方钢管混凝土轴压柱承载力分析

方钢管混凝土轴压柱承载力分析
方钢管混凝土轴压柱承载力分析

方钢管混凝土轴压柱承载力分析

摘要:针对方钢管混凝土柱的受力特点,引入了混凝土强度折减系数和等效约束折减系数,实现了方钢管混凝土柱向圆钢管混凝土柱的等效。利用薄壁圆筒的双剪统一强度解推导了方钢管混凝土轴压短柱的极限承载力计算公式。在此基础上,引入了轴压稳定系数,建立了方钢管混凝土轴压长柱的极限承载力计算公式。利用建立的公式与文献数据进行了计算对比,结果表明:所得公式计算的轴压承载力与文献的试验结果吻合较好,对钢管混凝土的研究有一定的理论价值。

关键词:方钢管混凝土极限承载力薄壁圆筒双剪统一强度理论

1、引言

随着我国高铁建设的飞速发展,对站房的要求越来越高,站房高度和跨度的不断增加使得梁、柱所承受的荷载越来越大。承重柱作为建筑物最为重要的受力构件,是建筑物抵抗外力的关键,特别是在地震作用下,柱子不仅需要有足够的强度,而且须有很好的延性。钢管混凝土柱以其承载能力高、延性好,抗震性能优越、耐冲击、耐疲劳和施工方便等优点而在实际工程中得到广泛的应用。

方钢管混凝土柱作为钢管混凝土柱的一种形式,除具有钢管混凝土柱的优点外,还有节点形式简单、截面惯性矩大、稳定性能好、抗弯性能好的优点,具有广阔的应用前景。因此对方钢管混凝土力学性能的研究具有重要的意义。

2、方钢管混凝土柱的受力特点

钢管混凝土柱在应力水平较高时,内部混凝土的纵向微裂缝将会得到发展,其泊松比将超过0.5,随着纵向微裂缝的发展,混凝土的泊松比将会超过外钢管的泊松比,此时,钢管会对混凝土产生围压。方钢管对内部混凝土的约束很不均匀,文献[1]中指出:方钢管对核心混凝土的约束力主要集中在4个角部,而且约束力很不均匀,4个角部的混凝土受到的约束强,边部中间管壁处的混凝土受到的约束较弱。在大量的试验研究的基础上,我们得出结论:当方钢管达到钢材的极限强度时,角部钢管发生塑性变形,边部中间管壁发生局部失稳,混凝土被压碎。

由于方钢管对内部混凝土的约束的不均匀性,所以如何计算外钢管和核心混凝土之间的相互约束“效应”成为计算方钢管混凝土强度及承载力的重中之重。作者根据俞茂宏的双剪统一强度理论,分析考虑了方钢管混凝土的力学特点,在吸收目前各国在该领域研究成果的基础上,引入了混凝土强度折减系数和等效约束折减系数,实现了方钢管混凝土柱向圆钢管混凝土柱的等效。本文推导的公式是建立在薄壁圆筒的统一强度理论解的基础上,并且考虑了拉压比和中间主

钢管混凝土柱与劲性混凝土柱的优缺点对比

钢管混凝土柱与劲性混凝土柱的优缺点对比 钢管混凝土柱优点 A:钢管混凝土的抗压、抗扭和抗剪性能特别好,承载力高B: 抗震性能优越,延性很好。地震区,可不限制柱轴压比而只控制柱子的长细比 C: 采用高强混凝土时,可有效地防止混凝土的脆性破坏,充分发挥高强混凝土的强度承载力 D: 所用钢板厚度不会超过40~50mm,取材易,价格低,制作和安装方便,且易保证焊接质量 E: 施工方便,地下层可采用逆作法施工,可缩短工期,并节省地下层施工临时支护费用

