不饱和度的一般计算方法

不饱和度的一般计算方法
不饱和度的一般计算方法

不饱和度的一般计算方法

不饱和度又称缺氢指数。分子中每产生一个C=C或C=O或每形成一个单键的环,就会产生一个不饱和度,每形成一个C≡C,就会产生2个不饱和度,每形成一个苯环就会产生4个不饱和度。

碳原子数目相同的烃,氢原子数目越少,则不饱和度越大。

1.根据有机物化学式计算

若有机物化学式为C n H m,则

2m

2

2n

Ω-

+

=

注:①若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,故在进行不饱和度计算时,可不考虑氧原子。

如:CH2=CH2、C2H4O、C2H4O2的Ω均为1。

②有机物分子中的卤素原子取代基,可视作氢原子计算Ω。

③碳的同素异形体,可把它视作m=0的烃,按上式来计算Ω。如足球烯C60,Ω=31。

2.根据有机物分子结构计算

Ω=双键数+叁键数×2+环数

注:苯( )分子中可看成有一个环和3个双键。

如:① :Ω=6,化学式为C 8H 6。

Ω=5,化学式为C 14H 20O 。

③ Ω=10,化学式为C 14H 10。

3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算其成环的不饱和度比面数小1。

如:①立方烷 面数为6,Ω=5,化学式为C 8H 8;

C CH

O

②棱晶烷面数为5,Ω=4,化学式为C6H6;

③金刚烷面数为4,Ω=3,化学式为C10H16

不饱和度的计算

不饱和度及其应用 不饱和度又称为“缺氢指数”,用希腊字母Ω来表示,顾名思义,它是反映有机物分子不饱和程度的量化标志。烷烃分子中饱和程度最大,规定其Ω=0,其它有机物分子和同碳原子数的开链烷烃相比,每少2个H,则不饱和度增加1; 计算有机物的不饱和度有二种方式: 一、根据化学式计算: 烃的分子式为C x H y,则 如果有机物为含氧衍生物,因氧为2价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1,氧原子“视而不见”。有机物分子中卤原子—X以及—NO2、—NH2等都视为相当于H原子(如:C2H3Cl的不饱和度为1)。 对于碳的同素异形体,可以把它看成y等于0的烃来计算, 即:例如:C70的=71 同分异构体的分子式相同,所以同分异构体的不饱和度也相同,因此只需注意双键数、三键数和环数,无需数H原子数。 不饱和度()又称缺H指数,有机物每有一不饱和度,就比相同碳原子数的烷烃少两个H原子,所以,有机物每有一个环,或一个双键(),相当于有一个不饱和度, 相当于2个,相当于三个。利用不饱和度可帮助推测有机物可能有的结构,写出其同分异构体。 常用的计算公式:

二、根据结构计算: 不饱和度= 双键数+ 三键数×2 + 环数(注:苯环可看成是三个双键和一个环) (注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数 ...........................,双键包括碳氧双键等)如:1、单烯烃和环烷烃的:Ω=1(二烯烃:Ω=2); 2、CH3—C≡CH:Ω=2(:Ω=2) 3、:Ω=4(可以看成一个环与三个双键构成):Ω=7 *4、立体封闭多面体型分子:Ω=面数-1 :Ω=5 :Ω=2 不饱和度的应用: (1)已知结构式较复杂有机物的化学式; (2)已知分子式判断其中可能含有的官能团及其数量(Ω大于4的应先考虑可能含苯环)。(3)辅助分析同分异构体(同分异构体间不饱和度相同) 例题1:求降冰片烯的分子式 例题2:右图是一种驱蛔虫药--山道年的结构简式,试确定其分子式为____________。

不饱和度巧解有机化学题 (2)

不饱和度巧解有机化学题 【鸣谢】 本节课为本人结合多年教学经验以及化学同仁们一起交流的结果。希望这节课能够进行推广,特别对于部分选择选修五教学的省份,更希望同仁们对不足之处提出宝贵意见。 【知识点引入】不饱和度又称缺氢指数,即有机物分子与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用Ω表示。 【板书】一、不饱和度的概念以及标准 参考标准:烷烃Ω=0 【学生理解,传授知识】同学们进行,我们理解了不饱和度的概念之后,那我们接下来应该解决两个问题:其一,不饱和度如何进行计算?其二,不饱和度如何在有机化学题目中体现出事半功倍的作用呢?皆如何妙用呢?接下来我们一起探讨探讨。 【板书】一、不饱和度的计算方法 【教师提出问题,学生讨论回答】 1.若有机物的化学式为CxHy,则该类型的不饱和度如何求解呢? 2.若有机物为含氧化合物CxHyOz该类型不饱和度呢? 3.若有机物为含氮化合物,设化学式为C x H y N z,则该类型的不饱和度呢? 4.有机物分子中的卤素原子做取代基,该类型的不饱和度呢? 【教师进行指导归纳】

