图像去雾技术研究

图像去雾技术研究
图像去雾技术研究

编号

图像去雾技术研究

The research on image defogging

technology

学生姓名XX

专业电子科学与技术

学号XXXXXXX

学院电子信息工程学院

摘要

本文首先简单介绍了云雾等环境对图像成像的影响,接着从图像增强的角度研究图像去雾技术的基本方法,介绍了去雾算法的原理和算法实现步骤,并对去雾算法的优缺点和适用条件进行了总结。

基于图像增强的去雾原理,本文提出了联合使用同态滤波和全局直方图均衡的改进去雾算法。先进行同态滤波使有雾图像的细节充分暴露,然后采用全局直方图均衡扩展图像的灰度动态范围。去雾效果具有对比度高,亮度均匀,视觉效果好的特点,不足的是图像的颜色过于饱和。

关键字:图像增强图像去雾同态滤波全局直方图均衡

Abstract

Firstly, this paper simply introduces the influence of cloud environment of image formation, then from the enhanced image perspective of image to fog technology basic method, is introduced to fog algorithm principle and algorithm steps, and has carried on the summary to fog algorithm advantages, disadvantages and applicable conditions.

As for the defogging theory based on the image enhancement, the paper puts forward the improved defogging algorithm which requires combining homomorphic filtering and global histogram equalization. We should use homomorphic filtering to get details of the fogging images clearly exposed and then use global histogram equalization to spread the images’ gray scale dynamic range. Defogging has features of high contrast ratio, uniform brightness and good visual effect. But its drawback is that the image color is too saturated.

Key words: image enhancement; image defogging; homomorphic filtering; global histogram equalization;

1.云雾等环境对图像成像的影响

1.1 课题研究的背景和意义

近年来国内的雾霾天气逐渐由中东地区向全国蔓延。雾霾自2013年起开始成为人们对天气关注的关键词。雾霾是特定气候条件与人类活动相互作用的结果。高密度人口的经济及社会活动必然会排放大量细颗粒物(PM2.5),一旦排放超过大气循环能力和承载度,细颗粒物浓度将持续积聚,此时如果受静稳天气等影响,极易出现大范围的雾霾。

雾天时,弥漫在空中的雾气和尘埃模糊了人们的视线,使得景物的能见度大幅降低。在雾天条件下的室外获得的图像会受到严重的退化,图像目标的对比度和颜色等特征被衰减,这大大降低了图像的应用价值。即使在晴朗的天气条件下拍摄的照片,由于大气的散射作用,照片的清晰度同样受到影响。因为在每一个实际的场景中,光线在到达相机之前,都会从物体表面反射出来而且散射在空气中。这是因为空气中存在的浮质,像灰尘、雾和烟等,这些因素导致物体表面颜色变淡和整幅图像的对比度降低。这给工业生产及人们的日常生活带来了很大影响。例如城市交叉路口图像监视系统,在恶劣天气条件下得到的退化图像会对判断车辆信息和监控交通情况造成极大的困难;在军事侦察或监视中,退化图像对信息的识别与处理会造成偏差,而这种偏差的后果是非常严重的;遥感探测中退化图像同样会对后续的信息处理产生很大的干扰。因此许多领域都要用到去雾算法。有雾图像特征清晰化的研究具有非常重要的意义。

另一方面,随着科学技术的飞速发展,计算机运行处理速度加快,图像处理广泛应用于众多的科学和工程领域重要领域。数字图像技术从20世纪50年代发展至今,在航空航天、工业生产、医疗诊断、资源环境、气象及交通监测、文化教育等领域有着广泛的应用,创造了巨额的社会价值。应用的视觉系统极易受到天气因素的干扰甚至无法正常工作。雾天天气条件是各种天气条件中对视觉影响最严重的一种。图像去雾技术成为图像处理和计算机视觉领域共同关心的重要问题。为了保证视觉系统的全天候正常工作,就必须使系统能够适用于各类天气状况,这样才能提高系统的可信赖性。

因此,研究如何对尘雾等恶劣天气条件下获得的退化图像进行有效地处理,对大气退化图像的复原和景物细节信息的增强有着非常重要的现实意义。雾天下图像的清晰化技术有可能对其他恶劣天气条件下图像的清晰化技术也起到促进作用。从而促使全天候视觉系统排除天气状况的干扰和影响。此方面技术的研究有着很大应用前景。

1.2 国内外研究现状

对雾天图像,改善退化图像的质量,可采用模拟和数字两种图像处理技术进行处理。模拟图像处理利用光学处理和电子电路处理,特点是速度快实时性好,但是精度较差,灵活性差,很难有判别能力和非线性处理能力。而数字图像处理采用计算机或实时硬件处理,处理精度高,可以进行复杂的非线性处理,有灵活的变通能力。

图像增强法就是采用数字图像处理技术对雾天得到的退化图像进行处理的一种方法。

图像增强方法又称为非模型的方法,不考虑图像退化原因,按照特定需要突出图像中的某些信息,如边缘轮廓、亮度、对比度等,同时削弱或者除去某些不需要的信息,来改善图像的视觉效果或者将图像转换成为一种更适合人或机器进行分析的形式。增强处理并不能增强原始图像的信息,只是改善图像的可识别度,这种处理可能使图像失去某些信息。

(1)全局化的图像增强方法

全局化的雾天图像增强方法是指对由整幅雾天图像的统计信息决定的灰度值的调整,与被调整点所处的区域无关。由于雾天下场景的退化程度与其深度相关,而一幅图像往往包含复杂的深度信息,所以全局化的处理方法往往不能得到理想的效果,但当雾天图像的场景相对简单时,不失为一种有效的途径。

典型的全局化雾天图像增强方法主要有6种。

1)全局直方图均衡化算法。该方法的基本思想是把有雾图像的直方图变换为近似均匀分布的形式,这样就增加了像素灰度值的动态范围,从而达到增强雾天图像整体对比度的效果。但是在实际场景中图像的景深和雾天图像不同区域影响有差别,整体处理会造成图像增强不均匀,去雾图像视觉效果不够好。

2)同态滤波算法。该算法是一种把频率过滤和灰度变换相结合的图像增强处理方法,也是一种把照明反射模型作为频域处理的基础,利用压缩亮度范围和增强对比度来改善图像质量的处理技术。

3)小波方法。小波与多尺度分析在对比度增强上的应用取得了很大进展。

4)Retinex算法。Retinex是一种描述颜色不变性的模型,它具有动态范围压缩和颜色不变性的特点,对由于光照不均而引起的低对比度彩色图像具有很好的增强效果。黄义明[1]对于Retinex算法的改进,利用递归高斯滤波对Retinex算法进行加速和利用线性拉伸的方法提高图像的对比度。