钢管混凝土柱一般是采用厚型防火隔热涂料,在广州泰堡防火材料有限公司有生产。厚度与耐火时间是10-12mm-----90min , 16-18mm------120min ,20-22mm----150min ,24-26mm-----180min.包工包料的施工价格大概为40----70元/平方,取决于耐火时间。薄涂型的钢结构防火涂料好象还没有能达到3小时的,2.5小时的也不多见,如有需要可联系谢生。 今有一个钢管混凝土柱的高层建筑,需要进行柱的防火保护,耐火极限需要3.0小时,如果采用防火涂料保护,有以下疑问急需解答: 1.该采用什么样的防火涂料产品?比较可靠的有那几家公司? 2.如果采用厚涂型防火涂料,一般应多厚?如果包括具体施工在内的话,价格如何计算? 3.采用薄涂型防火涂料可行吗?造价如何? 最关键的就是大致的费用,希望能找到可靠而且经济的方法。希望有实际经验的朋友给予回复。非常感谢! 博士生ABC Score: 42 Posts: 40 Posted on 2004-06-04 22:20 关于钢管混凝土的防火,一定要采用新的方法,可大量节约防火造价 (我们的经验是大致在60-70%左右,和柱截面和荷载大小有关系)。 最近韩林海教授出版了《钢管混凝土结构-理论与实践》一书,里面 提到了他们进行的几个高层实例,很有参考价值。武汉国际证券贸易 大厦(目前武汉最高的楼)钢管混凝土防火也要开始做了,听说也是 他们做的计算。 也许你可以和他们课题组联系,看能否有帮助。 gzhtb Score: 46 Posts: 54 Posted on 2004-06-05 14:56 钢管混凝土柱一般是采用厚型防火隔热涂料,在广州泰堡防火材料有 限公司有生产。厚度与耐火时间是10-12mm-----90min , 16-18mm------120min ,20-22mm----150min ,24-26mm-----180min. 包工包料的施工价格大概为40----70元/平方,取决于耐火时间。薄 涂型的钢结构防火涂料好象还没有能达到3小时的,2.5小时的也不

钢管混凝土轴压短柱界限套箍系数

第31卷 第1期 2014年3月建筑科学与工程学报JournalofArchitectureandCivilEngineeringVol.31 No.1Mar.2014文章编号:1673‐2049(2014)01‐0083‐07 收稿日期:2013‐10‐11 基金项目:国家自然科学基金项目(41202191);陕西省自然科学基础研究计划项目(2011JM7002); 教育部高等学校博士学科点专项科研基金项目(20110205130001) 作者简介:吴 鹏(1988‐),男,甘肃张掖人,工学硕士研究生,E‐mail:wupeng6412@163.com。钢管混凝土轴压短柱界限套箍系数 吴 鹏,赵均海,张常光,朱 倩,李 艳 (长安大学建筑工程学院,陕西西安 710061) 摘要:基于统一强度理论,借助钢管混凝土轴压短柱极限承载力计算公式的推导,得出了极限状态时钢管和混凝土之间的侧压力,提出了界限套箍系数的概念,并给出界限套箍系数的计算公式,同时分析了不同套箍系数时钢管的三向应力和钢管混凝土短柱的轴压应力‐应变曲线出现不同发展趋势的原因,且理论分析得出的结论与相关文献的试验结果一致,说明分析过程的合理性;最后对影响因素进行了分析,根据分析结果提出了实用建议,并发现相关参考文献的界限套箍系数为该研究结果的特例。 关键词:钢管混凝土;统一强度理论;轴压;套箍系数;应力‐应变曲线 中图分类号:TU398.9 文献标志码:A BoundaryCasingHoopCoefficientforConcrete‐filledSteelTubularStubColumnsUnderAxialCompression WUPeng,ZHAOJun‐hai,ZHANGChang‐guang,ZHUQian,LIYan(SchoolofCivilEngineering,Chang摧anUniversity,Xi摧an710061,Shaanxi,China) Abstract:Basedonunifiedstrengththeory,aultimatebearingcapacitycalculationformulaforconcrete‐filledsteeltubularstubcolumnsunderaxialcompressionwasproposed.Thelateralpressurebetweenthesteeltubeandconcretewasgivenintheultimatestate.Theconceptoflimitcasinghoopcoefficientwaspresented,andthecalculationformulaeoflimitcasinghoopcoefficientweregiven.Meanwhile,thelimitvalueofcasinghoopcoefficientwasdefinedtoanalyzethereasonsfordifferentdevelopmenttrendswithdifferentcasinghoopcoefficientsappearedinaxialcompressionstress‐straincurve,andthetheoreticalanalysisresultsweresimilartotheexperimentresultsinrelevantliterature,andtherationalityofanalysisprocesswaspointedout.Finally,parametricstudieswerecarriedouttoanalyzetheinfluencingfactors,andthepractical suggestionswereputforwardduetotheanalysisresults.Itwasalsofoundthatthelimitcasinghoopcoefficientofrelevantreferenceswasaspecialcaseforthisstudy.Keywords:concrete‐filledsteeltube;unifiedstrengththeory;axialcompression;casinghoopco‐efficient;stress‐straincurve0引 言 钢管混凝土是钢管内填充混凝土形成的构件,它具有承载力大、塑性和韧性好、施工方便等特点[1],已被广泛应用于工程实际[2]。目前,确定钢管混凝土轴压短柱极限承载力时所遵循的基本概念

