,故蒸汽产生的推力在每个缸上保持平衡,因此阀门的开度对推力轴承载荷影响很小。

通过调整轴承键与壳体之间的调整垫片可保证轴承的位置。轴承与轴承箱下半之间装有制动销,防止轴承相对轴承箱转动。

润滑油的强制供给通过轴承箱、键、轴承壳体中的通道保证。

所有的轴承均带有检测金属温度的热电偶。

汽轮机装有防止轴电压事故的接地装置。

3.5 大气阀

安装在汽轮机排汽缸上半部的大气释放膜,保护低压缸。

大气释放膜为一个圆形薄隔板,每个隔板带有一个薄膜,通过钢网型支撑安装在低压汽缸上。此薄膜紧固在隔板压力轮盘和隔板持环之间。如果排汽压力超过设定值,迫使隔板压力轮盘向外移动,导致持环内边和隔板压力轮盘边缘之间的释放膜折断,卸载汽轮机排汽压力。

3.6 阀门 3.6.1 主汽阀

汽轮机有两个相同的主汽阀,由液压执行机构驱动,可以在启动时控制转速,并可以通过控制快速关闭阀门。上述操作可以通过控制室完成。

主汽阀为油动机控制水平放置的“柱塞”型阀门,主汽阀与阀体构成整体的阀门结构。主汽阀内包括内外两个单座不平衡阀门。预启阀位于主阀内并可远程驱动,参与控制全周进汽的启动、同步转速和带初始负荷。每个主汽阀包括启动时可拆卸的临时滤网和永久性滤网。

机组在运行时可进行阀门活动试验。见图10。

3.6.2 调节阀

调节阀蒸汽室与主汽阀蒸汽室采用整体的合金钢锻件制成。蒸汽通过主汽阀经由蒸汽室进入液压执行机构独立控制的柱塞型调节阀。位于机组两侧的两个蒸汽室结构相同,每个的蒸汽室包括一个主汽阀及两个调节阀,机组共四个调节阀,控制高压缸的蒸汽流量。蒸汽室锚固在基础上,这样允许蒸汽室承受较高的用户管道力和力矩。

阀杆密封包括一个嵌在阀体上的紧密装配的衬套,利用阀盖在适当位置紧固并具有适合的出口连接。高压漏汽连接到较低压力区, 低压漏汽连接到

图10 主汽阀

汽封冷却器。见图11。 3.6.3 再热主汽阀

在再热器和中压调节阀之间的每根再热蒸汽进汽管路上装有一个再热主汽阀。其目的是在超速跳闸机械装置动作时,中压调节阀未动作的情况下,提供一个防止汽轮机超

速的额外安全装置。机组共有两个再热主汽阀,布置在机组两侧。

每个阀体一端采用固定支撑,另一端采用挠性支撑。两端均用螺栓固定,并固定在基础的底板上。此支撑方式允许阀门的轴向膨胀。

阀门通过螺母连接在阀碟摇臂上,摇臂通过键固定在主轴上。主轴通过连杆与活塞杆相连。连杆可以转动,油动机活塞向上运动阀打开直至全开位置,活塞向下运动阀门关闭。由压缩弹簧产生的正向关闭力作用在活塞上,通过活塞始终保持关闭力作用在阀门上。

在阀碟两侧装有旁通装置,使阀碟两侧蒸汽压力平均分布,以降低打开阀碟的力。

图12 再热主汽阀

图13 中压调节阀

提供再热主汽阀油控跳闸阀,卸载在再热主汽阀关闭时作用于阀杆端部的不平衡蒸汽压力。

再热主汽阀包括阀门本体和执行机构。执行机构与液压控制油系统连接,在超速跳闸阀和事故跳闸阀门关闭时,再热主汽阀打开,油控跳闸阀关闭。在超速跳闸装置机构脱扣时,油控跳闸阀阀打开,降低作用于轴端的蒸汽压力,使关闭再热主汽阀的力最小。见图12。

3.6.4 再热调节阀

汽轮机有四个中压调节阀。阀门是环型密封柱塞阀,装在阀杆突肩上。通过独立的执行机构控制每个中压调节阀。执行机构通过控制油压,控制阀门开度的大小。

阀门的上座和下座的直径设计成平衡作用于阀门的蒸汽压力。因此很容易打开阀门,并且在任一再热压力下很容易关闭。

阀杆密封由紧密装配连接到确定的低压区的衬套保证。当阀门处在全开位置时,阀门处在阀碟与阀杆衬套下端相接触的区域。这些布置可防止再热调节阀全开运行时,沿阀杆的蒸汽泄漏。

阀门装配有蒸汽滤网。它环绕阀体底部装配,并在阀体和阀盖顶部紧固。见图13。

机组在运行时可进行阀门的活动试验。

3.7 盘车装置

在低压缸和发电机联轴器处,提供一套自动啮合和脱开型的盘车装置。在机组启动前和停机后,低速旋转转子,保持转子均匀的加热或冷却,限制偏心值防止转子的热变形。盘车装置运行由零转速信号控制。设有顶轴压力低连锁保护,当顶轴油压低时,盘车控制回路上的压力开关将自动停止盘车装置运行。

4 防固粒腐蚀措施

对于高压汽轮机,采用了冲动式调节级,在冲动式喷嘴中蒸汽流速比动叶高的多,所以仅在喷嘴上采用涂层。对于IP透平,采用了反动式叶片,蒸汽流速相对高压第一级喷嘴速度较慢,因此中压第一级不进行涂层。

在高压汽轮机第一级喷嘴采用扩散渗透法利用雾化硼来涂层以防止杂质造成的腐蚀,扩散涂层厚度最小50μm,涂层硬度最小950Hv。实践证明采用渗硼的方法强化喷嘴表面腐蚀程度下降到原来的20%。

