海上风电施工控制重点教学提纲

海上风电施工控制重点教学提纲
海上风电施工控制重点教学提纲

海上风电施工控制重点

(一)自然条件是影响海上风电施工的重要因素

1、分析

海上风电场都是离岸施工,工作场地远离陆地,受海洋环境影响较大,可施工作业时间偏短,因此施工承包商要根据工程区域海洋环境特点,选择施工设备、确定施工窗口期、制定施工工艺和对策,才能更好地完成本工程。

2、控制措施

(1)要求施工承包商必须充分收集现场自然条件资料,包括风、浪、流、潮汐、气温、降雨、雾等的历年统计资料和实测资料;

(2)根据统计和实测资料,分析影响施工的自然条件因素;

(3)分析统计影响施工作业的时间和可施工的窗口期;

(4)根据统计资料和现场施工计划,有针对性的布置现场自然条件观测仪器,以便对自然条件的现场变化进行预测和指导施工安排。

(5)施工承包商必须根据自然条件的可能变化,做出有针对的现场施工应变措施。

(二)质量方面

1、海上测量定位是本工程的重点、难点

(1)分析

在茫茫大海是进行工程建设,测量定位是决定项目成败的关键。海上风电对质量要求很高,例如风机基础施工中单桩结构对桩的垂直度要求很高;导管架结构对桩台位置、桩的垂直度与间距要求很高,不是一般的测量与控制措施能够实现。另外,导管架安装定位精度高,如何通过测量定位手段指导安装导管架难度大,因此海上测量定位是本工程的重点、难点。

(2)控制措施

①要求施工承包商制定测量施工专项方案;使用高精度测量仪器设备在投入工程使用前,必须进行精测试比对;

②借鉴其他海上风电场的成功施工经验,特制专用的打桩的定位及限制垂直度的定位及限定垂直度的辅助“定位架”,保证桩的垂直度及间距高精度要求;

③施工承包商必须有专用的打桩船,减少风浪对打桩的影响;

④选择风浪、水流、能见度较好的沉桩施工时间段,确保对打桩的影响最小。

2、钢管桩制作是本工程的重点、难点

(1)分析

风机基础是主要受力构件、是风机的重要支撑,承受着巨大的风机自重、风、波浪和水流等荷载,直接关系到风机的安全运行,是非常重要的结构基础,其出厂成品质量的好坏是本工程能够成功的关键点之一。风机基础采用的钢管桩直径较大,钢材材质为低合金高强度钢,钢材的卷制和焊接施工难度较大,焊接质量不易控制,因此钢管桩制作是本工程监理的重点、难点。

(2)控制措施

①组织相关专家,联合监理单位、施工单位对拟选的钢管桩制作厂家进行考察,该工厂必须有可靠的工艺流程、质量控制措施以及具备相应的生产能力和出运条件。

②钢管桩制作过程的质量监控,可通过项目监理派出专职监理工程师驻厂监理钢管桩制作全过程施工以及项目管理部派员定期抽查来实现;

③钢管桩制作使用的钢材、焊条、焊接工艺以及防腐处理等都必须处于受控状态。

3、导管架的拼装焊接是本工程的重点、难点

(1)分析

风电基础工程导管架构件大,焊接存在空间不同角度,且构件焊接要求强度高,风机的上部受力由导管架传递给基桩,导管架拼装焊接的质量关系到结构的安全,因此,导管架等构件焊接是本工程的重点、难点。

(2)控制措施

①要求施工单位编制专项拼装焊接施工方案及详细的质量保证措施;

②确保钢材、焊条等原材料的质量满足设计要求;

③要求施工单位采用数控焊接技术,保证焊接质量;

④除了项目监理的检查验收,项目管理部要进行抽查,确认拼装位置误差是否在允许范围值内;检查焊缝表面质量,且按要求进行检测保证符合设计和规范要求。

4、钢管沉桩(含试桩)施工是本工程的重点、难点

(1)分析

风机基础钢管桩直径都很大,钢管桩使用荷载大,对沉桩标准要求高。高桩承台基础结构沿直径周围布置多根桩,又有斜度要求,打桩船施工非常困难;导管架沉对桩的平面位置要求、垂直要求高,否则不利于导管架的安装。因此,在本工程桩基施工过程中,为了能够更好地进行打桩施工,必须要进行试桩和试验,以便于进一步取得适用于本工程海域的各项技术参数从而指导后续的施工,因此试桩作业的作用明显是很重要的,参加单位和技术人员必须充分认识到这一点,重视试桩施工。