钢管混凝土空心柱轴压承载力研究

钢管混凝土空心柱轴压承载力研究张三1 (1. 西南科技大学土木工程与建筑学院,四川 绵阳621010) [摘 要] 运用统一强度理论,考虑钢管因环向受拉导致纵向应力降低的影响,得出了钢管混凝土空心长、短柱轴压极限承载力的计算公式,并分析了中间主应力等因素对极限承载力的影响规律,极限承载力随着参数b 值的增大而增大。利用本文计算公式所得结果与文献试验结果进行对比,吻合较好,验证了运用统一强度理论进行钢管混凝土空心柱轴压力学性能分析的可行性和正确性。 [关键词] 统一强度理论 钢管混凝土空心柱 轴心受压 承载力 0 引 言 钢管混凝土空心柱由钢管和混凝土内衬组合而成,其截面形式如图1所示。内衬混凝土通常采用离心法浇筑。该种构件除具有普通钢管混凝土承载力高、刚度大、塑性韧性好、抗震性能好等良好的力学性能外,还具有自身的优点:一、自重轻,由于构件中心部分的混凝土是抽空的,因而同实心钢管混凝土构件相比显著地减轻了重量,从而更便于运输和吊装;二、可以预制,该种构件可以进行大批量的工厂生产,减少现场的作业,由于是工厂的标准化生产,因此混凝土的成型质量较好地得到了保证。由于上述优点,该种构件已被广泛地应用到电塔结构中。国内外学者已对其开展了大量的研究工作,日本MIYAKI SATOSH [1-2]等先后报道了离心钢管混凝土短圆管的轴压测试和圆柱体轴向受力的剪切弯曲测试结果,分别给出了其抗压强度和极限抗弯强度的计算公式,0' Shea& Bridge [3]进行了短圆形离心钢管中填以溶剂和高强混凝土的性能试验,蔡绍怀、钟善桐等先后进行了钢管混凝土空心短柱和长柱的试验研究[4-7]。本文拟运用统一强度理论,考虑钢管因环向受拉导致纵向应力降低的影响分析钢管混凝土空心柱的轴压力学性能。 图1 钢管混凝土空心柱截面示意图 1 统一强度理论 统一强度理论是1991年俞茂宏从双剪单元体出发,考虑应力状态的所有应力分量以及它们对材料屈服和破坏的不同影响,建立的一种全新的统一强度理论和一系列新的典型计算准则,它用一个统一的力学模型、简单的统一的数学表达式,可以十分灵活地适用于各种不同特性的材料,其数学表达式为[8]: ()t b b F σσσα σ=+- =+3211 当α ασσσ++≤ 13 12时 (1a) ()t b b F σασσσ=-++= '32111 当α ασσσ++≥1312时 (1b) 2钢管混凝土空心短柱的轴压承载力 2.1钢管混凝土空心短柱的受力和破坏机理 钢管混凝土空心柱中,在受荷初期,由于钢材的泊松比大于混凝土的泊松比,因此钢材的横向变形大

高层建筑中的钢管混凝土柱及其节点_pdf.