5 预防蒸汽激振力措施

在大功率汽轮机中,高压缸经常发生低频振动。低频振动是高压转子的非同步振动。根据三菱公司的研究,振动是由几类原因造成的,即:

1) 蒸汽涡动

2) 由调节级汽流扰动造成的强迫振动

3) 由转子和汽缸间摩擦造成的强迫振动

蒸汽涡动是高负荷运行时HP/IP转子系统中一阶振动模式的自激振动。蒸汽涡动的机理相对较复杂,但研究表明下列情况结合会发生这种涡动。

?根据阀门开启顺序,如果调节级喷嘴向转子施加向上的力,转子系统将处于不稳定状态。

?HP/IP转子系统的刚性与可靠机组相比相对较低。

?转子系统抵抗迷宫汽封激振力的阻尼相对较低。

为了防止蒸汽激振,三菱公司采用下列设计特点:

1)阀开启顺序保证任何运行条件下在HP/IP转子上都会产生适当的向下的力。

2)单跨的刚性临界速度(一阶模式频率)应在2000rpm以上。

3)高中压缸采用可倾瓦轴承以便给转子系统提供足够的阻尼。

4)为防止调节级的汽流扰动造成的强迫振动,将高压缸中调节级出力限制在20%

左右。这不仅降低调节级激振力水平而且减少了蒸汽涡动。

5)为防止由于转子和汽缸间的摩擦造成的强迫振动,根据大量的1000MW超超临

界机组运行经验确定转子与汽缸间的适当的间隙。

因此基于此富有经验的设计,三菱公司所提供的汽轮机还未出现过低频振动,相信通过采用成熟的技术可防止此问题。

6 三缸四排汽超超临界汽轮机主要设计特点

哈汽公司提供湖南汨罗电厂的超超临界660MW汽轮机技术水平世界先进,大幅度提高汽轮机的经济性和可用性。这些先进技术有成功的运行业绩,高度的可靠性。哈汽公司三缸四排汽超超临界汽轮机主要设计特点如下:

91029mm自带围带末级动叶片

9高效全三维自带围带反动式高、中、低压叶片

9三胞胎调节级动叶片

9中压转子的冷却蒸汽系统

9高压和中压排汽涡壳最优设计,最小的压力损失

9低压全三维设计的排汽缸

9防固粒腐蚀的有效措施

9防低频振动的有效措施

9高温材料具有高的抗蠕变强度特性

本机组提供的高温材料、高效叶片、低压末级叶片均已在运行机组上得到证明。完全能够保证高效率、高度可靠性。

汽轮机课程设计设计任务书指导书091--26

汽轮机课程设计任务书 汽轮机缺级运行工况下的经济性和安全性核算 班级:热动091(热电) 指导教师:胡爱娟钱焕群杨冬 时间:2012.6

一、设计题目:汽轮机缺级运行工况下的经济性和安全性核算 有一台50MW汽轮机发电机组,其某级因动叶振动特性不良或动静部分碰磨而损坏,需拆除该级后继续运行。为保证汽轮机的安全运行,必须对机组进行限制出力的计算,即确定其最大允许负荷,并分析其经济性和安全性。 二、设计时间:2周 三、原始资料: 1、N50-8.82/535型汽轮机热力计算数据汇总表(设计工况) 2、设计工况热力过程线 3、N50-8.82/535型汽轮机设计工况轴向推力计算数据 4、回热系统简图 5、N50-8.82/535型汽轮机热平衡计算基本数据 6、N50-8.82/535型汽轮机组热经济指标 7、变工况计算所需数据和图表 详见参考资料 8、其他数据 背压Pc: 第一组:Pc=0.006MPa 第二组:Pc=0.0055MPa 第三组:Pc=0.005MPa 第四组:Pc=0.0045MPa 第五组:Pc=0.004MPa 第六组:Pc=0.0035MPa 第七组:Pc=0.003MPa 所缺级数分别为16、17、18、19级 四、具体任务和计算步骤如下: 1、估计允许最大负荷下的新蒸汽流量; 2、确定各抽汽点的压力和焓值; 3、初步拟定全机热力过程线,并确定末级排汽状态点与排汽焓; 4、各级流量的确定; 5、汽轮机热力核算(功率和效率计算) 最末级详细计算 危险级详细计算

中间级近似计算 调节级详细计算 6、危险级的强度校核计算 7、轴向推力核算及推力瓦安全性核算 8、确定汽轮机允许的最大功率; 9、编写课程设计计算说明书 五、成果。 设计计算书一份。 要求:内容完整、书写清楚整洁、文字通顺、数据表格要整齐、装订整齐,不少于30页。 内容包括:封面、目录、摘要、原始资料、正文、参考文献、设计小结、附录。

汽轮机课程设计-闫煜.

银川能源学院电力学院 课程设计任务书 设计题目:300MW亚临界机组轴向推力的计算_ 年级专业:热动(本)1202 班 学生姓名:闫煜 学号: 1210240198 指导教师:于淼

电力学院《课程设计》任务书课程名称:汽轮机原理 说明:1、此表一式三份,院、学生各一份,报送实践部一份。 2、学生那份任务书要求装订到课程设计报告前面。

目录 一、引言 (1) 1、汽轮机课程设计目的 (1) 2、汽轮机课程设计内容与要求 (1) 3、汽轮机课程设计的一般原则 (1) 二、轴向推力的计算 (1) 1、轴向推力 (2) 1.1、冲动式汽轮机的轴向推力 (2) 三、推力轴承的安全系数 (4) 四、计算 (5) 1、求解第一级平均直径 (6) 2、轴向推力的计算 (6) 3、叶根反动度的计算 (7) 4、叶轮反动度 (7) 5、当量隔板漏气面积 (7) 6、叶根齿隙面积A5 (7) 7、平衡孔面积A4 (8) 8、α的计算 (8) 9、β的计算 (8) 10、轮盘面积的计算 (8) 五、汇总 (9) 六、参考文献 (9)