(2)控制措施

①要求施工单位编制专项沉桩施工方案,并组织有关专家审查确定;

②要求施工单位必须采用先进的大型打桩船,打桩船的桩锤、打桩架高度、起吊能力、抗风浪能力等技术参数应满足设计和施工要求,尤其是桩锤的选型,力求一步到位,充分借鉴其它工程的成功经验,尽量减少选择桩锤过程中所做的“无用功”;

③要求施工单位提交详细的施工质量、安全保证措施,监理严格监督执行;

④沉桩施工期间,项目监理单位派员驻船对沉桩施工进行全过程旁站监理,对桩的质量、防腐涂层、起吊方法、桩位、施打过程桩位变化和桩身完好性、桩施打进尺速度、最终沉桩贯入度和停锤标准等进行全面的检查和严格控制;要求检(监)测单位全程密切跟进,确保沉桩施工桩身完整性;

⑤承包商拟停锤时,必须经过沉桩监理工程师批准;

⑥完成每组桩的沉桩后,应及时夹桩,以免桩在风浪作用下产生偏位;

⑦设计单位派有经验的设计人员驻现场,遇到桩基施工问题及时解决。

5、桩基检测是本工程的重点、难点

(1)分析

桩基检测是确保桩基施工质量的重要手段,也是必不可少保证措施,检测项目包含高应变检测、低应变检测等。沉桩过程中,钢管桩受到巨大的锤击力和震动力,传感器容易受损,并且在水上进行检测作业条件差,施工难度大,因此,桩基检测是本工程监控的重点、难点。

(2)控制措施

①选择有相应检测资质且有类似检测经验的单位承担桩基检测;

②检测单位必须编制本工程针对性的检测实施方案,从事现场检测工作人

员的资质、经验要满足工程需要;

③检查进场的检测设备的型号、规格是否符合要求;

④检查的传感器质量是否符合要求,安装位置是否正确,焊接是否牢固;

⑤要求施工单位控制沉桩速率,尽量减少钢管桩锤击震动对传感器的损害;

⑥要求监理旁站现场检测,现场记录所有检测数据;

⑦审查桩基检测报告。

6、承台施工是本工程监控的重点、难点(高桩承台基础结构型式)

(1)分析

承台起着承上启下的作用,上接风机塔筒过渡段,下接桩基,风机承受的巨大荷载通过塔筒传递给承台,还需承受台风期巨大的波浪力,承台受力复杂且荷载大,承台施工质量直接关系到上部风机的安全,极为重要,且砼承台较厚,属于大体积砼,容易因水化热出现温度裂缝,模板的支立,仓面砼浇筑管理、施工冷缝和温控裂缝等较难控制,并且砼搅拌船海上施工作业容易受风浪影响,因此,风机基础承台施工是本工程的重点和难点。。

(2)控制措施

①联合监理单位认真审查承包商的施工组织设计,对施工方案中的模板方案、砼配合比设计、高性能海工砼制作、仓面砼浇筑推进方案、砼降温措施等关键环节进行认真的分析。

②模板施工质量,确保模板有足够的刚度和整体稳定性。

③审查砼配合比设计,对于大体积砼应作相应的技术处理措施,保证水泥用量,添加材料和外加剂均能符合规范要求。

④要求施工单位合理安排施工时间,避免风浪影响施工。

⑤检查仓面砼铺筑顺序,合理安排保证不出现冷缝,检查砼振捣施工质量。

⑥检查砼养护工作,砼浇筑结束后承包商应立即进行养护,养护的操作应严格按规范规定的砼养护办法进行。

7、导管架安装是本工程的重点、难点(导管架基础结构型式)

(1)分析

导管架需要整体水下安装到钢管桩上,海上吊运大构件水下安装施工难度大、安全风险高,而导管架需要四角插在钢管桩上,在钢管桩之间间距满足的情

况下,导管架的制作焊接等也必须达到高精度要求。要实现导管架安装成功在前续多个工艺都要求精准无误,由于实际上每道工序都必然存在一定的误差,这就增加了导管架安装的难度,因此导管架安装是本工程的重点、难点。