高层建筑中的钢管混凝土柱及其节点 摘 要:我国一些高层建筑采用了钢管混凝土柱,取得了较好的技术和经济效果。本文主要综合介绍用于高层建 筑的钢管混凝土柱及其节点的形式,供设计时参考。关键词:高层建筑;钢管混凝土柱;钢管混凝土柱节点 在高层建筑中使用钢管混凝土柱具有其特殊优 "概述 钢管混凝土是在钢管中填充混凝土,利用钢管 点:用钢管混凝土柱代替普通钢筋混凝土柱,可以使柱截面大大缩小,而且可以提高抗震性能,方便施工等;利用钢管混凝土柱代替钢结构中的钢柱,可以减少用钢量,加强结构刚度;在高层建筑多层地下室的逆作法施工中,它更充当重要的角色。广州市的好世界广场大厦(##层,图!$),新中国大厦(%&层, 图!’),合银大厦(("层,图!)),深圳的赛格广场(*"层,图等大型高层建筑,都以不同的形式采用了钢管混!+) 凝土柱,部分还将之构成内框筒或用于逆作法建造多层地下室,在技术上和经济上均取得很好的效果。 对填心混凝土的套箍作用,使核芯混凝土受纵向压力时处于三向受力状态,从而提高其轴向抗压能力。钢管混凝土结构除强度高外,还有重量轻、延性好、[!] 耐疲劳和冲击、省料和施工方便等优点。 由于钢管混凝土结构具有上述优点,因此在民用和工业建筑、桥梁和地铁等工程中得到广泛的应用。近年来,随着我国高层建筑的发展,利用钢管混凝土作为其主要承重柱的也逐渐增多。 !

好世界广场大厦" 新中国大厦 图" $合银大厦#赛格广场 采用钢管混凝土柱的高层建筑 高层建筑中使用的钢管混凝土柱主要是圆形截面的,但有时也会采用其他截面型式而形成异型柱。我国对圆形截面钢管混凝土柱已有深入的系统研究[!,",#]和实践经验,而对异型截面柱的研究则比较少, 的节点形式,为在高层建筑中推广应用钢管混凝土柱提供了更广阔的空间。 本文主要就高层建筑中所采用的钢管混凝土柱及其节点的形式和应用作一扼要的综合介绍。 应用也还不很多。 钢管混凝土柱与楼盖连结的节点,是实际应用中的一个重要部分。当它与钢结构楼盖连结时,构造比较简单,但与钢筋混凝土楼盖连结时则比较复杂,甚至影响了对它的使用,因此不少单位开展了这方面的研究,并已取得了可观的成果,提出了多种多样 我国在改革开放以来,高层建筑在数量上不断增加,高度也不断加高,而建造高层建筑大多数采用钢筋混凝土结构,结构自重很大, !钢管混凝土柱 !""!年#月第#期容柏生:高层建筑中的钢管混凝土柱及其节点 1@A!""!AB)# 加,柱的轴压力就越大,加上抗震设防的需要,为保证构件的延性,有关规范对钢筋混凝土柱均有控制轴压比(!"!#$")的要求,同时混凝土的强度等级只做到#$"或再高一些,