5)曲波变换。曲波是一种在小波变换基础上发展起来的新的多尺度分析方法,由于它特别适合于各向异性奇异性特征的信号处理,因此能够很好地弥补小波变换在图像的曲线边缘增强方面的局限性。

6)基于大气调制传递函数增强雾天图像。该方法的原理是:首先通过对大气调制传递函数的预测,近似估计大气对图像质量的退化过程。当得到先验信息时,通过预测公式计算出相应的湍流调制传递函数和气溶胶调制传递函数,再由前两者的乘积得到总的大气调制传递函数。然后利用大气调制传递函数在频域内对天气退化图像进行复原,并对户外景物图像中由大气调制传递函数造成的衰减进行补偿。例如杨国强通过分析transmission图像的本质特性,并基于图像的大气衰减模型,提出一种有效的单幅图像去雾技术—非线性的双边滤波图像去雾方法,并利用获得结果图像实现图像的重光照技术[2]。

(2)局部化的图像增强方法

对于上述全局化的图像增强方法而言,由于此类方法是对整幅图像进行操作,而且在确定变换或转移函数时是基于整个图像的统计量。而在实际应用中常常需要对图像某些局部区域的细节进行增强,但这些局部区域内的像素数量相对于整幅图的像素数量往往较小,在参与整幅图的计算时其影响常被忽略掉,并且从整幅图像得到的函数也不能保证这些所关心的局部区域得到所需的增强效果。因此,需要根据所关心的局部区域的特性来计算变换或转移函数,并将这些函数用于所关心的区域,以得到所需的增强效果。王敬东等人使用Kuwahara边缘角点保持滤波器对大气散射光进行估计并对所采用的Kuwahara滤波器进行改进[3]。通过增加子块的数目以及进行局部加权等提高边缘保留效果,抑制方块效应,从而获得较为准确的介质透射率。

2 .基于图像增强的去雾算法研究

基于图像增强方法的去雾算法是不考虑有雾图像的成像原理,从有雾图像呈现的低亮度和低对比度的特征考虑,按照特定的需要增强需要突出部分的图像内容,削弱或去除某些图像信息的方法。但是应当明确的是,图像增强去雾算法并不能够增加原始图像的信息,其结果只是提高视觉的清晰度和对比度,会有图像信息的损失。

本节主要研究了基于图像增强的全局化处理方法和局部处理方法,分析算法实现步骤并仿真,然后对每一种算法结果进行总结。最后,总结各图像增强算法优缺点后,提出基于同态滤波和全局直方图均衡的改进去雾算法方案。

2.1全局化雾天图像增强

全局化的雾霾图像增强是指根据整幅雾霾图像的统计信息来对灰度值进行调整,与调整点所在的区域无关。针对雾天条件下获取的图像具有低对比度,全

局化图像增强可以使图像成像均匀,扩大图像动态范围及扩展对比度。具有算法时间复杂度小的优点,对薄雾图像有明显的改善效果。

2.1.1全局直方图均衡

直方图是图像的灰度像素统计图,用于表示图像中不同灰度级出现的概率[4]。全局直方图均衡是对原始图像的直方图进行操作,使灰度级分布近似均匀,是灰度级动态范围增加,改善图像的对比度。图像全局直方图均衡的实现步骤如下:

(1)统计原有雾图像的各灰度级i f 的数目i n ;

(2)计算原有雾图像的直方图,即各灰度级的概率密度

()/0,1,2,...,1f i i p f n N i L ==- (2-1)

其中N 为原有雾图像的总像素数目;

(3)计算直方图累计分布

0()()

0,1,2,...,1i f i f i P f p f i L ==-∑ (2-2) (4)计算最后输出的灰度级

()max min min [()0.5]0,1,2,...,1i f i g INT g g P f g i L =-++=- (2-3)

其中,[]INT 表示取整,L 表示图像最大灰度级。令min 0g =,max 1g L =-,则计算公式化简为:

[(1)()0.5]0,1,2,...,1i f i g INT L P f i L =-+=- (2-4)

(5)重新确定图像直方图。用i f 和i g 的映射关系,得到近似均匀分布的待输出直方图;

(6)根据新直方图统计输出图像各灰度级个数。

采用全局直方图均衡算法进行去雾前后的图像如下图2-1和图2-2。

图2-1原有雾图像及直方图

图2-2全局直方图均衡去雾图像及直方图

图2-1和图2-2分别为采用全局直方图均衡去雾前后的图像。可以看出原有雾图像的对比度有所增强,由雾天引起的图像亮度过高问题整体改善。但是去雾图像的部分偏暗,通过直方图的改变可以知道,这是因为全局直方图均衡把原图像中像素值为100以上的区域扩展到0~100,图像的灰度范围被拉伸到0~255。总之,全局直方图均衡改善了有雾图像的对比和亮度,但是会忽略图像的局部细节,去雾没有针对性,结果有一定失真。

2.1.2 同态滤波

同态滤波原理是依据图像获取过程中的照明反射成像[4]。图像可以由两个分量来表征:(1)入射到被观察场景的光源照射总量;(2)场景中物体所反射的光照的总量。这两个分量分别被称为入射分量(,)i x y 和反射分量(,)r x y ,这两个分量的乘积合并形成图像(,)f x y ,即:

(,)(,)(,)f x y i x y r x y = (2-5)

其中,入射分量具有低频特性,反射分量分布在图像高频部分。

雾天图像一般是受大气光散射影响将为严重,获得图像呈现偏白效果而影响视觉分辨。使用同态滤波器消除由大气光主导的入射分量,获得景物的反射分量。可以加大图像频域中反射(高频)频谱部分,使暗区细节增强,并保留亮区图像细节。

同态滤波算法的实现步骤如下:

(1)先对式(2-5)两边同时取对数,即:ln (,)ln (,)ln (,)f x y i x y r x y =+

(2)对上式两边做傅里叶变换,得:

(ln (,))(ln (,))(ln (,))F f x y F i x y F r x y =+ (2-6)

即得:(,)(,)(,)F u v I u v R u v =+ (2-7)

(3)使用频域高通滤波器(,)H u v 处理(,)F u v ,可得:

(,)(,)(,)(,)(,)(,)H u v F u v H u v I u v H u v R u v =+ (2-8)

简化表示为:

f i r H H H =+ (2-9)

(4)傅里叶反变换到空间域,得:

(,)(,)(,)f i r h x y h x y h x y =+

(5)对上式两边去指数,得:

(,)exp (,)exp (,)exp (,)f i r g x y h x y h x y h x y ==? (2-10)