一、引言 汽轮机是以蒸汽为的旋转式热能动力机械,与其他原动机相比,它具有单机功率大、效率、运行平稳和使用寿命长等优点。汽轮机的主要用途是作为发电用的原动机。在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用汽轮机为动力的汽轮发电机组。汽轮机的排汽或中间抽汽还可用来满足生产和生活上的供热需要。在生产过程中有余能、余热的工厂企业中,还可以应用各种类不同品位的热能得以合理有效地利用。由于汽轮机能设计为变速运行,所以还可用它直接驱动各种从动机械,如泵、风机、高炉风机、压气机和船舶的螺旋桨等。因此,汽轮机在国民经济中起着极其重要的作用。 蒸汽在汽轮机级内流动时,由于各段压力分布的不同,从而产生于轴线平行的轴向推力,气方向与气流在汽轮机内的流动方向相同,使转子产生由高压向移动的趋势。因此,为了保证汽轮机的安全运行,必须进行轴向推力的计算。 1、汽轮机课程设计目的 汽轮机课程设计是对在汽轮机课程中所学到的理论知识的系统总结、巩固和加深;要求掌握汽轮机热力计算及变工况下热力核算的原则、方法和步骤,还要综合各方面的实践经验和理论知识,结合结构强度、调节运行、辅助设备等有关基本知识来分析问题,才能较合理的选定汽轮机设计的基本方案。 2、汽轮机课程设计内容与要求 (1)确定轴向推力的组成 (2)以高压缸冲动级为计算依据,确定级数并分别计算各个级的轴向推力 (3)必须给出各个级的轴向推力的详细计算过程 (4)将数据以表格形式列出 (5) 数据来源:通过给定的机组类型,学生自己查阅资料所需基本数据及公式3、汽轮机课程设计的一般原则 (1)设计过程中要保证数据选择正确,计算正确,绘图清晰美观。 (2)设计成品要求效率高,结构合理,安全可靠,成本低廉。 二、轴向推力的计算

汽轮机课程设计指导书

汽轮机课程设计指导书

目录 一、课程设计的目的与意义 (1) 二、设计题目及已知条件 (2) 2.1 机组概况 (2) 2.2 本次设计与改造的基本要求 (4) 三、设计过程 (6) 3.1 汽轮机的热力总体任务 (6) 3.2 汽轮机变工况热力核算的方法介绍 (6) 3.3 本课程设计的基本方法 (7) 3.3.1 级的变工况热力核算方法——倒序算法 (8) 3.3.2 级的变工况热力核算方法——顺序算法 (17) 3.4 上述计算过程需要注意的问题 (22) 四、参考文献: (23) 附:机组原始资料 (23)

汽轮机课程设计 一、课程设计的目的与意义 汽轮机是按照经济功率设计的,即根据给定的设计要求如功率、蒸汽初参数、转速以及汽轮机所承担的任务等,确定机组的汽耗量、级数、通流部分的结构尺寸、蒸汽参数在各级的分布以及效率、功率等。汽轮机在设计条件下运行称为设计工况。由于此工况下蒸汽在通流部分的流动与结构相适应,使汽轮机有最高的效率,所以设计工况亦称为经济工况。 由于要适应电网的调峰以及机组实际运行过程中运行参数的偏差等原因,汽轮机不可能始终保持在设计条件下,即负荷的变化不可避免的,蒸汽初终参数偏离设计值,通流部分的结垢、腐蚀甚至损坏,回热加热器停用等在实际运行中也时有发生等等。汽轮机在偏离设计条件下的工作,称为汽轮机的变工况。在变工况下,蒸汽量、各级的汽温汽压、反动度、比焓降等可能发生变化,从而引起汽轮机功率、效率、轴向推力、零件强度、热膨胀、热应力等随之改变。 通过本课程设计加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的位置与作用。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的[1-4]。