钢骨钢管混凝土柱轴压比限值的讨论

钢骨钢管混凝土柱轴压比限值的讨论 摘要提出界限破坏时钢骨-钢管混凝土组合柱轴压比和轴力比限值。 关键词钢管-钢骨混凝土组合柱;界限破坏;轴压比限值 轴压比是影响柱抗震性能和变形能力的重要指标之一。钢骨—钢管混凝土组合柱[1]是把钢管置入型钢混凝土中,使型钢、钢管、混凝土3种材料协同工作以抵抗各种外部效应的一种结构形式。其界限破坏的特征不明显,这是由于在组合柱中,钢骨、钢管腹板在柱界面高度上是连续的,破坏时钢管不可能全部同时屈服,试件并不能立即崩溃,而是逐渐降低其承载力。由于钢骨—钢管混凝土组合柱没有明显的界限破坏状态,且柱中钢管承担一定的轴力,所以钢骨—钢管混凝土组合柱的轴压比根据不同的理解有不同的计算方法。本文提出钢骨—钢管混凝土柱理论计算公式及轴压比限值的合理取值的建议。 1按钢筋混凝土柱轴压比限值的概念进行分析 文献[1]从界限破坏时的平衡条件出发,根据平截面假定,提出了供设计用的轴压比限值的计算公式: (1) 式中:为抗震等级影响系数,一、二和三级分别取0.8、0.9和1.0; ,为柱截面的宽和高;为考虑钢骨腹板的计算厚度,按文献中公式计算;为配钢管率。 2采用控制轴压力限值(即《型钢混凝土柱》[2]轴压比限值)的方法 型钢混凝土柱确定轴压比限值的方法和钢筋混凝土柱确定轴压比限值的方法不同在于考虑了钢骨含量对轴压比的影响。推导轴压比时,为推导公式方便,同样把外包钢骨转化为连续的钢板,利用平截面假定和外包钢的连续化。 轴压力限值的试验值 式中:为界限破坏时轴向压力试验值;为界限破坏时受压混凝土合力的试验值;为界限破坏时钢骨翼缘合力的试验值;为界限破坏时钢骨腹板合力的试验值;为界限破坏时钢管受力的试验值;,分别为混凝土轴心抗压强度试验值和钢管的抗压强度试验值;,分别为柱中混凝土部分和钢管部分的面积。 轴压力限值的设计值 轴压力限值的实用计算公式

关于钢管混凝土结构承载力的分析与探讨

关于钢管混凝土结构承载力的分析与探讨 发表时间:2018-03-07T16:08:42.107Z 来源:《建筑学研究前沿》2017年第29期作者:熊帅[导读] 只有在极少数的情况下,例如柱子承受很大的压力,或压力小而弯矩大时,则在管内配置纵向钢筋和箍筋。华南理工大学 510000 摘要:随着我国经济和建设事业的迅猛发展,近年来,钢管混凝土以其独特的优势在各项建设事业中得到了较为广泛的应用,并且也是发展前景极为广阔的一种结构形式。为了更安全合理地推广应用钢管混凝土结构,本文主要对不同截面形式钢管混凝土结构的承载力进行了分析。 关键词:不同截面;钢管混凝土结构;承载力 1.