使用同态滤波器对有雾图像去雾,如下图2-3和图2-4。

图2-3原有雾图像

图2-4同态滤波去雾图像

可以看出同态滤波可以有效地减弱由雾天天气造成的图像偏白的问题,抑制部分大气光散射对景物图像的影响,更多暴露原景物的反射图像部分,图像的清

晰度提高。但是对于在浓雾天气条件下,景物反射图像使用同态滤波无法完全恢复,如图2-4的上半部分仍可见很浓的雾气。

2.1.3 Retinex 算法

Retinex 理论是以色感的一致性为基础的理论,也称为颜色恒常理论。1963E. Land 在俄亥俄州提出了一种颜色恒常知觉的计算理论--Retinex 理论,把它作为人类视觉的亮度和颜色感知的模型。Retinex 理论的基础理论是物体的颜色是由物体对长波(红色)、中波(绿色)、短波(蓝色)光线的反射能力来决定的,而不是由反射光强度的绝对值来决定的,物体的色彩不受光照非均匀性的影响,具有一致性。

根据Retinex 理论,一幅图像(,)I x y 可以表示为由反射图像(,)R x y 和入射图像(,)L x y 组成,其原理示意图如图2-5所示:

入射光图像

L (x,y )反射光图像

R(x,y)

图2-5 Retinex 理论图像成像示意图

对于观察图像(,)I x y ,是由入射光照射在反射物体上,通过反射物体的反射形成反射光进入人眼得到的。用公式可以表示为:

(,)(,)(,)I x y R x y L x y =? (2-11)

对式(2-11)两边同时取对数可得:

log (,)log (,)log (,)I x y R x y L x y =+ (2-12)

则,log (,)log (,)log (,)R x y I x y L x y =- (2-13) (,)exp(log (,)log (,))R x y I x y L x y =- (2-14)

使用对数形式将复杂的乘法运算变换为加法,使用算法估计出入射图像则可以得到景物图像的本质属性反射图像(,)R x y ,得到去除雾天的影响后的图像具有好的图像细节和颜色保真性。

Retinex 算法和同态滤波在数学形式上有一定的相似性,都是将图像分成照射分量和反射分量。但是Retinex 理论是在空间域上的处理,而同态滤波是在频率域上的处理。

50多年来,学者模仿人类视觉系统发展了Retinex 算法,有基于中心环绕的单尺度Retinex 算法(single scale retinex ,SSR )和改进后的多尺度加权平均的Retinex 算法(multi-scale retinex , MSR )。

(1)单尺度Retinex 算法(SSR )

根据上述Retinex 原理,实现图像增强的关键是从原图像的有效信息中估算出反射图像(,)R x y 。即是,对数化后,从原图像(,)I x y 中减去由(,)I x y 估算的入射分量(,)L x y 。在数学上这是一个奇异问题,只能以从数学上近似估计的方式得到入射分量部分的近似值。

单尺度Retinex 算法是由Jobson 和Rahman 的中心环绕函数发展来的。Jobson 论证了高斯卷积函数可以对原图像提供更局部的准确处理,有更好的图像增强效果。高斯卷积函数表示为:

22

(,)x y c G x y e λ+-

= (2-15)

其中,λ为函数的归一化系数,使(,)G x y 满足(,)1G x y dxdy =??;c 为高斯尺度,作为高斯卷积函数的控制参数。由于高斯函数的特点,高斯尺度c 的取值不能使增强后的图像对动态范围大幅压缩和对比度增强不能同时保证。为了兼顾这两者,c 取值一般为80-100。

入射图像可以使用高斯卷积函数近似估计为:

(,)(,)(,)i i L x y I x y G x y =* (2-16)

其中,*表示卷积运算。i 表示图像的R 、G 、B 三个通道。由式(3-14)可得单尺度Retinex 算法估计的景物反射图像(,)R x y 为:

(,)exp(log (,)log[(,)(,)])i i i R x y I x y I x y G x y =-* (2-17)

单尺度Retinex 算法的实现步骤如下:

1)将原图像(,)I x y 转换到对数域。如果图像是彩色图像,则分为R 、G 、B 三个颜色通道分别转换。

2)输入高斯尺度c ,根据式(2-15)确定高斯卷积函数的归一化系数λ,并由这两个参数构建高斯卷积函数(,)G x y 。

3)根据式(2-13)计算得到(,)r x y 。

4)将(,)r x y 从对数域变换到实数域得到估计反射图像(,)R x y 。

5)对(,)R x y 进行线性拉伸,并输出显示。线性拉伸函数为:

(,)min((,))(,)max((,))min((,))R x y R x y R x y R x y R x y -=-

(2-18)

图2-6原有雾图像

图2-7SSR 算法去雾结果

(2)多尺度Retinex 算法(MSR )

MSR 是在SSR 的基础上发展而来的,其优点是可以同时保持图像高颜色保真度和图像的动态范围的压缩。多尺度Retinex 算法可以用如下公式表示:

1

(,){log (,)log[(,)(,)]}

k k k k r x y w I x y G x y I x y ==-*∑

(2-19) 这里有,k 为高斯卷积函数的个数;k w 表示加权系数,有1

1k k k w ==∑。当1

k =时,MSR 退化为SSR 。通常k 取3,即做3个尺度的SSR 后做加权平均,3个

SSR 一般分别按照小尺度(50c <),中尺度(50100c <<),大尺度(100c >)。

2.2局部化雾天图像增强

2.2.1子块不重叠直方图均衡

如前述图像全局直方图均衡对于图像背景或前景过亮及过暗的图像增强都有显著效果,但是对于图像的细节处理却没有把握住很好的处理精度。由此,对于全局直方图均衡改进为局部直方图均衡。局部直方图均衡增强法有:子块不重叠直方图均衡、子块重叠直方图均衡和子块部分重叠直方图均衡。其每个子块的处理方法都遵循全局直方图均衡的处理方法,相当于对图像的细化处理。

子块不重叠直方图均衡实现确定一个子块处理的窗口大小,使每次处理图像的每个子块区域不重叠,然后对每个子块遍历做直方图均衡。最后将每个子块均衡化的结果按遍历顺序组合即得到最后输出图像。算法的实现步骤如下:

(1)初始化子块窗口的大小。如图像大小为M N ?,子块窗口大小为m n ?,

则将图像分为M N m n ?????????????