660MW超超临界机组汽轮机真空系统节能运行分析

660MW超超临界机组汽轮机真空系统 节能运行分析 摘要:针对某厂660MW#7机组汽轮机真空系统设计布置及运行情况进行分析,为提高机组凝汽器真空,进一步降低机组煤耗,提出新的建议及改造方案,不断提高机组运行经济性。 关键词:抽真空系统;真空泵;节能改造。 1抽真空系统布置方式节能分析 1.1概述 我厂四期#7机组为超超临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机,型号为N660-27/600/600,机组凝汽器为双背压汽轮机,给水泵汽轮机排汽入单独的凝汽器。每台主汽轮机设置3台50%机械水环式真空泵组,2台运行1台备用。在机组启动建立真空期间,3台泵同时投入运行。型号:2BW5353-0EL4平面泵。循环水系统采用带自然通风冷却塔的再循环扩大单元制供水系统。机组配循环水泵两台(每台机组配置一台定速电机和一台双速电机)。冷却塔一座,循环水供水和排水管各一根,回水沟一条。 1.1.1凝汽器介绍 本机组所采用凝汽器是表面式的热交换器,冷却水在管内流动过程中与管外的排汽进行热交换,使排汽凝结成水,同时使凝汽器形成真空。凝汽器采用双背压设计,即两个凝汽器在运行中处于两个不同的压力下工作。当循环水进入第一个凝汽器后吸收热量,水温升高,然后再进入第二个凝汽器(第一个凝汽器出口水温即为第二个凝汽器的入口水温)。由于凝汽器的特性主要取决于冷却水的温度,不同的水温对应不同的背压,于是在两个凝汽器中形成了不同压力,即低压凝汽器和高压凝汽器。双背压凝汽器的优点: ①根据传热学原理,双背压凝汽器的平均背压低于同等条件下单背压凝汽器的背压,因此汽机低压缸的焓降就增大了,从而提高了汽轮机的经济性。 图(1)凝汽器结构 ②双背压凝汽器的另一个优点 就是低背压凝汽器中的低温凝结水 可以进入高背压凝汽器中去进行加 热,既提高了凝结水温度,又减少了 高背压凝汽器被冷却水带走的的冷 源损失。低背压凝汽器中的低温凝结 水通过管道利用高度差进入高背压 凝汽器管束下部的淋水盘,在淋水盘 内,低温凝结水与高温凝结水混合在 一起,再经盘上的小孔流下,凝结水 从淋水盘孔中下落的过程中,凝结水 被高背压低压缸的排汽加热到相应 的饱和温度。在相同条件下,双背压 凝汽器的平均压力低于循环水并联 的单压凝汽器的压力,可提高循环效 率。凝汽器结构见图(1)。凝汽器两个壳体底部为连通的热井,上部布置有低压加热器、小汽机排汽管、减温减压器和低压侧抽气管等。凝汽器抽空气管布置在其管束区中心以抽吸其内的不凝结气体。高、低压凝汽器中的抽空气管采用串联结构,不凝结气体由高压侧流向低压侧,最后由低压凝汽器冷端引向真空泵。这种结构可减轻真空泵的负担,减少其备用台数,使系统简化。 1.1.2主机凝汽器规范 表(1):本机组凝汽器规范

汽轮机课程设计说明书

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

汽轮机课程设计zhong

汽轮机课程设计 第一部分:设计题目与任务 题目:汽轮机热力计算与设计 根据给定的汽轮机原始参数来进行汽轮机热力计算与设计: 1、分析与确定汽轮机热力设计的基本参数,这些参数包括汽轮机的容量、进汽参数、转速、排汽压力或冷却水温度、回热加热级数及给水温度、供热汽轮机的供热蒸汽压力等; 2、分析并选择汽轮机的型式、配汽机构形式、通流部分形状及有关参数; 3、拟订汽轮机近似热力过程线和原则性回热系统,进行汽耗率及热经济性的初步计算; 4、根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比烩降、叶型及尺寸等: 5、根据通流部分形状和回热抽汽点要求,确定压力级即非调节级的级数和排汽口数,并进行各级比焙降分配; 6、对各级进行详细的热力计算,求出各级通流部分的几何尺寸、相对内效率和内功率,确定汽轮机实际的热力过程线; 7、根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求,并修正回热系统的热平衡计算; 8、根据需要修正汽轮机热力计算结果. 第二部分:设计要求 1)运行时具有较高的经济性; 2)不同工况下工作时均有高的可靠性; 3)在满足经济性和可靠性要求的同时,还应考虑汽轮机的结构紧凑、系统简单、布置合理、成本低廉、安装和维修方便及零部件通用化、系列标准化等因素。 第三部分:设计内容 一、汽轮机热力计算与设计原始参数 主蒸汽压力3.43Mpa,主蒸汽温度435℃;

冷却水温度20℃,给水温度160℃; 额定功率e P :23MW,调节级速比a x :0.24 二、汽轮机设计基本参数确定 1、汽轮机容量 额定功率e P :23MW 2、进气参数 汽轮机初压P 0=3.43Mpa 汽轮机初温t0=435℃ 3、汽轮机转速n=3000rad/min 4、排气压力 汽轮机排气压力Pc=0.005Mpa 冷却水温tc1= 20℃ 5、回热级数及给水温度 给水温度tfw=160℃ 回热级数Z=3级 三、选型、配汽及流通部分的设计计算 1、汽轮机型号 由排气压力和冷却水温可知汽轮机为:凝气式汽轮机。 型号:N23-3.43/435 2、配汽方式 汽轮机的配汽机构又称调节方式,与机组的运行要求密切相关。通常的喷嘴配汽、节流配汽、变压配汽以及旁通配汽四种方式。喷嘴配汽是国产汽轮机的主要配汽方式,由已知参数以及设计要求选用喷嘴配汽方式。 四、拟定汽轮机近似热力过程曲线和原则性热力系统,进行汽耗量、回热系统 热平衡及热经济性的初步计算 1、近似热力过程曲线的拟定 (1)进排汽机构及连接管道的各项损失 蒸汽流过各阀门及连接管道时,会产生节流损失和压力损失。下表列出这些 损失通常的取值范围。

汽轮机课设心得总结

汽轮机课设心得总结 经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其

后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了接近一周的时间,最后完成时大家觉得很有成就感。接下来我们看汽