钢管混凝土结构概述 钢管混凝土结构是将混凝土注入封闭的薄壁钢管内形成的组合结构,通常用于轴心受压或偏心受压的柱,且一般都不再配筋,只有在极少数的情况下,例如柱子承受很大的压力,或压力小而弯矩大时,则在管内配置纵向钢筋和箍筋。 钢管混凝土是在劲性钢筋混凝土结构、螺旋配筋混凝土结构以及钢结构的基础上演变和发展起来的一种新型结构。在性能方面,它利用钢管和混凝土材料在受力过程中的相互制约,不仅弥补了两种材料各自的缺点,而且能充分发挥二者的优点,使整个结构具有良好的受力性能。由于钢管的存在,使核心混凝土处于三向受力的复杂应力状态,不仅使混凝土的强度提高,而且使原本脆性的混凝土由于受钢管的约束成为具有一定塑性性能的材料。 所以在钢管混凝土结构中,承载力是很重要的性质。对于不同截面的钢管混凝土结构,其截面形式的受力特点及承载力是不同的,所以,下面就几种不同截面钢管混凝土结构的承载力进行分析。 2.不同截面形式钢管混凝土结构的承载力分析 2.1常用截面形式 2.1.1圆形截面 圆形钢管混凝土是目前研究最为充分的截面形式且在工程中应用也最为广泛。对于圆形钢管混凝土柱,混凝土受到钢管对其均匀约束作用。圆形钢管混凝土承载力及变形能力均优于其他截面形式钢管混凝土构件。由于圆形钢管对于混凝土约束效果比较好,所以圆形钢管混凝土构件主要用于轴压及小偏心受压构件。对于大偏心受压构件来说,由于受拉侧钢管不能对混凝土约束,因此混凝土三向受压性能不能得到发挥。 2.1.2方形截面 方形钢管混凝土构件在结构中应用也很广泛,但是方形钢管对于混凝土的约束不如圆形钢管的约束效果好,方形钢管混凝土的承载力明显低于圆形钢管混凝土。研究表明,方形钢管对于内部混凝土的约束可以分为两个部分:有效约束区和非有效约束区,二者的界限为一抛物线,有效约束区的混凝土极限抗压强度是高于非有效约束区,非有效约束区的混凝土所受到侧向约束是不均匀的。 2.1.3八边形截面 采用圆形钢管混凝土时,在节点区域将会消耗大量的钢材同时给施工带来很大的困难,影响结构的整体经济效益。对于方形钢管混凝土柱,由于外钢管的四个角部分应力集中比较严重,易出现薄弱区域,特别对于抗震不利。同时当构件截面的钢管的宽厚比很大时,则要考虑钢管局部屈曲。采用八边形钢管混凝土结构不仅可以缓解方形钢管混凝土四角应力集中问题及局部屈曲,同时可以兼顾到圆形钢管的约束效果。八边形钢管对于混凝土的约束也分为有效约束区及非有效约束区,且二者界限也为一抛物线。但是由于八边形钢管其角点为120度相比于方形钢管混凝土角点90度,其尖锐性缓解很多,有效缓解了方形钢管混凝土角点应力集中问题,同时又兼顾了方形钢管混凝土梁柱节点的连接,相比于圆形和方形钢管混凝土结构具有一定的优势。各截面应力图如图1所示。