(????符号表示向下取整)个子块,其余部分单独作为不规则的子块处理。

(2)构建新的输出图像(,)g x y 。对每个子块按照从左到右步长为m ,从上到下步长为n 的顺序对每个子块窗口做直方图均衡处理。处理结果存放到(,)g x y 中。

(3)将遍历结束后得到的(,)g x y 作为结果输出。

图2-8原有雾图像及直方图

图2-9子块不重叠直方图均衡40×50窗口处理结果

图2-10子块不重叠直方图均衡30×40窗口处理结果

子块不重叠直方图均衡算法具有图像处理速度快,图像局部增强效果好、局部对比度高等的优点。但是,处理结果有明显的块效应,影响视觉效果。

2.2.2子块重叠直方图均衡

子块重叠直方图均衡的处理方法跟子块不重叠直方图均衡算法类似,只是子

g x y中的每一个点可能为块窗口每次向左和向下移动的步长都为1,处理结果(,)

多次运算的平均值。

图2-11子块重叠直方图均衡70×80窗口处理结果

图2-12子块重叠直方图均衡100×200窗口处理结果

图2-13子块重叠直方图均衡120×240窗口处理结果

子块重叠直方图均衡法去雾得到的图片看不到块效应,因为子块重叠法是对子窗口直方图均衡图的累计叠加,去雾效果很好。算法中窗口越小处理效果越好。但是由算法实现步骤可知,窗口越小遍历得到的窗口越多算法耗时越大,这也是子块重叠直方图均衡算法的应用限制所在。

2.2.3子块部分重叠直方图均衡

J.Y.KIM等人提出子块部分重叠直方图均衡算法,该算法兼顾图像局部细节处理和运行时间复杂度。算法核心部分仍和全局直方图均衡一样,只是子块移动步长为1到m的数,对于每个像素处理后结果为所有结果的平均。

图2-14子块部分重叠直方图均衡100×120窗口(行步长为31,列步长为43)处理结果

图2-15子块部分重叠直方图均衡100×120窗口(行步长为31,列步长为50)处理结果

通过改变窗口遍历过程中水平方向和竖直方向的移动步长,可大大减少运算量,兼顾了处理效果和时间效率。由处理结果可知窗口大小越小移动步长越小,均衡效果越好,但运算时间越长。

2.2.2基于局部方差的对比度增强

局部方差的对比度增强方法其实质是对图像的局部范围内以窗口内方差为对比度增强因子的灰度变换。图像的细节往往和高频部分有关,所以通过图像的局部方差的变化可以有效地分析图像的细节信息。根据局部方差的大小来设定图像的局部增强程度,再以局部的灰度均值为中心来扩展像素点的灰度范围[5]。

基于局部方差的对比度增强算法的实现步骤如下:

(1)选定适当大小的滑动窗口(21)(21)n n +?+,n 为整数,求出窗口内的像素的均值(,)m i j 和方差2(,)i j δ,计算公式如下:

2

1(,)(,)(21)i n l n k i n l n m i j f k l n ++=--=+∑∑ (2-20) 2221(,)[(,)(,)](21)i n l n k i n l n i j f k l m i j n δ++=--=-+∑∑

(2-21) (2)令增强因子2(,)

D k i j σ=,D 为常数,把k 作为根据方差变化的自适应对比度调节系数来适应不同的图像的相应增强。

(3)像素的对比度拉伸。根据基于局部方差的自适应对比度增强算法计算该点的输出像素值(,)g i j ,算法表达式如下:

(,)(,)[(,)(,)]g i j m i j k f i j m i j =+- (2-22)

(4)将滑动窗口逐个像素位置移动,重复步骤1~3的运算,完成整幅图像

的增强。

2.3 图像增强去雾算法的优缺点比较

全局直方图均衡算法能有效地增强整幅有雾图像的对比,但是它从图像的整体考虑,图像不同区域景深不同、大气介质透射率不一致,因此增强效果不均匀。

同态滤波从原有雾图像分离出原景物的反射图像部分,可以抑制部分大气光散射对景物图像的影响,图像的清晰度提高。但是对于在浓雾天气条件下,景物反射图像使用同态滤波无法完全恢复。

Retinex算法分为单尺度SSR和多尺度MSR算法,通过控制中心环绕函数的参数平衡动态范围大幅压缩和对比度增强,多尺度算法表现更好,但是算法耗时也将增加。

局部直方图均衡可以对有雾图像进行局部分块处理,图像局部细节增强表现突出。子块不重叠局部直方图均衡处理结果会产生块效应,影响视觉观察。子块重叠局部直方图均衡方法处理结果整体较全局处理改善很多,但其算法运算量太大,算法耗时过长,不利于实时处理。子块部分重叠局部直方图均衡是子块不重叠和子块重叠直方图均衡的平衡改进算法,算法执行时间有所减少。

基于局部方差的增强方法对于低对比度、深度信息多变的雾霾图像具有较好的去雾效果,但是与局部直方图均衡化方法相比,该方法在抑制噪声方差方面较差。

2.4一种基于图像增强的去雾改进算法

通过对已有的基于图像增强的去雾算法研究,综合分析优缺点,本文提出采用同态滤波和全局直方图均衡联合去雾的方法。首先,对有雾图像进行同态滤波,充分暴露图像中的有用信息。然后,通过全局直方图均衡进一步增加图像灰度的动态范围,使灰度级分布趋于近似平均,从而增强图像的对比度。

对有雾彩色图像的去雾,具体算法实现步骤如下:

(1)将彩色图像分解为R、G、B三个颜色通道的灰度图像;

(2)对三个颜色通道的灰度图像分别做同态滤波;

(3)将进行同态滤波后的图像分别做全局直方图均衡处理;

(4)合并处理后的R、G、B通道图像为彩色图像输出。

如图2-16,为改进算法的操作流程图。

开始

结束

输入

RGB

图像

同态滤波同态滤波同态滤波

全局直方图均衡全局直方图均衡全局直方图均衡

输出去雾图像

R通道G通道B通道

图2-16 改进算法流程图

如下图2-17对有雾图像分别做同态滤波去雾和改进算法去雾。选取的三张有雾图像的雾气浓度有高低的差异。

a)b)c)

图2-17基于图像增强的去雾改进算法去雾

图2-17a)为原有雾图像,b)为使用同态滤波后的结果,c)图像为改进算法的结果。对比三组图像,改进算法去雾后的图像对比度有了很大的提高。对于薄雾情况下的图像,增强效果最明显。但是,由于采用直方图均衡改变图像R、G、B颜色通道的灰度,会使去雾结果颜色产生略微失真,如第三组图片使用改进算法去雾后,图像颜色过于饱和,真实感较差。总之,改进算法达到了理想的去雾效果。