【板书】1、根据有机物分子式进行计算 1.若有机物的化学式为CxHy,则该类型的 2.若有机物为含氧化合物CxHyOz,由于O元素化合价为二价,所以引入多个氧原子,对于不饱和度无影响,所以该类型的不饱和度依然 为 3.若有机物为含氮化合物,设化学式为C x H y N z,由于N为三价,每引入一个N原子,则相当于多引入一个H,所以该类型的的化学式可以转化为C x H y-z 4.有机物分子中的卤素原子做取代基,该类型就是卤代烃,由于卤代烃中的卤素原子取代了氢原子,所以将卤原子认为氢原子进行计算。【理论进行实践学生练习】 1、计算下列分子的不饱和度Ω C2H6、 C3H6、 C2H2、 C3H4、 C6H6、 C8H8 2、计算下列分子的不饱和度Ω C5H6Cl2 C3H8O3 C3H9N 【知识升华高考考点】 【板书】总结不饱和度(Ω)与分子结构的关系 1.若Ω=0,分子是饱和链状结构(烷烃和烷基的Ω=0 )。 2.若Ω=1,分子中有一个双键或一个环。 3.若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余此类推。

有机化合物不饱和度的计算和应用.doc

有机化合物不饱和度的计算和应用 上海建平世纪中学(201204) 周平 近两年,上海高考化学试卷中分析有机物的结构问题呈现出日益复杂的趋势,用常规思维来解决这类开放性的问题,难免会出现遗漏、差错,2004年上海卷22题难度系数高达11%,此类问题考生若能运用不饱和度来处理,就不会出现得分率低于11% 的“悲惨”局面。 什么是不饱和度?如同物质的溶解性可以用溶解度定量表示,弱电解质的电离程度用电离度表示一样,不饱和度是反映有机化合物不饱和程度的量化指标即缺氢程度,常用Ω表示,Ω值越大,则有机物的不饱和度越大。Ω最小值为0,如烷烃、饱和卤代烃、饱和醇与醚,这些有机物中氢元素的含量已达到饱和,不能再结合氢原子。某烃C n H m 与含相同碳原子数的烷烃C n H 2n+2相比较,若少2个氢原子其不饱和度为1,少4个氢原子其不饱和度为2,所以C n H m 的不饱和度) 22(21m n -+=Ω。 一、不饱和度的计算 先将某化合物(本文仅讨论烃和烃的含卤、含氧衍生物)的分子式转变为只含碳氢两种元素的分子式,作为“相当的烃”,再把后者跟烷烃相比较。 计算的一般方法是: (一)将每个卤素原子(X )看成H 原子,氧原子(O )“视而不见”(即不予考虑),得到的分子式设为C n H m (作为相当的烃)。 (二)将相当的烃的分子式C n H m 与含相同碳原子数的烷烃“参照烃”C n H 2n+2相比较,C n H m 的不饱和度) 22(21m n -+=Ω。 (三)举例 例1 求苯C 6H 6的不饱和度 解:Ω=1/2(2×6+2-6)=4 例2 求氯乙烯C 2H 3Cl 的不饱和度 解:用H 代替分子式中的Cl ,C 2H 3Cl 相当于C 2H 4,其Ω=1/2(2×2+2-4)=1 例3 求C 4H 8O 2的不饱和度 解:省略2个O 原子,求C 4H 8O 2的不饱和度等于求C 4H 8的不饱和度 则 Ω=1/2(2×4+2-8)=1 Ω=1代表分子结构中可能有一个C=C 或一个C=O 双键(如羰基、醛基、羧基、酯基)或一个环状结构,Ω=2可能是2个上述结构的组合,也可能是一个C ≡C 键,依此类推。在Ω≥4,且碳原子数超过6时,常考虑苯环(相当于1个碳环和3个C=C 键的加合),各类有机物的组成、基团和不饱和度的相互关系如下表所示: 表一:烃的组成与不饱和度的关系 表二:烃的衍生物组成与不饱和度的关系

有机物的不饱和度

有机物的不饱和度 班级:________________,姓名:_________________。 例1.有机物不饱和度的计算与分子式的书写 1.1.计算下列有机物的不饱和度: Ω=4+0×2+2=6。Ω=6+1×2+2=10。 1.2.写出下列有机物的分子式: (1),________________。C17H12O6 (2)(2003上海),________________。C24H12 例2.同分异构体、同系物的快速判断:不饱和度Ω相同 2.下列物质中,互为同系物的是() A. B.HCOOCH3与CH3COOH C.苯乙烯与CH3-CH=CH2 D.C6H5OH与C6H5CH2OH 例3.官能团的判断,同分异构体的书写 3.1.(2004上海)某芳香族有机物的分子式为C8H6O2,它的分子(除苯环外不含其它环)中不可能有(D ) A.两个羟基 B.一个醛基 C.两个醛基 D.一个羧基 3.2芳香化合物E的分子式是C8H8Cl2。E的苯环上的一溴取代物只有一种,写出E的所有可能的结构简式。 解:卤素原子与H等效,C8H8Cl2可转化为C8H10,Ω=8+1-10/2=4,又为芳香化合物,说明只含一个苯环,其余均饱和,故结构即可迎刃而解。答案如下:

变式训练: 1.据报道,1995年化学家合成了一种分子式为C200H200的有机物,它是含多个碳碳叁键的链状烃,则该分子中含碳碳叁键最多是(B ) A.49个 B.50个 C.51个 D.不能肯定 2.分子式为C5H7Cl的有机物,其结构不可能是(A) A.只有一个双键的直链有机物 B.含有两个双键的直链有机物 C.含有一个双键的环状有机物 D.含有一个三键的直链有机物 3.下列有机物的分子式能成立的是(B) A.C2H3O B.C7H5Br3 C.C6H4NO2 D.C4H8NO 4.(2003全国)人们使用四百万只象鼻虫和它们的215磅粪便物,历经30多年时间弄清了棉子象鼻虫的四种信息素的组成,它们的结构可表示如下: 则以上四种信息素中,互为同分异构体的是(C) A.①和②B.①和④C.③和④D.②和④ 5.(双选)月桂烯的结构简式为: 下列物质与月桂烯互为同分异构体是是(AC ) A. B. C. D. 柠檬烯双戊烯水芹烯对伞花烃 6.(2009浙江)一种从植物中提取的天然化合物a-damascone,可用于制作“香水”,其结构如下图,有关该化合物的下列说法不正确的是(C) A.分子式为C13H20O B.该化合物可发生聚合反应 C.1mol该化合物完全燃烧消耗19mol O2 D.该化合物可发生取代反应 7.写出下列物质的分子式: (1),________________。C14H10

根据有机物的化学式计算不饱和度

根据有机物的化学式计算不饱和度 (1)若有机物的化学式为CxHy则Ω=(2x+2-y)/2 (2)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1。氧原子“视而不见” 推导:设化学式为CxHyOz-------------CxHy-z(OH)z ,由于H、OH都是一价在与碳原子连接,故分子式等效为CxHy。 (3)若有机物为含氮化合物,设化学式为CxHyNz-------------CxHy-2z(NH2)z,由于—H、—NH2都是一价在与碳原子连接,故分子式等效为CxHy-z (4)按照该法可以推得其它有机物分子的不饱和度 (5)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。如:C2H3Cl的不饱和度为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (6)碳的同素异形体,可将它视作Ω=0的烃。 如C60 (7)烷烃和烷基的不饱和度Ω=0 2.非立体平面有机物分子,可以根据结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5 61 |评论 U=1+n4 +1/2*(n3-n1), n4表示4价原子数,一般是C原子,n3表示3价原子数,一般是N 原子,n1表示一价原子数,一般是H原子,2价的O不需考虑。

不饱和度,又称缺氢指数,是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。此概念在推断有机化合物结构时很有用。从有机物结构计算不饱和度的方法:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃亚胺、羰基化合物等)贡献一个不饱和度。一个叁键(炔烃、腈等)贡献两个不饱和度。一个环(如环烷烃)贡献一个不饱和度。环烯烃贡献2个不饱和度。 从有机物分子结构计算不饱和度的方法 根据有机物分子结构计算,Ω=双键数+叁键数×2+环数如苯: Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。补充理解说明:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。一个叁键(炔烃、腈等)贡献2个不饱和度。一个环(如环烷烃)贡献1个不饱和度。环烯烃贡献2个不饱和度。一个苯环贡献4个不饱和度。一个碳氧双键贡献1个不饱和度。一个-NO2贡献1个不饱和度。例子:丙烯的不饱和度为1,乙炔的不饱和度为2,环己酮的不饱和度也为2。 从分子式计算不饱和度的方法 第一种方法为通用公式:Ω=1+1/2∑Ni(Vi-2) 其中,Vi 代表某元素的化合价,Ni 代表该种元素原子的数目,∑ 代表总和。这种方法适用于复杂的化合物。第二种方法为只含碳、氢、氧、氮以及单价卤素的计算公式:Ω=C+1-(H-N)/2 其中,C 代表碳原子的数目,H 代表氢和卤素原子的总数,N 代表氮原子的数目,氧和其他二价原子对不饱和度计算没有贡献,故不需要考虑氧原子数。这种方法只适用于含碳、氢、单价卤素、氮和氧的化合物。第三种方法简化为只含有碳C和氢H或者氧的化合物的计算公式:Ω =(2C+2-H)/2 其中C 和H 分别是碳原子和氢原子的数目。这种方法适用于只含碳和氢或者氧的化合物。补充理解说明:(1)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度计算时可不考虑氧原子。如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω为1。(2)有机物分子中的卤素原子取代基,可视作氢原子计算不饱和度Ω。如:C2H3Cl的Ω为1,其他基团如-NH2、-SO3H等都视为氢原子。(3)碳的同素异形体,可将其视作氢原子数为0的烃。如C60(足

不饱和度在高中化学中的妙用

不饱和度在高中化学中 的妙用 https://www.360docs.net/doc/502281258.html,work Information Technology Company.2020YEAR

不饱和度在高中化学中的妙用 一、不饱和度的概念 不饱和度 (英文名称:Degree of unsaturation),又称缺氢指数或者环加双键指数(index of hydrogen deficiency (IHD) or rings plus double bonds ),是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。 二、不饱和度的计算方法 (1)、从有机物的分子式计算不饱和度的方法 第一种方法 若有机物中只含碳、氢元素, Ω=222H C -+ (其中C 和H 分别代表碳原子和氢原子的数目) 例如:CH 2=CH 2的不饱和度Ω=24 222-+?=1 第二种方法: 若有机物中只含碳、氢、氧、氮和单价卤族元素, Ω=21H N C -++ (其中C 代表碳原子数目,H 代表氢原子和卤素原子的总数,N 代表氮原子的数目) 例如:C 3H 7O 2N 的不饱和度Ω=27113-++=1