薄壁钢管混凝土长柱轴压性能试验研究

第35卷第1期建 筑 结 构2005年1月 薄壁钢管混凝土长柱轴压性能试验研究 张耀春 许 辉 曹宝珠 (哈尔滨工业大学土木工程学院 150090) [提要] 对8根方形和八边形薄壁钢管混凝土长柱的轴压性能进行了试验研究,柱的长宽比为14~40,管壁板件的宽厚比为67~125。试验结果表明,方形薄壁钢管混凝土长柱的轴压破坏为弯曲屈曲破坏,八边形薄壁钢管混凝土长柱的破坏主要表现为强度破坏,破坏之前钢管均发生了局部屈曲现象。柱子的承载力随着长细比的增加而显著下降。在薄壁钢管混凝土短柱试验结果的基础上,线性回归了方形轴压长柱极限承载力折减系数,在上述长宽比的范围内,公式计算值与试验结果吻合良好。 [关键词] 薄壁钢管混凝土 长柱 轴压 静力性能 承载力 折减系数 局部屈曲 Experimental R esearch on Static B ehavior of Axially Loaded Long Column of Concrete2f illed Thin2w alled Steel Tube Author:Zhang Y aochun,Xu hui,Cao Baozhu(School of Civil Eng.,Harbin Institute of Technology,150090,China) Abstract:Experiments have been carried out to8long columns of concrete2filled thin2walled steel tube under axial load.Their cross2sections are square or octagon.The length2width ratio of the columns is14~40,and the width2 thickness ratio of the tube plates is67~125.The experimental results show that damage mode of the square long columns is flexural buckling failure,and that of the octagon long columns is mainly strength failure.The local buck2 ling occurs in the plates of the steel tube before failure.The ultimate load greatly drops with the increasing of slender2 ness ratio of the column.Based on the experimental results of stub columns of concrete2filled thin2walled steel tube, the ultimate load reduction factor is linearly regressed counting for the effect of slenderness ratio.The calculation re2 sults are basically identical with experimental ones. K eyw ords:long columns;concrete2filled thin2walled steel tube;axial load;reduction factor;local buckling 国内外学者对多边形薄壁钢管混凝土长柱静力性能的研究刚刚起步[123]。由于薄壁钢管混凝土轴压长柱在最终破坏之前管壁均发生了局部屈曲现象,如用理论方法分析其静力性能必须考虑管壁与内填混凝土以及柱子整体稳定与管壁局部稳定之间的相关作用,影响因素多,计算十分复杂。故从实用角度入手,利用有效宽度方法,考虑管壁局部屈曲后的性能,通过线性回归提出了方形长柱极限抗压承载力的算法。 一、试验概况 11试件参数 共进行了5根方形和3根八边形薄壁钢管混凝土长柱的轴压试验,试件的具体参数见表1。 21试件制作 制作方形(八边形)薄壁钢管时,先按要求的长度将薄壁钢管冷弯成2个半方形(半八边形)截面的管柱,然后对焊,其截面如图1所示。在空钢管的一端焊上盖板,兼作浇灌混凝土的底模,另一端盖板等混凝土灌满、养护和打磨平整之后再焊接,盖板和空钢管的几何中心对中。然后在上盖板表面的柱子截面形心处焊上钢榫,保证其与盖板垂直。 浇灌钢管内混凝土时,采用人工浇灌。用5cm直 试件参数表1试件 编号 宽度b (mm) 壁厚t (mm) 柱长L (mm) L0 α (%) ξL0 b b t λ f y (MPa) f ck (MPa) LC4211000183000314431201300311412510819330103513 LC422120110240025443130128721121207314307133513 LC42310011230003162418014103116831310915216122513 LC424100110200021404110129921141007411216172917 LC42515021020002140516014471413754914237102917 LC82180018300031431170115839131005715330103514 LC8229011024002542118011572813904113307133513 LC823801123000316221501214391683135718216123513 注:LC4代表方形截面;LC8代表八边形截面;L为钢管长度;t 为薄壁钢管壁厚;b为薄壁钢管边长;L0为薄壁钢管混凝土长柱的计算长度(柱计算长度L0=L+2h1+2h2,h1为柱端焊接钢盖板厚度,为10~20mm;h2为加荷板厚度,为60mm);λ为构件的长细比(方形截面柱λ=23L0/b,八边形截面柱λ=L0/i,i为截面回转半径);α为含钢率,α=A s/A c;ξ为套箍系数,ξ=αf y/f ck,f ck为混凝土轴心抗压强度标准值;f y为钢材的屈服强度。 径振捣棒振实。 31加载设备及监测方法 试验所有试件都在哈尔滨工业大学力学与结构试验中心的5000kN压力机上进行。为了避免构件发生 82