汽轮机课程设计指导书-经典版

第一部分汽轮机课程设计指导书 一、课程设计的目的与要求 1.系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,重点掌握汽轮机热力设计的方法、步骤。 2.汽轮机热力设计的任务,一般是按照给定的设计条件,确定流通部分的几何参数,力求获得较高的相对内效率。就汽轮机课程设计而言其任务通常是指各级几何尺寸的确定及级效率和内功率的计算。 3.汽轮机设计的主要内容与设计程序大致包括: (1) 分析并确定汽轮机热力设计的基本参数,如汽轮机容量、进汽参数、转速、排汽压力或循环水温度、回热加热级数及给水温度、供热汽轮机的供汽压力等。 (2) 分析并选择汽轮机的型式、配汽机构型式、通流部分形状及有关参数。 (3) 拟定汽轮机近似热力过程线和原则性热力系统,进行汽耗量与热经济性的初步计算。 (4) 根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比焓降、叶型及尺寸等。 (5) 根据流通部分形状和回热抽汽压力要求,确定压力级的级数,并进行各级比焓降分配。 (6) 对各级进行详细的热力计算,求出各级流通部分的几何尺寸、相对内效率和内功率,确定汽轮机的实际热力过程线。 (7) 根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求。 (8) 根据需要修正热力计算结果。 (9) 绘制流通部分及纵剖面图。 4.通过设计对整个汽轮机的结构作进一步的了解,明确主要部件在整个机组中的作用、位置及相互关系。 5.通过设计了解并掌握我国当前的技术政策和国家标准、设计资料等。 6.所设计的汽轮机应满足以下要求: (1) 运行时具有较高的经济性。 (2) 不同工况下工作时均有高的可靠性。 (3) 在满足经济性和可靠性要求的同时,还应考虑到汽轮机的结构紧凑、系统简单、布局合理、成本低廉、安装与维修方便以及零部件通用化、系列标准化等因素。 7.由于课程设计的题目接近实际,与当前国民经济的要求相适应,因而要求设计者具有高度的责任感,严肃认真。应做到选择及计算数据精确、合理、绘图规范,清楚美观。 二、课程设计题目 以下为典型常规题目,也可以设计其他类型的机组。 机组型号: B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 1

汽轮机课程设计书

汽轮机课程设计 指导老师: 学生姓名: 学号: 所属院系: 专业: 班级: 日期:

课程设计任务书 1.课程设计的目的及要求 任务:N10-4.9/435 冷凝式汽轮机组热力设计 目的:①系统总结巩固已有知识 ②对汽轮机结构、通流部分、叶片等联系 ③对于设计资料的合理利用 要求:①掌握汽轮机原理的基本知识 ②了解装置间的相互联系 2. 设计题目 设计原则:⑴安全性:采用合理结构、安全材料、危险工况校核 ⑵经济性:设计工况效率高 ⑶可加工性:工艺、形状、材料有一定要求 ⑷新材料、新结构选用需进行全面试验 ⑸节省贵重材料的用量与消耗 3. 热力设计内容 ⑴调节级计算速比选用0.35-0.44 d m=1100 mm 双列级承担的比焓降 160-500 kj/kg 单列级承担的比焓降 70-125 kj/kg ⑵非调节级热降分配 ⑶压力级的热力计算 ⑷作h-s 热力过程线,速度三角形 ⑸整理说明书,计算结果以表格呈现 4. 主要参数 ⑴P0=4.9Mpa t0=435℃ ⑵额定功率P e=10000 kw ⑶转速 n=3000 rad/min ⑷背压P C=8kPa ⑸汽轮机相对内效率ηri(范围为:82%~88%) 选取某一ηri值,待各级详细计算后与所得ηri进行比较,直到符合要求为止。机械效率:这里取ηm= 94%~99% 发电效率:这里取ηg=92%~97%

设计参数的选择 1.基本数据:额定功率Pr=10000kW,设计功率P e=10000kW,新汽压力P0=4.9MPa,新汽温度t0=435℃,排汽压力P c=0.008MPa。 2.速比选用0.40 3.d m=1100 mm 4.转速 n=3000 rad/min 5.汽轮机相对内效率ηri=86% 6.机械效率ηm= 98% 7.发电效率ηg= 95% 详细设计内容 图1—多级汽轮机流程图 1.锅炉 2.高压回热加热器 3.给水泵 4.混合式除氧器 5.低压回热加热器 6.给水泵 7.凝汽器 8.汽轮机

汽轮机课设心得总结

汽轮机课设心得总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

汽轮机课设心得总结经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮

机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了接近一周的时间,最后完成时大家觉得很有成就感。接下来我们看汽轮机课

汽轮机课程设计报告

汽轮机课程设计报告 姓名: 学号: 班级: 学校:华北电力大学

汽轮机课程设计报告 一、课程设计的目的、任务与要求 通过设计加深巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握设计方法。并通过设计对汽轮机的结构进一步了解,明确主要零件的作用与位置。具体要求就是按给定的设计条件,选取有关参数,确定汽轮机通流部分尺寸,力求获得较高的汽轮机效率。 二、设计题目 机组型号:B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 新汽压力:8.8300Mpa 新汽温度:535.0℃ 排汽压力:0.9810Mpa 额定功率:25000.00kW 转速:3000.00rpm 三、课程设计: (一)、设计工况下的热力计算 1.配汽方式:喷嘴配汽 2.调节级选型:单列级 3.选取参数: (1)设计功率=额定功率=经济功率 (2)汽轮机相对内效率ηri=80.5% (3)机械效率ηm=99.0% (4)发电机效率ηg=97.0% 4.近似热力过程线拟定 (1)进汽节流损失ΔPo=0.05*Po 调节级喷嘴前Po'=0.95*Po=8.3885Mpa (2)排汽管中的压力损失ΔP≈0 5.调节级总进汽量Do的初步估算 由Po、to查焓熵图得到Ho、So,再由So、Pc查Hc。 查得Ho=3474.9375kJ/kg,Hc=2864.9900kJ/kg 通流部分理想比焓降(ΔHt(mac))'=Ho-Hc=609.9475 kJ/kg Do=3.6*Pel/((ΔHt(mac))'*ηri*ηg*ηm)*m+ΔD Do=3.6*25000.00/(609.9475*0.805*0.970*0.990)*1.05+5.00=205.4179(kJ/kg) 6.调节级详细热力计算 (1)调节级进汽量Dg Dg=Do-Dv=204.2179t/h (2)确定速比Xa和理想比焓降Δht 取Xa=0.3535,dm=1100.0mm,并取dn=db=dm 由u=π*dm*n/60,Xa=u/Ca,Δht=Ca^2/2