补充理解说明: ①有机物分子中含有卤素等一价元素时,可视为氢原子计算不饱和度,例如:C2H3Cl的不饱和度Ω为1。 ②有机物分子中含有氧、硫等二价元素时,因为“C=O”与“C=C”等效,故计算不饱和度时可忽略氧原子,例如:CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω均为1。 ③有机物分子中含有氮、磷等三价元素时,每增加一个三价原子,则等效为减少一个氢原子,例如:CH3NH2(氨基甲烷)的不饱和度Ω为0。 ④碳的同素异形体,可将其视作氢原子数为0的烃,例如C60(足球烯,或者富勒烯,Buckminster fullerene)的不饱和度Ω为61。 ⑤对于烃的含氧衍生物(C n H m O z),由于氢原子的最大值是 2n+2(如饱和一元醇C n H2n+2O),所以其不饱和度为零,依此类推,饱和一元醛(C n H2n O),饱和一元羧酸(C n H2n O2),由于含有一个碳氧双键而比同碳数的饱和一元醇减少了2个氢原子,也可视为其不饱和度Ω=1。这样,对于一个有机物分子——烃或烃的含氢衍生物,只要知道了其不饱和度,就能推断出其可能的结构。即有下列关系: 若Ω=0,说明有机分子呈饱和链状,分子中的碳氢原子以C n H2n+2(此为饱和烃分子式通式)关系存在。 若Ω=1,说明有机分子中含有一个双键或一个环。

不饱和度

C C 不饱和度 一、不饱和度的概念 不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和程度的量化标志,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表示。 二、不饱和度的计算 1、根据有机物的化学式计算 常用的计算公式: 烃(C n H m):Ω=卤代烃(C n H m X Z):Ω= 含氧衍生物(C n H m O Z):Ω=含氮衍生物(C n H m N Z):Ω= 公式繁多,现简化如下: 将有机物的化学式转化为CxHyOa(NH)b则Ω=x+1-y/2 此公式使用范围极广,可囊括几乎所有有机物,无需分类讨论,硅与碳等效,卤素与氢等效,硫与氧等效。例:C10H4Cl2可转化为,则Ω= C20H31O2N3可转化为,则Ω= 2、非立体平面有机物分子,可以根据结构计算 Ω=双键数+叁键数×2+环数 备注:双键包含碳碳、碳氮、氮氮、碳氧双键;叁键包含碳碳、碳氮叁键;环数等于将环状分子剪成开链分子时,剪开碳碳键的次数,环包含含N、O、S等的杂环。 如苯:Ω=,即苯可看成三个双键和一个环的结构形式。 例: Ω=Ω=Ω= 3、立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 例: 立方烷面数为,Ω=降冰片烷面数为,Ω=棱晶烷面数为,Ω= 三、不饱和度(Ω)与分子结构的关系 1、若Ω=0,说明分子是饱和链状结构; 2、若Ω=1,说明分子中有一个双键或一个环; 3、若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余类推; 4、若Ω≥4,说明分子中很可能有苯环。 2 2 2m n- + 2 2 2z m n- - + 2 2 2m n- + 2 2 2z m n+ - +

有关有机物不饱和度计算的总结

一.不饱和度的概念 不饱和度又称缺氢指数,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用Ω表示。 二.不饱和度的一般计算方法 1.根据有机物的化学式计算 (1)若有机物的化学式为CxHy则 (2)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1。氧原子”视而不见” 推导:设化学式为CxHyOz-------------CxHy-z(OH)z ,由于H、OH都是一价在与碳原子连接,故分子式等效为CxHy。 (3)若有机物为含氮化合物,设化学式为CxHyNz-------------CxHy-2z(NH2)z,由于—H、—NH2都是一价在与碳原子连接,故分子式等效为CxHy-z (4)按照该法可以推得其它有机物分子的不饱和度 (5)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。如:C2H3Cl的不饱和度为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (6)碳的同素异形体,可将它视作Ω=0的烃。 如C60 (7)烷烃和烷基的不饱和度Ω=0 2.非立体平面有机物分子,可以根据结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5 三、不饱和度的应用 1、求较复杂有机物的化学式 例:是一种驱蛔虫药--山道年的结构简式,试确定其分子式为 ____________。 解析:从结构图中可见,分子中有14个碳原子,3个氧原子,又 有3个环和4个双键。Ω=7 氢原子数为2n+2-2Ω=2×14+2-2×7=16 ∴化学式为C14H16O3 2、知道了一种烃的不饱和度,就可以推测它可能的结构。例如:如果某烃的不饱和度为5,那么我们就可知道其分子中可能有一个苯环和一个碳碳双键。 3、如某有机物的分子式是C3H9N,求它的同分异构体? 首先分析它的饱和性,Ω= 0,则按饱和的方式去书写出

不饱和度的计算

不饱和度的计算 不饱和度又称缺氢指数,是有机物分子不饱和程度的量化标志,用希腊字母Ω表示。医学教育|网收集整理规定烷烃的不饱和度是0(所有的原子均已饱和)。 不饱和度的计算方法: 1.根据有机物的化学式计算 Ω=(C原子数×2+2-氢原子数)÷2 (1)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度计算时可不考虑氧原子。 如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的Ω为1。 (2)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。 如:C2H3Cl的Ω为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (3)碳的同素异形体,可将其视作氢原子数为0的烃。 如C60(足球烯)。 (4)烷烃和烷基的不饱和度Ω=0。 如CH4(甲烷)。 (5)有机物分子中含有N、P等三价原子时,每增加1个三价原子,则等效为减少1个氢原子。 如CH3NH2(氨基甲烷)的Ω=0。 2.根据有机物分子结构计算 Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4即苯可看成三个双键和一个环的结构形式。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5。 根据有机物分子结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 补充理解说明:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。 一个叁键(炔烃、腈等)贡献2个不饱和度。 一个环(如环烷烃)贡献1个不饱和度。环烯烃贡献2个不饱和度。 一个苯环贡献4个不饱和度。一个碳氧双键贡献1个不饱和度。 一个-NO2贡献1个不饱和度。