参考文献

[1]黄义明.雾霾天气下图像增强算法的研究[D].大连:大连理工大学,2013

[2]杨国强.图像和视频去雾技术的研究[D].天津:天津大学计算机科学与技术学院,2010

[3]王敬东,张文涛,王子瑞,许丽红.一种快速航空图像去雾算法[J].航空学报,2013,34(3):636-643

[4]Gonzalez,R.C.,Wood,R.E.数字图像处理:第3版[M].阮秋琦,阮宇志等译.北京:电子工业出版社,2011

[5]詹翔.周焰.一种基于局部方差的雾天图像增强算法[J].计算机应用,2007,27(2):510-512

基于图像增强的去雾方法

第3章基于图像增强的去雾方法 引言 图像增强是数字图像处理技术中最为基本的内容之一。在实际应用中,无论采用何种装置采集的图像,由于噪声、光照、天气等原因,获取的图像视觉效果不理想。例如,雾天获取的图像模糊不清,难以提取细节信息;一幅户外自然风景图像色彩失真严重,视觉效果较差;夜间拍摄的图像,由于光线较暗,图像对比度低,暗处景物难以辨识等。图像增强技术的目的是将图像转化为一种更适合于人或计算机进行分析处理的形式,通过相关算法的处理,使图像的动态范围扩大,拉伸图像对比度,突出图像中研究者感兴趣区域的细节信息,为图像的进一步处理和分析奠定基础。 雾天图像可以看作是清晰图像中引入了低频噪声,图像的灰度集中分布在某个区域,图像的对比度低,视觉效果较模糊。图像去雾的目的主要是去除图像中的噪声(即雾),提高图像的对比度,从而恢复出清晰的无雾图像。 基于图像增强的去雾技术以其方法简单、有效而得到较为广泛的应用。 本章主要研究图像增强技术中常用的直方图均衡、同态滤波、小波变换方法在图像去雾中的应用,重点研究基于Retinex理论的图像去雾算法,介绍Retinex算法中的单尺度、多尺度以及带彩色恢复的Retinex算法。通过对各算法原理的研究和实验结果对比分析,总结各算法的优势与不足。 基于直方图均衡化的雾天图像增强技术 直方图是多种空间处理技术的基础。图像的直方图是图像的重要统计特征,是表示一幅数字图像中每一灰度级与该灰度级出现的频数间的统计关系。直方图均衡化是传统的图像增强理论中常用的方法,图像中原本灰度级集中的区域经直方图均衡处理后均匀分布,从而增大反差,使图像细节清晰,它的根本目的是改善图像的对比度。直方图均衡分为全局直方图均衡和局部直方图均衡。全局直方图均衡主要是通过拉伸图像灰度值的动态范围达到图像整体对比度增强,局部直方图均衡化是针对图像内部细节进行增强处理从而达到图像局部对比度增强。直方图在软件中计算简单,而且有助于商用硬件的实现,因此已成为实时图像处理的一种流行工具。 3.2.1 直方图均衡化 直方图均衡化是把一幅已知灰度概率分布的图像经过变换,使之变成灰度概率分

图像去雾霭算法及其实现..

图像去雾霭算法及其实现 电气工程及其自动化 学生姓名杨超程指导教师李国辉 摘要雾霭等天气条件下获得的图像,具有图像不清晰,颜色失真等等一些图像退化的现象,直接影响了视觉系统的发挥。因此,为了有效的改善雾化图像的质量,降低雾霭等天气条件下造成户外系统成像的影响,对雾霭图像进行有效的去雾处理显得十分必要。 本设计提出了三种图像去雾算法,一种是基于光照分离模型的图像去雾算法;一种是基于直方图均衡化的图像去雾算法;还有一种是基于暗原色先验的图像去雾算法。并在MATLAB的基础上对现实生活的图像进行了去雾处理,最后对不同的方法的处理结果进行了简要的分析。 关键词:图像去雾光照分离直方图均衡化暗原色先验

Algorithm and its implementation of image dehazing Major Electrical engineering and automation Student Yang Chaocheng Supervisor Li Guohui Abstract Haze weather conditions so as to obtain the image, the image is not clear, the phenomenon of color distortion and so on some image degradation, directly influence the exertion of the visual system. Therefore, in order to effectively improve the atomization quality of the image, reduce the haze caused by outdoor weather conditions such as imaging system, the influence of the haze image effectively it is necessary to deal with the fog. This design introduced three kinds of algorithms of image to fog, a model is based on the separation of light image to fog algorithm; One is the image to fog algorithm based on histogram equalization; Another is based on the dark grey apriori algorithms of image to fog. And on the basis of MATLAB to the real life to deal with the fog, the image of the processing results of different methods are briefly analyzed. Key words:Image to fog Light separation histogram Dark grey

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.360docs.net/doc/4516824495.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

图像去雾设计报告

课程设计——图像去雾 一、设计目的 1、通过查阅文献资料,了解几种图像去雾算法,; 2、理解和掌握图像直方图均衡化增强用于去雾的原理和应用; 3、理解和掌握图像退化的因素,设计图像复原的方法; 4、比较分析不同方法的效果。 二、设计内容 采用针对的有雾图像,完成以下工作: 1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图; 2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像; 3、分析实验效果; 4、写出具体的处理过程,并进行课堂交流展示。 三、设计要求 1、小组合作完成; 2、提交报告(*.doc)、课堂交流的PPT(*.ppt)和源代码。

四、设计原理 (一)图像去雾基础原理 1、雾霭的形成机理 雾实际上是由悬浮颗粒在大气中的微小液滴构成的气溶胶,常呈现乳白色,其底部位于地球表面,所以也可以看作是接近地面的云。霭其实跟雾区别不大,它的一种解释是轻雾,多呈现灰白色,与雾的颜色十分接近。广义的雾包括雾、霾、沙尘、烟等一切导致视觉效果受限的物理现象。由于雾的存在,户外图像质量降低,如果不处理,往往满足不了相关研究、应用的要求。在雾的影响下,经过物体表面的光被大气中的颗粒物吸收和反射,导致获取的图像质量差,细节模糊、色彩暗淡。 2、图像去雾算法 图像去雾算法可以分为两大类:一类是图像增强;另一类是图像复原。图1-1介绍了图像去雾算法的分类: 图1-1 去雾算法分类 从图像呈现的低亮度和低对比度的特征考虑,采用增强的方法处理,即图像增强。比较典型的有全局直方图均衡化,同态滤波,Retinex 算法,小波算法等等。 基于物理模型的天气退化图像复原方法,从物理成因的角度对大气散射作用进行建模分析,实现场景复原,即图像复原。运用最广泛、

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1) 实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y):