(2)控制措施

①要求施工单位制定详细的海上吊装方案并经专家论证通过;

②监理复核导管架制作成品尺寸精度,对精度达不到要求的,要求承包商采取可行的补救措施;

③根据每个导管架存在的误差和各个风机四桩钢管桩的实际测量间距误差进行配对,确保导管架安装在风机四桩钢管桩上,导管架插桩与钢管桩之间保留足够的灌浆层厚,保证后续灌浆施工的质量;

④要求施工单位在导管架安装好、在灌浆施工且灌浆凝固达到强度前,做好导管架临时加固措施,并在监理未批准前不得私自拆除临时加固;

⑤要求施工单位落实做好海上吊装大型构件的安全措施。

8、风机的组装和安装的控制是本工程的重点、难点

(1)分析

风机构件体型大,部分构件重量较重,且风机塔筒与基础之间、塔筒与塔筒之间,风机轮毂、机舱、叶片之间的连接要求极为精密,而安装或组装环境相对较差,所采用的起重设备需要稳定性好,定位灵活。安装的组织管理和现场指挥存在问题,将导致安全事故或损失,因此,此部分监控也极为重要。

风机安装一般可采用整体安装或分体安装,整体安装要求在施工基地对风机组装,包括塔筒和风机组件组装成一个整体后,运输至现场,一次吊装完成,这需要较完备的施工基地和特殊的运输船,起重能力较大的起重船或起重平台。分体安装是风机包括塔筒等各组件运输至现场后,分件在现场吊装,现场作业时间较长,采用何种方式需根据承包商的工艺组织及施工能力确定。

(2)控制措施

①要求承包商提供完整的风机安装施工组织设计,包括安装方法、工艺流程、设备和船机的调用,人员组织,安装的自然条件分析等。组织有经验的专家团队对安装施工组织设计进行审核;

②督促施工承包商使用合适的设备、船机和熟练的技术工人,要组成高效的组织和管理团队;

③检查施工基地构件堆场,对承载力,场地平整,排水性能,垫块或支撑架设置等进行检查;评估出运码头的水深、码头承载力,以满足构件或整机出运的要求;检查出运和吊装作业的安全保证措施的可靠性和完备性;

④风机构件或整机拟出运至现场前,应对现场作业条件进行查验和预测,确保运输过程和现场吊装作业的自然条件的安全性;构件或整机运输过程中,应保证对海况的实时监测,做好防碰撞的措施;

⑤安装时,保证高空作业人员的安全配备符合要求,并按要求进行了防护;

⑥安装作业过程中,随时检查吊点位置、起吊方式、辅助定位方式等的合理性;安装完成后,立即设置必要的防护,并按要求进行检查、验证是否满足要求。

⑦风机安装完成后,风机叶片必须进行变桨和偏航并锁定,减少受风面,同时防止与没有及时撤离的安装船发生碰撞,一面造成重大安全和质量事故或海损事故。

(三)进度方面

1、落实大型专业化施工船舶按时进场是本工程的重点、难点

(1)分析

本工程位于较开敞海域属于外海作业,波浪影响较大,基桩直径相对于常规水上工程来说,桩径较大。因此采用一般的船机设备难以按工期要求完成施工。因此,船机设备的起重能力、沉桩能力、作业时抵抗波浪的能力均是需综合考虑的因素施工,此外打桩、风机吊装、海缆埋设也需要专门的施工船舶,这些专业化施工船舶造价昂贵,目前国内、外数量极少。如果大型专业化施工船舶不能及时进场,将会严重影响施工进度,因此,落实大型专业化施工船舶按时进场是本工程监控的重点、难点。

(2)控制措施

①审核承包商提出的施工组织设计,重点应结合施工方案,确定所配备的现场船机设备是否满足施工要求。

应根据不同的水深条件和基础结构类型选择不同的船机设备,所配备的打桩船应针对不同的基础结构,承台桩的打桩船除应满足起重能力、沉桩能力和抗浪能力外,还需考虑移船灵活的特点,导管沉桩船应满足高精度定位的要求。