(完整版)不饱和度

C C 不饱和度 一、不饱和度的概念 不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和程度的量化标志,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表示。 二、不饱和度的计算 1、根据有机物的化学式计算 常用的计算公式: 烃(C n H m ):Ω= 卤代烃(C n H m X Z ):Ω= 含氧衍生物(C n H m O Z ):Ω= 含氮衍生物(C n H m N Z ):Ω= 公式繁多,现简化如下: 将有机物的化学式转化为CxHyOa(NH)b 则Ω=x+1-y/2 此公式使用范围极广,可囊括几乎所有有机物,无需分类讨论,硅与碳等效,卤素与氢等效,硫与氧等效。 例:C 10H 4Cl 2可转化为C 10H 6 ,则Ω=10+1-6/2=8 C 20H 31O 2N 3可转化为C 20H 28O 2(NH)3 ,则Ω=20+1-28/2=7 2、非立体平面有机物分子,可以根据结构计算 Ω=双键数+叁键数×2+环数 备注:双键包含碳碳、碳氮、氮氮、碳氧双键;叁键包含碳碳、碳氮叁键;环数等于将环状分子剪成开链分子时,剪开碳碳键的次数,环包含含N 、O 、S 等的杂环。 如苯:Ω=6+1-6/2=3+1=4,即苯可看成三个双键和一个环的结构形式。 例: Ω=4+0×2+2=6 Ω=6+1×2+2=10 Ω=8+0×2+3=13 3、立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 例: 立方烷面数为6 ,Ω=5 降冰片烷面数为3 ,Ω=2 棱晶烷面数为 5 ,Ω=4 三、不饱和度(Ω)与分子结构的关系 1、若Ω=0,说明分子是饱和链状结构; 2、若Ω=1,说明分子中有一个双键或一个环; 3、若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余类推; 4、若Ω≥4,说明分子中很可能有苯环。 四、不饱和度的应用 1、辅助推导化学式 思路:结构简式——计算不饱和度——计算H 原子数——确定分子式 〖例1〗(2008海南20)1mo1X 能与足量碳酸氢钠溶液反应放出44.8LCO 2(标准状况),则X 的分子式是( D ) A .C 5H 10O 4 B . C 4H 8O 4 C .C 3H 6O 4 D .C 2H 2O 4 解析:能与碳酸氢钠反应的有机物一般为羧基,1molX 放出CO 2为2mol ,说明含2个羧基,其不饱和度至少为2,口算可得A 、B 、C 的不饱和度均为1,D 为2,可快速求解选项为D 。 〖例2〗(2009浙江11)一种从植物中提取的天然化合物a-damascone ,可用于制作 “香水”,其结构如下图,有关该化合物的下列说法不正确... 的是( C ) A .分子式为C 13H 20O B. 该化合物可发生聚合反应 C .1mol 该化合物完全燃烧消耗19molO 2 D .与溴的CCl 4溶液反应生成的产物经水解、稀硝酸化后可用AgNO 3溶液检验 解析:A 项,可快速判断出该分子为C 13HyO ,根据不饱和度公式,该分子含3个双键一个环,Ω=4=13+1-y/2,y =20,正确; B 项,由于分子可存在碳碳双键,故可以发生加聚反应,正确; C 项,根据A 项可转化为C 13H 18(H 2O )13个碳应消耗13个O 2,18个H 消耗4.5个O 2,共为17.5,故错; D 项,碳碳双键可以与Br 2发生加成发生,然后水解酸化,即可得Br -,再用AgNO 3可以检验,正确。 〖例3〗(09天津卷8)请仔细阅读以下转化关系: 2 22m n -+222z m n --+222m n -+222z m n +-+

不饱和度

不饱和度 一、不饱和度的概念 不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和程度的量化标志,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表示。 二、不饱和度的计算 1、根据有机物的化学式计算 常用的计算公式: 烃(C n H m ):Ω= 卤代烃(C n H m X Z ):Ω= 含氧衍生物(C n H m O Z ):Ω= 含氮衍生物(C n H m N Z ):Ω= 公式繁多,现简化如下: 将有机物的化学式转化为CxHyOa(NH)b 则Ω=x+1-y/2 此公式使用范围极广,可囊括几乎所有有机物,无需分类讨论,硅与碳等效,卤素与氢等效,硫与氧等效。例:C 10H 4Cl 2可转化为 ,则Ω= C 20H 31O 2N 3可转化为 ,则Ω= 2、非立体平面有机物分子,可以根据结构计算 Ω=双键数+叁键数×2+环数 备注:双键包含碳碳、碳氮、氮氮、碳氧双键;叁键包含碳碳、碳氮叁键;环数等于将环状分子剪成开链分子时,剪开碳碳键的次数,环包含含N 、O 、S 等的杂环。 如苯:Ω= ,即苯可看成三个双键和一个环的结构形式。 例: Ω= Ω= Ω= 3、立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 例: 立方烷面数为 ,Ω= 降冰片烷面数为 ,Ω= 棱晶烷面数为 ,Ω= 三、不饱和度(Ω)与分子结构的关系 1、若Ω=0,说明分子是饱和链状结构; 2、若Ω=1,说明分子中有一个双键或一个环; 3、若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余类推; 4、若Ω≥4,说明分子中很可能有苯环。 222m n -+222z m n --+222m n -+222z m n +-+