图像复原处理技术

实验五图像复原处理技术 实验目的 1 了解图像降质退化的原因,并建立降质模型。 2 理解反向滤波图像复原的原理 3 理解维纳滤波图像复原的原理实验原理图像复原处理一定是建立在图像退化的数学模型基础上的,这个退化数学模型应该能够 反映图像退化的原因。图像降质过程的模型如图5-1所示,其表达式为 g(x,y)=h (x,y)*f (x,y) +n (xy) (5.1) 图5-1图像降质模型 1、 滤波图像复原 逆滤波法是最简单的图像恢复方法。对5.1式两边作二维傅立叶变换,得到 G (u , v ) =H (u ,v) F (u ,v) + N (u ,v) H (u ,v) 为成像系统的转移函数。估算得到的恢复图像的傅立叶变换F ? (u ,v) 为 ()()()()()() ,,?,,,,G u v N u v F u v F u v H u v H u v ==+ (5.2) 若知道转移函数H (),u v ,5.2式经反变换即可得到恢复图像,其退化和恢复的全过程用图5-2表示。 图5-2频域图像降质及恢复过程

逆滤波恢复法会出现病态性,若H (),u v ,而噪声N(u,v) ≠0,则()(),,N u v H u v 比F (x,y)大很多,使恢复出来()?,f x y 与(),f x y 相差很大,甚至面目全非。一种改进的方法是在H (u , v ) =0 的频谱点及其附近,人为仔细设置()1,H u v -的值,使得在这些频 谱点附近,()(),,N u v H u v 不会对()?,F u v 产生太大影响。二种方法是考虑到降质系统的转移函数(),H u v 的带宽比噪声要窄的多,其频率特性也具有低通性质,因此可令逆滤波的转移函数()1,H u v 为 ()()()()1 222 11 2220 1,,0H u v u v D H u v u v D ?+≤?=??+>? (2)维纳滤波复原 逆滤波简单,但可能带来噪声的放大,而维纳滤波对逆滤波的噪声放大有抑制作用。 维纳滤波是寻找一个滤波器,使得复原后图像()?,f x y 与原始图像(),f x y 的方差最小,即 ()(){ }2 ?min ,,E f x y f x y ??=-?? 如果图像(),f x y 和噪声(),n x y 不相关,且(),h x y 有零均值,则可导出维纳滤波器的传递函数为 ()() () () () 2 2 ,1 ,,,,,w n f H u v H u v P u v H u v H u v P u v = ? + 式中(),n P u v 和(),f P u v 分别为噪声和原始图像的功率谱。实际上(),n P u v 和(),f P u v n 往往是未知的,这时常用常数K 来近似 () () ,,n f P u v P u v 。 【实验】产生一模糊图像,采用维纳滤波图像复原的方法对图像进行处理。 clear; %清除变量 d=15 %设定长度

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

基于暗通道先验的图像去雾算法改进研究

基于暗通道先验的图像去雾算法改进研究 摘要:暗通道先验去雾算法求得的的透射率比较精细, 去雾效果优于大多数去雾算法。然而在暗通道求取过程中, 最小值滤波的处理会使得暗色向外扩张,导致透射率扩张变 大,使得去雾后的图像在边缘部分产生“光晕”现象。为了 减弱光晕效应,利用形态学理论对粗略透射率进行腐蚀处理, 腐蚀掉扩张变大的透射率,然后使用容差机制修复不符合暗 原色先验的明亮区域透射率,再使用引导滤波精细化透射率, 最后利用去雾模型复原图像。实验表明,改进后的算法去雾 效果更佳、去雾速度更快,具有更强的鲁棒性。 关键词:暗通道先验去雾;腐蚀;引导滤波 DOIDOI:10.11907/rjdk.161089 中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2016)005-0030-04 0 引言 雾霾天气不仅影响人们的出行,也给视频监控、自动驾 驶等涉及室外图像应用的领域带来了很大挑战,并引起了相 关研究人员的重视,如今已出现了不少研究成果。图像去雾 的研究方法可分为两大类,基于图像增强的方法和基于物理 模型的方法。早期图像去雾研究主要利用图像处理的知识来

去雾,Kim[1]提出对雾图进行局部直方图均衡处理的方法, 这种方法根据每个像素的邻域对像素进行处理,可以突出图 像的特征,但运算量较大,算法复杂度较高。Land[2-3]基于色彩恒常性提出了Retinex即视网膜皮层理论,其后出现了 一些基于Retinex的图像增强算法[4-6],与其它图像增强算法相比,基于Retinex的图像增强算法处理的图像,局部对比 度相对较高,色彩失真较小。基于图像增强的去雾方法可以 利用成熟的图像处理算法来增强图像的对比度,突出图像中 的特征信息,但这种方法会造成图像部分信息损失,导致图 像失真。图像去雾的另一类是基于物理模型的方法,该方法 研究大气悬浮颗粒对光的散射作用,通过大气散射模型来复 原图像,恢复的图像效果更真实,图像信息能得到较好保存。Narasimhan等[7]提出了雾霾天气条件下的单色大气散射模 型,后来基于物理模型的方法几乎均建立在此模型之上。 Tan[8]基于无雾图比雾图有更高对比度的假定来最大化有雾 图像的对比度,该算法在很大程度上能复原图像结构和细节, 然而Tan的算法趋向于过度补偿降低的对比度,容易产生光 晕效应。Fattal[9]把图像场景光分解成反射和透射两部分,然后基于独立主成成分分析来估计场景光强,这种方法可以有 效去除局部的雾但不能很好恢复浓雾的图像。Kim等[10]结合局部对比度增强和去雾模型方法,能够抑制伪影的产生,但 时间复杂度较高。刘倩等[11]使用均值滤波去雾,对单幅图

图像复原处理技术样本

实验五图像复原解决技术 实验目 1 理解图像降质退化因素,并建立降质模型。 2 理解反向滤波图像复原原理 3 理解维纳滤波图像复原原理实验原理图像复原解决一定是建立在图像退化数学模型 基本上,这个退化数学模型应当可以 反映图像退化因素。图像降质过程模型如图5-1所示,其表达式为 g(x,y)=h (x,y)*f (x,y) +n (xy) (5.1) 图5-1图像降质模型 1、 滤波图像复原 逆滤波法是最简朴图像恢复办法。对5.1式两边作二维傅立叶变换,得到 G (u ,v ) =H (u ,v) F (u ,v) + N (u ,v) H (u ,v) 为成像系统转移函数。估算得到恢复图像傅立叶变换F ? (u ,v) 为 ()()()()()() ,,?,,,,G u v N u v F u v F u v H u v H u v ==+ (5.2) 若懂得转移函数H (),u v ,5.2式经反变换即可得到恢复图像,其退化和恢复全过程用图5-2表达。