汽轮机课程设计说明书——参考

课程设计说明书设计题目:N25-3.5/435汽轮机通流部分热力设计 学生姓名:xxx 学号:012004006xxx 专业班级:热能与动力工程xxx班 完成日期:2007年12月2日 指导教师(签字): 能源与动力工程学院 2007年12月

已知参数: 额定功率:p r =25MW , 设计功率:p e =20MW , 新蒸汽参数:p 0=3.5MP ,t 0=435℃, 排汽压力:p c =0.005MPa , 给水温度:t fw =160~170℃, 冷却水温度:t w1=20℃, 给水泵压头:p fp =6.3MPa , 凝结水泵压头:p cp =1.2MPa, 额定转速: n e =3000r/min , 射汽抽汽器用汽量: △D ej =500kg/h , 射汽抽汽器中凝结水温升: △t ej =3℃, 轴封漏汽量: △D 1=1000kg/h , 第二高压加热器中回收的轴封漏汽量: △D 1′=700kg/h 。 详细设计过程: 一、气轮机进气量D 0热力过程曲线的初步计算 1.由p 0=3.5MP ,t 0=435℃确定初始状态点“0”,0h =3304kJ/kg ,0v =0.090 m 3/kg 估计进汽机构压力损失⊿p 0=4%p 0=4%×3.5MPa =0.14MPa , 排汽管中压力损失c p ?=0.04c p =0.0002M P a ' 0.0052z c c c p p p p M Pa ==+?= p 0′=p 0-⊿p 0=3.5MPa -0.14MPa =3.36MPa ,从而确定“1”点。过“0”点做定熵线与Pc=0.0050MPa 的定压线交于“3’”点,在h-s 图上查得, 3'h =2122kJ/kg,整机理想焓降为:m ac t h ?=0h -3'h =1182kJ/kg 2.估计 汽轮机相对内效率ηri =0.830 , 发电机效率ηg =0.970 (全负荷), 机械效率ηax =0.99 得m ac i h ?=ηri m ac t h ?=981.06kJ/kg , 从而确定“3”点。排汽比焓为,3h =0h -m ac i h ?=2331.2kJ/kg 3.用直线连接“1”、“3”两点,求出中点“2′”,并在“2′”点沿等压线向下移25kJ/kg 得“2”点,过“1”、“2”、“3”点作光滑曲线即为汽轮机的近似热力过程曲线。 二、整机进汽量估计 0D ri g ax D ηηη+??e mac t 3600p m = h (kg/h ) 取m =1.20,⊿D =4%D 0,ηm =0.99,ηg =0.97, ηri =0.83 003600 1.15 D D t ?20?1006.335?0.97?0.987?0.97 ?= =88.599/h 三、调节级详细计算 1.调节级型式:复速级 理想焓降:⊿h t =250kJ/kg

660MW超超临界机组汽轮机轮机组轴系安装工艺控制研究

图1汽轮机轴承座布置图 低压缸的支撑系统 低压外缸与低压内缸无刚性连接,只在低压内缸猫爪支撑和中心导向销的位置采用波纹管进行补偿和密封。低压外缸直接支撑在凝汽凝汽器支撑在刚性基础上。低压内缸猫爪穿过低压外缸上面的四个孔支撑在落地式轴承座上。由于低压内缸和低压转子都支撑在轴运行时转子与内缸的径向间隙不会像传统机组那样受到支撑点温度高低膨胀不均的影响。 滑销系统设计点 整个轴系的死点在2号轴承,高压转子向车头方向膨胀 子连带着两根低压转子向发电机方向膨胀,本台机组中低压转子整体

图2轴系找中示意图 联轴器联接 本机组的所有联轴器现场都不需要绞孔,联轴器螺栓的安装在整个轴系的找中心完成后进行,此时联轴器已经被临时螺栓联接 径较正式螺栓小1mm左右),为保证联接前联轴器的同心度 。 图3盘车找中示意图 。 图4晃度测量百分表架设位置及托环使用示意图6)缓慢盘动发电机转子带动励磁机转子转动,测取水平位移表计的晃动值,为保证准确性至少有二遍重复数据出现后,以每次增加100~200Nm的力矩,对角地均匀地紧固联轴器螺栓一遍。紧固时先从需借正晃度的一组螺栓开始,如此反复紧固和测量后直至螺栓紧固力矩达到1250Nm左右,盘动转子多次测量晃度达到稳定状态后,可视晃度情况,以不同的力矩分别紧固螺栓,目的在于校准晃度。校准结束后,要求最小力矩值大于1660Nm,最大力矩不超过1930Nm即可,且最终测得晃度应小于0.05mm。 7)需要严格注意的是:螺栓紧固时,应逐步增大力矩,不可采用松 验收,确保达到设计要求 。 Science&Technology Vision 科技视界

。 其意义最根本的是我从这个实验中体会到科学实验要有严谨的治。 对教师素质的要求更加严格,师德建设也必须与时俱。 型圈设计完成后。 以提供高品质的服务为重点举措。

汽轮机课程设计

15 第二部分 使用说明书 一、软件简介 汽轮机课程设计教学软件《设计宝典Xp 》是由蚂蚁虫工作室马唯唯开发的。适合热动及相关专业汽轮机课程设计使用。设计汽轮机级数不超过12级。 软件特点: 1.查焓熵图由计算机查取,快速,准确。输入输出采用了OLE 高级拖放技术,自动截取数据,无需手动输入。(参见《焓熵查表通》介绍) 2.《新视图1.0》包含了设计中的所有视图,可以直接打印,可以查取各个系数。 3.可以自动生成设计报告。 4.可以随时查看每一步或者每一级的详细计算过程。 5.可以模拟组装汽轮机通流部分。 6.支持dbf 到 xls 文件格式转换。 7.强大的数据逻辑性检测将大大减少人为的错误。 8.可以设计个性化界面。 9.可以播放背景音乐。 软件安装最低要求: 1.中央处理器为80486或更高。 2.已设虚拟内存的计算机要求内存在4MB 以上, 未设虚拟内存的计算机内存