有机物分子的不饱和度计算方法与应用

有机物分子的不饱和度计算方法与应用 名山一中郑文楷625100 一、不饱和度的概念 不饱和度又称缺氢指数,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用Ω表示。 二、不饱和度的一般计算方法 1.根据有机物的化学式计算 (1)若有机物的化学式为CxHy则 (2)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1。氧原子”视而不见” 推导:设化学式为CxHyOz-------------CxHy-z(OH)z ,由于H、OH都是一价在与碳原子连接,故分子式等效为CxHy。 (3)若有机物为含氮化合物,设化学式为CxHyNz-------------CxHy-2z(NH2)z,由于—H、—NH2都是一价在与碳原子连接,故分子式等效为CxHy-z (4)按照该法可以推得其它有机物分子的不饱和度 (5)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。如:C2H3Cl的不饱和度为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (6)碳的同素异形体,可将它视作Ω=0的烃。 如C60 (7)烷烃和烷基的不饱和度Ω=0 2.非立体平面有机物分子,可以根据结构计算,Ω=双键数+叁键数×2+环数如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 注意 ..环数等于将环状分子剪成开链分子时,剪开碳碳键的次数 .........................。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5 三、不饱和度的应用 1、求较复杂有机物的化学式 例:是一种驱蛔虫药--山道年的结构简式,试确定其分 子式为____________。 解析:从结构图中可见,分子中有14个碳原子,3个氧 原子,又有3个环和4个双键。Ω=7 氢原子数为2n+2-2Ω=2×14+2-2×7=16 ∴化学式为C14H16O3

有机物不饱和度的求算!

设为主页 加入收藏夹 教师中心学生中心化学研究会最新文章高中化学论坛当前位置:首页>>高中化学>>学生中心>>高考专题>>高考专题复习 2010年高考化学(全国卷Ⅰ)30题的解析 ——兼谈有机物不饱和度的求算 山西省榆社中学张维青 2010年高考化学(全国卷Ⅰ)第30题是一道有机框图推断题,考查的是有机物的结构与性质的综合知 识.涉及到的知识点有:通过计算和推理确定分子式和结构简式、命名;碳碳三键的加成、双键的加成、 卤代烃的水解、二元醇与二元酸的酯化、方程式的书写以及同分异构体的判断与书写等。重点考察了学 生各类有机物的相互转化关系和推理思维能力. 特别引人注意的是该题第(6)问同分异构体的书写。由于涉及到脂环烃的开环加成反应.考题一出现, 便引来人们的广泛议论与质疑,普遍认为超纲. 真是这样吗?我认为不是。解答此题可以不用脂环烃的开环加成反应,学生只要有不饱和度的知识即 可!

尽管高中化学教科书未出现不饱和度概念,但是多处提到不饱和烃、不饱和性等.如选修5<<有机化学基础>>(人教版)37页有“苯分子的组成为C6H6,从其分子组成上看具有很大的不饱和性”的叙述.在具体的解题过程中,题目往往要求据化学式或官能团的性质来推断有机物的结构, 不饱和度就是联系化学式与物质结构特点的线索之一. 什么是不饱和度呢? 不饱和度是有机物不饱和程度的量化标志,又称缺氢指数,通常用希腊字母Ω表示.不饱和度的理解有助于我们对有机物结构的进一步认识.。 一、计算不饱和度的常用方法 1.烃 由于烷烃为链状饱和烃,其不饱和度记为0; 而对任一烃类C X H Y,对比烷烃通式 C X H2X+2每少2个氢原子,记不饱和度为1, 由此可以推出:.每有一个双键会少2个氢原子,不饱和度增加1,如烯、亚胺(C=N-)、羰基化合物等;每有一个三键会少4个氢原子,如炔烃、腈(-C≡N )类,不饱和度增加2;每成一个环会少2个氢原子,不饱和度增加1,例如环己烯Ω=2..则C X H Y的不饱和度计算方法为: Ω=[(2X+2)-Y]/2=双键数+三键数×2+环数 (苯可看成三个双键和一个环的结构形式) 2.烃的衍生物 ①含氧衍生物.如醇、酚、醚、醛、羧酸、酯等。因为氧为二价原子,而羰基与碳碳双键等效,所以在进行不饱和度计算时可不考虑氧原子。 如CH2=CH2、CH3CHO、CH3COOH的都可以看作C2H4计算,Ω=1。 ②含卤衍生物.如卤代烃.由于卤素原子一般看作取代基,可视卤原子为氢原子计算。如:C 2H3Cl可看作C2H4计算,Ω=1. ③含有N、P等三价原子的有机物.每增加1个三价原子,则等效为减少1个氢原子。如CH3 CN,可以看作C2H2. Ω=2,含有一个碳氮三键. ④立体封闭有机物分子(多面体或笼状结构),其成环的不饱和度比面数少数1,例如立方烷(C8H8,结构见下图)面数为6,其不饱和度Ω=6-1=5. (立方烷结构图:每个顶点为一个碳原子并连接一个氢原子) 二.2010年高考化学(全国卷Ⅰ)30题的解析 题目:有机化合物A~H的转换关系如下所示:

不饱和度和推断题眼

有机物官能团代表物主要化学性质 烃 烷烃C-C 甲烷取代(氯气、光照)、裂化 烯烃C=C 乙烯加成、氧化(使KMnO4褪色)、加聚炔烃C=C 乙炔加成、氧化(使KMnO4褪色)、加聚 苯及其 同系物—R 苯 甲苯 取代(液溴、铁)、硝化、加成 氧化(使KMnO4褪色,除苯外) 烃的衍生物 卤代烃—X 溴乙烷水解(NaOH/H2O)、消去(NaOH/醇)醇—OH 乙醇置换、催化氧化、消去、脱水、酯化 酚 —OH 苯酚 弱酸性、取代(浓溴水)、显色、 氧化(露置空气中变粉红色)醛—CHO 乙醛还原、催化氧化、银镜反应、斐林反应羧酸—COOH 乙酸弱酸性、酯化 酯—COO—乙酸乙酯水解 不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和程度的量化 标志,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表示。 2 不饱和度的计算 2.1 根据有机物的化学式计算 常用的计算公式:

2.2 非立体平面有机物分子,可以根据结构计算 Ω=双键数+叁键数×2+环数 备注:双键包含碳碳、碳氮、氮氮、碳氧双键;叁键包含碳碳、碳氮叁键;环数

C C 等于将环状分子剪成开链分子时,剪开碳碳键的次数,环包含含N 、O 、S 等的杂环。 如苯:Ω=6+1-6/2=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 例子: Ω=4+0×2+2=6 Ω=6+1×2+2=10 Ω=8+0×2+3=13 2.3 立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 例子: 立方烷面数为6,Ω=5 降冰片烷面数为3,Ω=2 棱晶烷面数为5,Ω=4 3 不饱和度的应用 3.1 分子的不饱和度(Ω)与分子结构的关系: ①若Ω=0,说明分子是饱和链状结构 ②若Ω=1,说明分子中有一个双键或一个环; ③若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余类推; ④若Ω≥4,说明分子中很可能有苯环。 3.2 辅助推导化学式,思路如下 结构简式——计算不饱和度——计算H 原子数——确定分子式 例1: 1mo1X 能与足量碳酸氢钠溶液反应放出44.8LCO 2(标准状况),则X 的分子式是:( ) A 、C 5H 10O 4 B . C 4H 8O 4 C .C 3H 6O 4 D .C 2H 2O 4 例2:一种从植物中提取的天然化合物a-damascone ,可用于制作“香水”,其结构如下图,有关该化合物的下列说法不正确...的是( ) A .分子式为1320C H O B. 该化合物可发生聚合反应 C .1mol 该化合物完全燃烧消耗19mol 2O D .与溴的4CCl 溶液反应生成的产物经水解、稀硝酸化后可 用3AgNO 溶液检验 例3:请仔细阅读以下转化关系:

不饱和度计算

结构简式可以直接读出烃的不饱和度:多一个碳碳双键,不饱和度就增加1,多一个碳碳三键,不饱和度就增加2,多一个碳环,不饱和度也增加1,如此观察结构简式就可以看出烃的不饱和度。 然而只给分子式的时候,就只能通过计算来推断了,烃的不饱和度的计算公式是: Ω= {[2N(C) + 2] - N(H)}/2 其中N(C)、N(H)分别代表从该烃的分子式中读出的碳原子数和氢原子数,它是基于双键和三键的引入对烃分子中氢原子数的减少推导出来的,它的涵义可用文字表示: 某种烃的不饱和度=(一分子与该烃的碳原子数相同的相应饱和链烃的氢原子数- 一分子该烃实际所含氢原子数)÷2; 据此解题: 题干上说,某烃分子中含有一个苯环、两个碳碳双键和一个碳碳三键,那么可以知道它的不饱和度为4+2+2=8,再看选项,首先计算它们的不饱和度,这是很容易的: A(C9H12):(9×2+2-12)/2=4 (与题干计算出的不饱和度不符) B(C17H20):(17×2+2-20)/2=8(与题干计算出的不饱和度相符) C(C20H30):(20×2+2-30)/2=6(与题干计算出的不饱和度不符) D(C12H20):(12×2+2-20)/2=3(与题干计算出的不饱和度不符) 所以只有B符合题意 若反过来,就更好办了,例如:若某烃的不饱和度为3,则该烃的结构可能有以下几种情况: (1)含有三个双键; (2)含有一个双键,一个三键; (3)含有一个环,两个双键; (4)含有一个环,一个三键; (5)含有两个环,一个双键; (6)含有三个环.