图5-2频域图像降质及恢复过程 逆滤波恢复法会浮现病态性,若H (),u v ,而噪声N(u,v) ≠0,则()(),,N u v H u v 比F (x,y)大诸多,使恢复出来()?,f x y 与(),f x y 相差很大,甚至面目全非。一种改进办法是在H (u ,v ) =0 频谱点及其附近,人为仔细设立()1,H u v -值,使得在这些频谱点附 近,()(),,N u v H u v 不会对()?,F u v 产生太大影响。二种办法是考虑到降质系统转移函数(),H u v 带宽比噪声要窄多,其频率特性也具备低通性质,因而可令逆滤波转移函数 ()1,H u v 为 ()()()()1 222 11 2220 1,,0H u v u v D H u v u v D ?+≤?=??+>? (2)维纳滤波复原 逆滤波简朴,但也许带来噪声放大,而维纳滤波对逆滤波噪声放大有抑制作用。维纳 滤波是寻找一种滤波器,使得复原后图像()?,f x y 与原始图像(),f x y 方差最小,即 ()(){ }2 ?min ,,E f x y f x y ??=-?? 如果图像(),f x y 和噪声(),n x y 不有关,且(),h x y 有零均值,则可导出维纳滤波器传递函数为 ()() ()()()() 2 2 ,1 ,,,,,w n f H u v H u v P u v H u v H u v P u v = ? + 式中(),n P u v 和(),f P u v 分别为噪声和原始图像功率谱。事实上(),n P u v 和(),f P u v n 往往是未知,这时惯用常数K 来近似 () () ,,n f P u v P u v 。

基于retinex的图像去雾算法

I=imread('1.jpg'); R = I(:, :, 1); G = I(:, :, 2); B = I(:, :, 3); R0 = double(R); G0 = double(G); B0 = double(B); [N1, M1] = size(R); Rlog = log(R0+1); Rfft2 = fft2(R0); sigma1 = 128; F1 = fspecial('gaussian', [N1,M1], sigma1); Efft1 = fft2(double(F1)); sigma2 = 256; F2 = fspecial('gaussian', [N1,M1], sigma2); Efft2 = fft2(double(F2)); sigma3 = 512; F3 = fspecial('gaussian', [N1,M1], sigma3); Efft3 = fft2(double(F3)); DR0 = Rfft2.* Efft1; DR = ifft2(DR0); DRlog = log(DR +1); Rr1 = Rlog - DRlog; DR0 = Rfft2.* Efft2; DR = ifft2(DR0); DRlog = log(DR +1); Rr2 = Rlog - DRlog; DR0 = Rfft2.* Efft3; DR = ifft2(DR0); DRlog = log(DR +1); Rr3 = Rlog - DRlog; Rr = (Rr1 + Rr2 +Rr3)/3; a = 125; II = imadd(R0, G0); II = imadd(II, B0); Ir = immultiply(R0, a); C = imdivide(Ir, II); C = log(C+1); Rr = immultiply(C, Rr); EXPRr = exp(Rr); MIN = min(min(EXPRr)); MAX = max(max(EXPRr)); EXPRr = (EXPRr - MIN)/(MAX - MIN); EXPRr = adapthisteq(EXPRr); Glog = log(G0+1); Gfft2 = fft2(G0); DG0 = Gfft2.* Efft1;

图像去雾技术研究

编号 图像去雾技术研究 The research on image defogging technology 学生姓名XX 专业电子科学与技术 学号XXXXXXX 学院电子信息工程学院

摘要 本文首先简单介绍了云雾等环境对图像成像的影响,接着从图像增强的角度研究图像去雾技术的基本方法,介绍了去雾算法的原理和算法实现步骤,并对去雾算法的优缺点和适用条件进行了总结。 基于图像增强的去雾原理,本文提出了联合使用同态滤波和全局直方图均衡的改进去雾算法。先进行同态滤波使有雾图像的细节充分暴露,然后采用全局直方图均衡扩展图像的灰度动态范围。去雾效果具有对比度高,亮度均匀,视觉效果好的特点,不足的是图像的颜色过于饱和。 关键字:图像增强图像去雾同态滤波全局直方图均衡

Abstract Firstly, this paper simply introduces the influence of cloud environment of image formation, then from the enhanced image perspective of image to fog technology basic method, is introduced to fog algorithm principle and algorithm steps, and has carried on the summary to fog algorithm advantages, disadvantages and applicable conditions. As for the defogging theory based on the image enhancement, the paper puts forward the improved defogging algorithm which requires combining homomorphic filtering and global histogram equalization. We should use homomorphic filtering to get details of the fogging images clearly exposed and then use global histogram equalization to spread the images’ gray scale dynamic range. Defogging has features of high contrast ratio, uniform brightness and good visual effect. But its drawback is that the image color is too saturated. Key words: image enhancement; image defogging; homomorphic filtering; global histogram equalization;

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术 王洪珏 (温州医学院,浙江,温州) 摘要:MATLAB是当今流行的科学计算软件,它具有很强的数据处理能力。在其图像处理工具箱中有四个图像复原函数,本文就这些函数的算法原理、运用和恢复处理效果结合实力效果作简要对比讨论。 0前言 图像复原时图像处理中一个重要的研究课题。图像在形成、传输和记录的过程中,由于传感器的噪声、摄像机未对好焦、摄像机与物体相对运动、系统误差、畸变、噪声等因素的影响,使图像往往不是真实景物的完善影像。这种图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像质量下降的过程称为图像的退化。图像复原就是通过计算机处理,对质量下降的图像加以重建或恢复的过程。 图像复原过程一般为:找退化原因→建立退化模型→反向推演→图像复原 1算法产生概述 开发算法时,首先要创建图像退化的线性数学模型,接着选择准则函数,并以适当的数学形式表达,然后进行数学推演。推演过程中通常要进行表达形式(即空域形式、频域形式、矩阵-矢量形式或变换域形式)的相互转换,最后得到图像复原算式。 退化数学模型的空域、频域、矢量-矩阵表达形式分别是: g(x,y)=d(x,y)*f(x,y)+n(x,y) G(u,v)=D(u,v)〃F(u,v)+N(u,v) g=HF+n 其中:g(x,y)、d(x,y)、f(x,y)、n(x,y)分别为观测的退化图像、模糊函数、原图像、加性噪声,*为卷积运算符,(x=0,1,2,…,M-1),(y=0,1,2,…,N-1)。 2运动模糊的产生 景物与相机之间的相对运动通常会使相机所成的像存在运动模糊。对于线性移不变模糊,退化图像u0可以写成,u0=h*u+n,其中h为模糊核,*表示卷积,n为加性噪声。 由du/dt=0,文献[5]将这种运动模糊过程描述为波动方程:

图像增强技术要点

数字图像处理期中论文 图像增强技术综述 学院信息工程学院 专业电子信息工程 方向信息处理方向 姓名何娜娜 学号200710113081 中国传媒大学 2010 年11 月27 日

图像增强技术综述 内容摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强 Abstract Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation. Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening 1 图像增强概述 1.1 图像增强背景及意义 在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

基于matlab的图像去雾算法详细讲解与实现附matlab实现源代码

基于matlab的图像去雾算法详细讲解与实现-附matlab 实现源代码

————————————————————————————————作者: ————————————————————————————————日期: ?