至少要16MB内存,安装后不少于15MB的自由空间。 3.与windows配套的鼠标。 《新视图1.0》介绍 (1)《新视图1.0》中包含了课程设中使用的各幅图,每一幅图中的符号都有解释,只需鼠标移到符号上即可。 (2)系数采用鼠标移动查取。当鼠标移动时,横纵坐标值会变化。 (3)压力级平均直径确定采用作图法,Array采用计算机作图,快速准确。点击详细过程 可以看到每一段的长度,改变比例尺寸后会 从新量取。 《焓熵查表通》介绍 理论来源: 焓熵查表采用国际公式化委员会(IFC) 提供的标准计算公式。 软件特点; (1)计算和输出可采用国际单位和工程 单位。系统默认已知参数为国际单位。 (2)查出来参数与水/水蒸气性质表上 的数据有所误差。误差均小于1/100。 (3)采用了自动对位数字输入,系统会 自动切换成英文状态输入小数。 (4)可以判断在计算机范围内的两个性 质参数对应的状态。 (5)可以根据焓值来判断熵值的大小范 围。 (6)数据可以手动输入也可以使用拖放 技术。 操作说明: (1)焓、熵、压力、比容、一般取4位小数,温度和干度一般取2位小数进行计算。 (2)如果想计算另一种单位制下的结果,选择单位制后一定要点确定才能生效。 (3)建议查焓熵图时采用拖放技术,它可以自动截取有效数据,减少人为判断。设计经常要使用焓熵查表通,你可以点击就可以缩小为一个标题栏大小,它悬浮在主界面上,要展开只需点一下“焓熵查表通”这几个字。在数据上点击并按住鼠标左 键,数据上显示一只表示系统已抓取该数据,按住鼠标左键实现拖动。 16

汽轮机课程设计(调节级强度)

能源与动力工程学院汽轮机课程设计 题目:600MW超临界汽轮机调节级叶片强度核算时间:2006年11月13日-2006年12月4日 学生姓名:杨雪莲杨晓明吴建中单威李响梅闫指导老师:谭欣星 热能与动力工程036503班

2006-12-4 600MW超临界汽轮机调节级叶片强度核算 [摘要]本次课程设计是针对600MW超临界汽轮机调节级叶片强度的校核, 并主要对第一调节阀全开,第二调节阀未开时的调节级最危险工况对叶片强度的校核。 首先确定了最危险工况下的蒸汽流量。部分进汽度选择叶型为HQ-1型,喷嘴叶型HQ-2型。根据主蒸汽温度确定叶片的材料为Cr12WmoV马氏体-铁素体钢。 其次,计算了由于汽轮机高速旋转时叶片自身质量和围带质量引起的离心力和蒸汽对叶片的作用力。 选取了安全系数,计算屈服强度极限、蠕变强度极限和持久强度极限,三者中的最小值为叶片的许用用力,叶片拉弯应力的合成并校核,确定叶片是否达到强度要求。 最后,论述了调节级的变化规律即压力-流量之间的关系。 一、课程设计任务书 课程名称:汽轮机原理 题目:600MW超临界汽轮机调节级叶片强度核算 指导老师:谭欣星 课题内容与要求 设计内容: 1、部分进汽度的确定,选择叶型 2、流经叶片的蒸汽流量计算蒸汽对叶片的作用力计算 3、叶片离心力计算 4、安全系数的确定 5、叶片拉弯合成应力计算与校核 6、调节级后的变化规律 设计要求: 1、运行时具有较高的经济性 2、不同工况下工作时均有高的可靠性 已知技术条件与参数: 1、600MW 2、转速:3000r/min 3、主汽压力:24.2Mpa; 主汽温度:566C 4、单列调节级,喷嘴调节 5、其他参数由高压缸通流设计组提供 参考文献资料: 1、汽轮机课程设计参考资料冯慧雯,水利电力出版社,1998 2、汽轮机原理翦天聪,水利电力出版社 3、叶轮机械原理舒士甑,清华大学出版社,1991

汽轮机课程设计

第一章23 MW凝汽式汽轮机设计任务书 1.1设计题目:23MW凝汽式汽轮机热力设计 1.2设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整 机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MR 新汽温度:435 C 排汽压力:0.005MR 冷却水温:22 C 机组转速:3000r/mi n 回热抽汽级数:5 给水温度:168 C 1.4设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1汽轮机各阀门及连接管道中节流损失和压力估取范围 s

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图 2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p o 、t o ,可得汽轮机进汽状态点0,并查得初比焓 h °=3304.2kj/kg 。由前所得,设进汽机构的节流损失 △ P °=0.04 R=0.1372 MPa 寻到调 节级前压力R = P 0 - △ P °=3.2928MPa 并确定调节级前蒸汽状态点1。过1点作等 比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 (少罟)=h ° -h 2t =330422228=11764j 2kg 。由上估计进汽量后得到的相对内效率 n ri =83.1%,有效比焓降△ ht mac = ( A ht mac f n 『=1176X 0.831=977.3kj/kg ,排汽比 接1、Z 两点,在中间3'点处沿等压线下移21?25 kj/kg Z 点,得该机设计工况下的近似热力过程曲线,如图 2-2所示 3.43Mpa 焓 h z =0「hT 二:3304.^-99863 2231kj/872 ,在h-s 图上得排汽点乙用直线连 得3点,用光滑连接1、3、 h ° =3304.2kJ/kg 2t h 2t =2152.1kj/kg 3.2928Mp K 3 747 *1 435 C 0.005Mpa