②承包商配备的起重船应满足起重能力、精确定位和抗浪要求。

③按施工组织设计的时间节点,督促施工船机的进场并审核相关许可证和施工人员的资格证。

④承包商设备进场后,项目监理工程师认真进行审核后,将船舶及船员的证书报项目管理部备案;工程开工后,督促承包方对水域中施工船舶进行合理安排,避免互相干扰影响工期。

⑤进场后的设备,没有项目管理部和监理的批准,不准调离工地。

2、钢管桩及导管架制作进度是本工程的重点

(1)分析

钢管桩制作是风机基础的首道工序,也是关键工序,钢管桩和导管架制作均会影响后续工序施工和总工期,因此钢管桩和导管架制作进度是本工程的重点。

(2)控制措施

①通过考察选择有能力的厂家,参建各方及时沟通处理好相关的技术问题,减少因技术问题造成拖慢制作进度;

②严格审查批准进度计划。审查施工组织、施工工艺的科学性,检查施工准备的可靠性,核实计划目标与施工能力的适应性;

③驻厂监理要督促钢管桩和导管架的制作,确保进度;

④要求承包商按月、旬、日施工进度计划编制相应的材料、设备计划,及时、充足配备需要的材料、设备和后勤保障,施工用材料,需订货的材料应提前进场,以保证工程需要;

⑤驻场监理每天检查工程实际进度,并与计划进度对比。当进度滞后时,督促承包商采取纠偏措施;

3、沉桩进度是本工程的重点、难点

(1)分析

外海施工风大、波浪也较大,施工作业条件差,打桩容易受天气影响,打桩船作业时间受限,施工时间难保证,需要依据气候条件安排好施工,并且,打桩要使用专门的大型打桩船,如果打桩船未能及时进场或设备完好率差,将会严重影响打桩进度,造成总工期延误。因此,打桩进度是本工程的重点、难点。

(2)控制措施

①为了保证工期,督促承包商组建强有力的项目管理班子,强化管理,把各司其职与通力合作紧密联系起来,密切与建设单位、监理单位配合和协作,最大

限度地获得有关单位的支持;

②严格审查批准进度计划。审查施工组织、施工工艺的科学性,检查施工准备的可靠性,核实计划目标与施工能力的适应性;

③要求承包商合理优化和调配劳动力,安排技术水平高、经验丰富、操作熟练、年轻力壮的员工上岗,确保工作质量,提高工作效率;

④督促打桩船及时进场,开展打桩作业,并配备足够的易损件、消耗材料,制定机械操作规程,严格管理,机修人员对机械做好管理、使用、保养、修理工作,最大限度提高设备完好率,禁止带病设备进场;配备适当的备用机械设备(如发电机等),保证工程中足够的资金周转,及时做好零配件和工程材料的采购和储备工作;鼓励工人进行技术改进和合理化建议并进行奖励,以提高工作效率;

⑤要求承包商按月、旬、日施工进度计划编制相应的材料、设备计划,及时、充足配备需要的材料、设备和后勤保障,施工用材料,需订货的材料应提前进场,以保证工程需要;

⑥监理每天检查工程实际进度,并与计划进度对比。当进度滞后时,督促承包商采取纠偏措施;

⑦充分借鉴其它类似海上风电场工程的施工经验,参照、分析其施工中遇到的主要问题及解决方法,并结合本工程的特点制定本工程的沉桩施工方案及措施,为本工程大面积开展施工创造有利条件;做好钢管桩制作、沉桩、承台施工及上部风力发电机组设备安装等之间的衔接工作。

(四)安全控制是本工程的重点、难点

1、水上作业安全是本工程的重点

(1)分析

本工程主要工作均在水上完成,且工作环节为条件较为恶劣的海域,因此水上作业的安全风险较大,必须严格执行各项水上作业的规章制度,确保安全。

(2)控制措施

①监督承包人的水上施工的安全管理应符合现行的《中华人民共和国海上交通安全法》的有关规定;

②检查水上施工设备必须符合有关工程施工的技术要求;

③检查水上作业区是否按规定配备救生圈、救生衣、钩杆、报警器等救生设

备;

④监督承包人在水上工程施工前,按有关规定办理手续,发布水上施工通报。并应按当地海事部门的规定,在施工作业区域的各个角点和海上船舶往来方向沿线,设置水上警戒、航行标志及危险信号灯标。对于靠近航道的施工区域,必要时还应设立警戒船。

⑤水上施工现场应配备巡视船。巡视船上应设照明、射缆枪和足够的救生设备,监理检查落实情况;