前面的人所举例题有些复杂,在高中对这方面的要求不算高,不需要那么复杂的题 回答人的补充 2010-02-04 23:01 这个不饱和度计算还可以引申到烃的含氧衍生物的不饱和度计算,经分析,氧原子的引入对原先烃的不饱和度没有任何影响,根据结构简式观察,只要找出双键、三键和环的数目,就可以确定这种烃的含氧衍生物的不饱和度,与原先的烃完全 一致。环己烯(C6H10),Ω=1+1=2,C610O3:Ω=1+1=2 (计算公式完全相同) 回答人的补充 2010-02-05 00:09 前面的人说得很对,在做给出一个很复杂有机物的结构简式让你写分子式的题目时,先查碳原子数再查不饱和度,然后用计算的方法得出氢原子数,就可以避免因直接查氢而造成的疏漏,但要注意若分子中除了碳、氢、氧还含有氮(不是硝基),则应在原有的氢基础上加上氮原子数目,才是真正的氢原子数。高中,不饱和度在这类题目中实用价值最高。 评价答案 好:10 不好:0 原创:0 非原创:5 匿名回答采纳率:40.8% 2010-02-04 22:40 满意答案 好评率:100% 有道关于不饱和度的题,推测分子式

不饱和度计算

简述 不饱和度 (英文名称:Degree of unsaturation),又称缺氢指数或者环加双键指数(index of hydrogen deficiency (IHD) or rings plus double bonds)是有机物分子不饱和程度的量化标志,用希腊字母Ω表示,在有机化学中用来帮助画化学结构。不饱和度公式可以帮助使用者确定要画的化合物有多少个环、双键、和叁键,但不能给出环或者双键或者叁键各自的确切数目,而是环和双键以及两倍叁键(即叁键算2个不饱和度)的数目总和。最终结构需要借助于核磁共振(NMR),质谱和红外光谱(IR)以及其他的信息来确认。 编辑本段不饱和度的计算方法 从有机物分子结构计算不饱和度的方法 根据有机物分子结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 补充理解说明: 单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。 一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。 一个叁键(炔烃、腈等)贡献2个不饱和度。 一个环(如环烷烃)贡献1个不饱和度。环烯烃贡献2个不饱和度。 一个苯环贡献4个不饱和度。 一个碳氧双键贡献1个不饱和度。 一个-NO2贡献1个不饱和度。 例子:丙烯的不饱和度为1,乙炔的不饱和度为2,环己酮的不饱和度也为2。

从分子式计算不饱和度的方法 第一种方法为通用公式: Ω=1+1/2∑Ni(Vi-2) 其中,Vi 代表某元素的化合价,Ni代表该种元素原子的数目,∑代表总和。这种方法适用于复杂的化合物。 第二种方法为只含碳、氢、氧、氮以及单价卤素的计算公式: Ω=C+1-(H-N)/2 其中,C代表碳原子的数目,H代表氢和卤素原子的总数,N代表氮原子的数目,氧和其他二价原子对不饱和度计算没有贡献,故不需要考虑氧原子数。这种方法只适用于含碳、氢、单价卤素、氮和氧的化合物。 第三种方法简化为只含有碳C和氢H或者氧的化合物的计算公式: Ω =(2C+2-H)/2 其中C和H 分别是碳原子和氢原子的数目。这种方法适用于只含碳和氢或者氧的化合物。 补充理解说明: (1)若有机物为含氧化合物,因为氧为二价,C=O与CH2“等效”,所以在进行不饱和度计算时可不考虑氧原子。 如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω为1。 (2)有机物分子中的卤素原子取代基,可视作氢原子计算不饱和度Ω。 如:C2H3Cl的Ω为1,其他基团如-NH2、-SO3H等都视为氢原子。 (3)碳的同素异形体,可将其视作氢原子数为0的烃。 如C60(足球烯,或者富勒烯,Buckminster fullerene) (4)烷烃和烷基的不饱和度Ω=0 如CH4(甲烷)

高中化学非常详细关于不饱和度

计算方法 1)从有机物分子结构计算不饱和度的方法 根据有机物分子结构计算,Ω=双键数+三键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 补充理解说明: 单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。 一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。 一个三键(炔烃、腈等)贡献2个不饱和度。 一个环(如环烷烃)贡献1个不饱和度。环烯烃贡献2个不饱和度。 一个苯环贡献4个不饱和度。 一个碳氧双键贡献1个不饱和度。 一个-NO 1个不饱和度。 2贡献 例子:丙烯的不饱和度为1,乙炔的不饱和度为2,环己酮的不饱和度也为2。 2)从分子式计算不饱和度的方法 第一种方法为通用公式: Ω=1+1/2∑Ni(Vi-2) 其中,Vi 代表某元素的化合价,Ni代表该种元素原子的数目,∑代表总和。这种方法适用于复杂的化合物。 第二种方法为只含碳、氢、氧、氮以及单价卤素的计算公式: Ω=C+1-(H-N)/2 其中,C代表碳原子的数目,H代表氢和卤素原子的总数,N代表氮原子的数目,氧和其他二价原子对不饱和度计算没有贡献,故不需要考虑氧原子数。这种方法只适用于含碳、氢、单价卤素、氮和氧的化合物。 第三种方法简化为只含有碳C和氢H或者氧的化合物的计算公式: Ω =(2C+2-H)/2 其中C和H 分别是碳原子和氢原子的数目。这种方法适用于只含碳和氢或者氧的化合物。 补充理解说明: (1)若有机物为含氧化合物,因为氧为二价,C=O与CH2“等效”, (乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω为1。 如CH 2=CH2 (2)有机物分子中的卤素原子取代基,可视作氢原子计算不饱和度Ω。 如:C Cl的Ω为1,其他基团如-NH2、-SO3H等都视为氢原子。 2H3 (3)碳的同素异形体,可将其视作氢原子数为0的烃。 如C 足球烯,或者富勒烯,Buckminster fullerene) 60( (4)烷烃和烷基的不饱和度Ω=0 如CH 4(甲烷)

相关文档
最新文档