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为:? S(x,y)=R(x,y)×L(x,y) (1.3.1)实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x,y)=r(x,y)+l(x, y)=log(R(x,y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x,y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x,y): G(x,y)=S'(x, y)-log(D(x, y)) ;

基于暗通道的图像去雾处理方法

龙源期刊网 https://www.360docs.net/doc/4516824495.html, 基于暗通道的图像去雾处理方法 作者:张澳博 来源:《山东工业技术》2017年第20期 摘要:随着信息技术的发展,运用图像传输信息的方式也越来越普遍。对于传统的图像 来说,传输已经不是问题。但是近些年的雾天出现增多,给室外的雾天图像中包含的信息的有效获取带来很大的困扰。本文主要是以暗通道优先法为原理,讨论实现图像的有效去雾算法。 关键词:图像处理;去雾;暗通道优先法 DOI:10.16640/https://www.360docs.net/doc/4516824495.html,ki.37-1222/t.2017.20.139 1 研究背景 相对湿度达到百分之百、水汽充足且大气层稳定时,视野模糊和能见度降低的天气现象,被称为雾。在人口较为密集的地区,大雾的出现对当地的人们出行和当天的经济生产造成了巨大的影响。因此,对雾天图像的处理是不可或缺的。 在数字图像处理大雾天气下的图像中,可以分为两大类,一种为图像增强(image enhancement)技术,另一类是图像修复技术(image restoration)。图像增强是一个相对主观 的判断,其最大的标准就是将图片中的图像增强到符合人眼对真实实物的认知。在这一过程中,可能会出现部分细节的丢失。但最终还是能大大的提高图像主体的辨识度。图像复原是需要对已得到的退化图像进行抽象,通过已有的经验建立其退化过程的模型,依照此模型将图像复原到未退化之前。 2 基本原理 2.1 图像的定义 图像是客观对象的一种相似性的、生动性的描述或写真,是人类社会活动中最常用的信息载体。或者说,图像是客观对象的一种表示,它包含了被描述对象的有关信息。图像是写实的,能够很清晰的表达出客观对象的。 2.2 数字图像概念 图像可以分为模拟图像和数字图像。模拟图像是对真实的情况的记录,其可根据某种物理量的强弱变换来记录图像的具体信息,一般情况下比数字图像的记录更加精确;数字图像是运用在电子产品中的存储方式和模拟图像不一样的图像,其将一副图像看成一个二维数组,记录下每一个点的像素信息。

数字图像复原技术中运动模糊图像相关问题研究

数字图像复原技术中运动模糊图像相关问题研究【摘要】随数字图像复原处理技术是当前数字图像处理领域的重要研究课题之一,运动模糊图像的复原是数字图像复原处理技术中较常见也是较难解决的一类问题。本论文的研究工作正是围绕运动模糊图像复原技术展开。分析运动模糊图像的成因以及成像过程;建立运动模糊退化模型;用维纳滤波复原方法对模糊图像进行复原;根据维纳滤波运动模糊图像复原方法中的不足之处,引入介绍了一种新的方法,降低了原有算法的复杂度,改进了维纳滤波。本文主要研究了维纳滤波复原方法并对其进行了改进,其他复原方法有待我们进一步研究。 【关键词】数字图像复原处理技术;运动模糊图像复原;维纳滤波复原;改进维纳滤波复原 图像成像的过程中存在很多的退化源,数字图像在获取、传输和存储过程中受各种原因的影响,会造成图像质量的退化,典型的表现有图像模糊、失真、有噪声等。运动模糊图像是由于相机和被拍摄对象之间的相对运动而造成的模糊现象,这一现象在日常生活中经常遇到,因此运动模糊图像复原技术便成为目前图像复原技术的研究热点之一,运动模糊图像复原是数字图像处理中的一个重要课题。它研究的主要目的是改善给定的图像质量并尽可能复原图像。图像复原的目的就是尽可能恢复被退化图像的本来面目。 运动模糊图像的复原方法研究非常具有现实意义。无论在日常生活还是在国防军工领域,运动造成图像模糊现象普遍存在,这给人

们生活和航空侦察等造成很多不便,所以很有必要对运动模糊图像的恢复做深入研究。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦查和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。通过对于运动模糊图像的复原,使图像变的清晰,便于更好地提取相应信息。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 一、图像复原的基本概念 图像复原技术,也称为图像去卷积技术,它是按着图像模糊的反过程进行,其目的是获取清晰的,未被污染的图像的近似值,从而我们可以使用相关信息来正确解读图像所包含的有效信息。要想复原图像,其中必须要知道的是模糊是空域不变的还是空域变化的:空域不变意味着模糊和位置无关。也就是说,一个模糊的物体无论从图像的那个位置看都是一样的。空域变化意味着模糊和位置有关。也就是说,模糊图像中的物体因位置变化而看起来有所不同。 二、维纳滤波图像复原 从噪声中提取信号波形的各种估计方法中,维纳滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号,而不只是它的几个参量。 设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。因此均方误差越小,噪声滤除效果就越好。为使均方误差最小,关键在于求冲

图像去雾技术研究毕业设计

诚信声明 本人声明: 1、本人所呈交的毕业设计是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计中的所有内容均真实、可信。 作者签名:日期:年月日

目录 摘要.............................................................................................................................. I Abstract ......................................................................................................................... II 第1章绪论.. (1) 1. 1 图像去雾技术分类 (2) 1.1.1 基于图像处理的雾天图像增强 (3) 1.1.2 基于物理模型的雾天图像复原 (5) 1.2 常见的去雾方法 (7) 1.2.1 最小失真图像去雾算法 (7) 1.2.2 偏振成像去雾算法 (10) 1.3 本文采用的去雾方法 (12) 1.3.1 简介 (12) 1.3.2 背景 (14) 1.3.3 暗通道先验算法 (15) 1.3.4 利用暗通道先验算法去雾 (16) 第2章MATLAB简介 (19) 2.1 MATLAB 语言的传统优点 (19) 2.2 语言新特点 (19) 2.2.1 数据类型和面向对象编程技术 (19) 2.2.2 控制流和函数类型 (20) 2.3 工作环境 (20) 2.3.1 传统工作环境 (20) 2.3.2 工作环境新特点 (21) 第3章主要程序与图像处理结果 (22) 3.1 流程图 (22) 3.2 具体程序 (23) 3.3 图像处理结果 (27) 结束语 (30) 致谢 (31) 参考文献 (32)

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1)实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y):

相关文档
最新文档