钢管混凝土结构技术

术语 2.1.1 钢管混凝土构件:在钢管内填充混凝土的构件,包括实心和空心钢管混凝土构件,截面可为圆形、矩形、及多边形,简称CFST 构件 2.1.2 钢管混凝土结构:采用钢管混凝土构件作为主要受力构件的结构,简称CFST结构 2.1.3 实心钢管混凝土构件:钢管中填满混凝土构件,简称S-CFST结构 2.1.4 空心钢管混凝土构件:在空钢管中灌入一定量混凝土,采用离心法制成的中空心的钢管混凝土构件,简称H-CFST结构 2.1.5 含钢率:构件界面中钢管面积与混凝土面积之比 2.1.6 空心率:空心钢管混凝土构件截面中空心部分的面积与混凝土加空心部分总面积之比 2.1.7 套箍系数:构件截面中钢管面积、钢材强度设计值乘积与混凝土面积、混凝土强度设计乘积之比 2.1.8 钢管海砂混凝土构件采用海砂混凝土制作的钢管混凝土构件 2.1.9 钢管再生混凝土构件:采用再生骨料混凝土制作的钢管混凝土构件 3 材料 3.1.1 钢材的选定应符合现行国家标准《钢结构设计规范》GB50017的有关规定 3.1.2 承重结构的圆钢管可采用焊接圆钢管、热轧无缝钢管,不宜选用输送流体用的螺旋焊管。矩形钢管可采用焊接钢管,也可采用冷成形矩形钢管,当采用冷成形矩形钢管时,应符合现行行业标准《建筑结构用冷弯矩形钢管》JG/T 178中I级产品的规定。直接承受动荷载或低温环境下的外露结构,不宜采用冷弯矩形钢管。多边形钢管可采用焊接钢管,也可采用冷成型多边形钢管 3.1.3 钢材的强度设计值f,弹性模量E 和剪变模量G 应按现行国家标准《钢结构设计规范》GB50017 执行 1 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85 2 钢材应有明显的屈服台阶,且伸长率不应小于20% 3 钢材应有良好的可焊性和合格的冲击韧性 3.2.1 钢管内的混凝土强度等级不应低于C30。混凝土的抗压强度和弹性模量应按现行国家标准《混凝土结构设计规范》GB 50010执行;当采用C80 以上高强度混凝土时,应有可靠的依据 3.2.2 实心钢管混凝土构件中可采用海砂混凝土。海砂混凝土的配合比设计、施工和质量验收和验收应符合现行行业标准《海砂混凝土应用技术规范》JGJ206的规定。 3.2.3 钢管混凝土构件中可采用再生骨料混凝土。再生骨料混凝土的搭配比设计、施工、质量验收和验收应符合现行行业标准《再生骨料应用技术规范》JGJ/t 240 的规定 3.2.4 钢管混凝土构件中可采用自密实混凝土。自密实混凝土的配合比设计、施工、质量检验和验收应符合现行行业标准《自密实混凝土应用技术规程》JGJ/T 283 的规定 3.3.1 用于钢管混凝土结构可采用应符合下列规定: 1 手工焊接用的焊条应符合现行国家标准《非合金钢及细晶粒钢焊条》GB/T 5117 和《热强钢焊条》GB/T 5118 的规定。选择的焊条形号应与被焊钢材的力学性能相适应 2 自动或半自动焊接用的焊丝和焊剂应与被焊钢材相适应,并应符合国家现行有关标准的规定 3 二氧化碳气体保护焊接用的焊丝应符合现行国家标准《气体保护电弧焊用碳钢、低合金钢焊丝》GB/T 8110 的规定 4 当两种级别的钢材相焊接时,可采用与强度较低的钢材相适应的焊接材料 3.3.2 焊缝的强度设计值应按现行国家标准《钢结构设计规范》GB 50017执行 3.3.3 当采用螺栓等紧固件连接钢管混凝土构件时,连接紧固件应符合下列规定: 1 普通螺栓应符合现行国家标准《六角头螺栓C级》GB/T 5780 和《六角头螺栓C级》GB/T 578 2 的规定。可采用4.6级和4.8级的C级螺栓 2 高强度螺栓应符合现行国家标准《钢构件用高强度大六角头螺栓》GB/T 1228、《钢构件用高强度大六角头螺母》GB/T 1229、《钢构件用高强度垫圈》GB/T 1230、《钢构件用高强度大六角头螺栓、大六角头螺母、垫圈技术条件》GB/T 1231 或《钢结构用扭剪型高强度螺栓连接副》GB/T 3632的规定。当螺栓需要热镀锌防腐时,宜采用6.8级和8.8级C级螺栓 3 普通螺栓连接和高强度螺栓连接的设计应按现行国家标准《钢结构设计规范》GB 50017 执行。 3.3.4 栓钉应符合现行国家标准《电弧螺柱焊用圆柱头焊钉》BG/T 10433 的规定。 4.1 一般规定 4.1.1 钢管混凝土结构可采用框架结构、框架-剪力墙结构、框架-核心筒结构、框架-支撑结构、筒中筒结构、部分框支-剪力墙结构和杠塔结构。

相关文档
最新文档