汽轮机课程设计报告书

军工路男子职业技术学院课程设计报告书 课程名称:透平机械原理课程设计 院(系、部、中心):能源与动力工程学院 专业:能源与动力工程 班级:2013级 姓名:JackT 学号:131141xxxx 起止日期:2016.12.19---2017.1.6 指导教师:万福哥

我校研究的透平机械主要是是以水蒸汽为工质的旋转式动力机械,即汽轮机,常用于火力发电。汽轮机通常与锅炉、凝汽器、水泵等一些列的设备、装置配合使用,将燃煤热能通过转化为高品质电能。与其它原动机相比,汽轮机机具有单机功率大、效率高、运转平稳和使用寿命长等优点,但电站汽轮机在体积方面较为庞大。 汽轮机的主要用途是作为发动机的原动机。与常规活塞式内燃机相比,其具有输出功率稳定、功率大等特点。在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用以汽轮机为原动机的汽轮发电机组,这种汽轮机具有转速一定的特点。汽轮机在一定条件下还可变转速运行,例如驱动各种泵、风机、压缩机和船舶螺旋桨等,我国第一艘航母“辽宁号”就是以汽轮为原动机。汽轮机的排汽或中间抽气还可以用来满足工业生产(卷烟厂、纺织厂)和生活(北方冬季供暖、宾馆供应热水)上的供热需要。在生产过程中有余能、余热的工厂企业中,还可以用各种类型的工业汽轮机(包括发电、热电联供、驱动动力用),使用不同品位的热能,使热能得以合理且有效地利用。 汽轮机与锅炉(或其他蒸汽发生装置,比如核岛)、发电机(或其他被驱动机械,比如泵、螺旋桨等)、凝汽器、加热器、泵等机械设备组成成套装置,协同工作。具有一定温度和压力的蒸汽可来自锅炉或其他汽源,经主汽阀和调节汽阀进入汽轮机内,依次流过一系列环形安装的喷嘴栅(或静叶栅)和动叶栅而膨胀做功,将其热能转换成推动汽轮机转子旋转的机械功,通过联轴器驱动其他机械,如发电机。膨胀做功后的蒸汽由汽轮机的排汽部分排出。在火电厂中,其排气通常被引入凝汽器,向冷却水或空气放热而凝结,凝结水再经泵输送至加热器中加热后作为锅炉给水,循环工作。

快冷装置在660MW超超临界汽轮机的应用

快冷装置在660MW超超临界汽轮机的应用 发表时间:2018-12-21T09:33:03.480Z 来源:《电力设备》2018年第23期作者:唐春飞胡小波 [导读] 摘要:介绍并分析了某电厂660MW超超临界汽轮机快冷装置投用操作及冷却效果,与自然冷却进行了比较,并提出了快冷系统投入的风险及控制措施,可为同类型机组快冷装置投入提供参考。 (重庆三峰百果园环保发电有限公司重庆 404100) 摘要:介绍并分析了某电厂660MW超超临界汽轮机快冷装置投用操作及冷却效果,与自然冷却进行了比较,并提出了快冷系统投入的风险及控制措施,可为同类型机组快冷装置投入提供参考。 关键词:超超临界;汽轮机;快冷装置;控制措施 1概述 某发电公司2×660MW机组汽轮机为上海汽轮机有限公司生产的超超临界、一次中间再热、单轴、四缸四排汽、凝汽式汽轮机(型号:N660-25/600/600)。汽轮机的高排蒸汽从高压缸排出后,经由带有逆止阀的冷再热管道到达再热器,再进入中压缸,中压缸排汽不经任何阀门直接进入低压缸。高压缸设有通向凝汽器的高排通风系统;如果高排通风系统开启,则高排逆止阀关闭,这就意味着高、中压缸的快冷系统可单独带真空泵运行。 为了能尽早对汽轮机进行检查,必须减少冷却过程的时间以提高汽轮机的可用性,所以很有必要投用快冷系统使冷却过程的时间尽量缩短。整个冷却过程必须考虑到机 组的轴向与径向间隙,还必须要考虑到机组各部件之间的最大允许温差,避免对汽轮机造成任何损伤。 2快冷系统介绍 2.1快冷装置 “汽轮机快速冷却”简称快冷,是指通过强迫方式快速冷却汽轮机内部部件,其作用是尽可能快地使汽轮机冷却以便尽早停用盘车,缩短汽轮机冷却时间。快冷的投用有效地提高了机组的可用性。我厂快冷装置如图一。 图一快冷装置 为了保证冷却的效果,很有必要投用真空泵使外界空气通过高压主汽门后、调节汽门前的快冷接口和中压主汽门后、调节汽门前的快冷接口按顺流方式进入通流部分进行快速冷却、为了避免环境中的颗粒进入汽轮机必须在快冷接口处安装滤网装置。整个快冷系统的设计和过程必须保证可以同时冷却所有的高温部件,例如调节汽门、转子、内缸、外缸等。 图二高压缸快冷空气流向 高压缸的结构设计决定了高压内、外缸夹层之间为高压第五级后的蒸汽(根据各个项目的差异,夹层蒸汽参数可能略有差别),因此在稳态的情况下高压内、外缸的整体的平均温度会比高压转子的平均温度高、因此在冷却过程中,高压转子会比高压内、外缸冷却得快,这就意味着。在快冷过程末期,模拟的转子温度要比外缸(进汽部分)上下半测量的温度低、这种情况对TSE(汽轮机应力分析)在高压缸进汽区域的测点同样适用。由于高压内、外缸之间的辐射,因此高压外缸对冷却速率的影响是很显著的。

相关文档
最新文档