⑥承包商应在施工期间服从海事部门水上通航安全调度和指挥;

⑦在台风季节,参与施工的船舶,应加强收听气象预报和接收无线电气象报告,根据气象预报采取相应的防范措施。若需到锚地进行避风,应上报监理工程师和业主同意,同时应向交管中心申请并接受交管中心的指挥;

⑧加强对施工现场人员和船机的安全管理和检查,重视施工安全和人员急救方案的制定和实施;建立有效的安全管理监督体系和配备专职安全管理人员;对施工现场的防台、防火、防爆、防汛等采取严格的安全防护措施。

2、施工船舶安全是本工程的重点

(1)分析

本工程海域参与施工的工程船舶较多,对钢管桩安全构成威胁,受外海恶劣的海洋环境影响,施工船舶相互之间的安全风险较大,因此必须严格执行海上的通航及作业规则,避免重大海上安全事故发生。

(2)控制措施

①严格监督施工船舶作业遵守国家及当地政府有关部门的规定,检查承包人制订的防台、防碰撞、防走锚、防高处坠落、防溺水、防火等措施,确保船舶设备和水上作业人员的安全;

②督促承包人施工前应与有关部门联系并实地考察,选择合适的船舶避风锚地,根据现场非自航船舶尺度和数量配备满足功率的拖轮。并监督承包人编制详细的防台拖航计划;

③在施工作业前,审核承包人办理的有关许可证书,检查航行通告等有关手续;

④工程开工前,监督承包人组织安全监督部门、船机设备主管部门等有关人员,对施工海域及船舶作业和航行的水上、水下、空中及岸边障碍物等进行实地

勘察,并检查其防护性安全技术措施;

⑤严格核查参与施工的工程船舶的船舶适航证件及其它经船舶检验和海事部门核发的各类有效证书,检查船舶操作人员的与岗位相适应的适任证书,杜绝无证船机设备及人员进场;

⑥检查施工船舶按有关规定在明显处昼夜显示规定的信号标志,并保持通讯畅通;

⑦监督承包人的施工船舶按海事部门的要求设置必要的安全作业区或警戒区,并设置符合有关规定的标志。施工船舶在航道附近作业时,应有专用的警戒船巡视;

⑧定期收取海洋气象预报台发布的海洋水文气象资料,并按紧急程度及时提醒施工现场和作业船舶,以便对灾害性天气及时作出反应。承包人也应设立船舶调度指挥中心,及时播发天气信息,并通过雷达视频加强对船舶在航、锚泊等情况的监控,并认真总结当地气象规律,提高防范水平;

⑨工程船舶如遇大风、雾天,超过船舶抗风等级或能见度不良时,应督促承包人停止作业,并检查密闭全部舱口。

⑩各种施工船舶施工中严禁碰撞钢管桩,严禁利用打设的钢管桩系缆,在已沉放桩区两端应设置标志,夜间/雾天设置警示灯。

3、防台是本工程的重点、难点

(1)分析

本工程所在区域难免会遭遇台风袭击,台风通常伴随着风暴潮和暴雨,破坏力极大,属于不可抗力,突发性、随机性强,台风形成、路径和登陆点难于准确预测,因此,需认真做好各种预案,把台风损失降至最低。

(2)控制措施

①工前审查承包人的保证台风季节施工安全的专项组织措施计划;

②施工过程中,严格监督承包人认真抓好防台风、防突风等各项措施的落实。做到以防为主、有备无患;

③台风到来前,监督承包人按照当地主管部门、项目管理部和监理工程师的指示和防台风预案落实各项防台、抗台工作;

④检查施工船舶是否按防台风计划进入避风锚地;

⑤督促承包人将机电设备架高,并进行防雨、防风、防撞设施的加固。施工

现场应切断电源,并将配电箱门锁好;

⑥起重机械、运输机械应转移到地势较高的安全地带避风,防止被浸泡。起重机械扒杆应放在固定架上,吊钩放置于地面并固定;

⑦对于处于施工过程尚不具备抵御台风能力的各项工程,应按工程防台方案进行加固处理,最大限度地降低工程损失;

⑧台风过境后督促承包商应及时检查损坏情况,并及时报告业主。

4、高空作业安全是本工程的重点

(1)分析

本工程存在大量的高空作业,安全隐患点多,危险性大,尤其对于桩的起吊、运输及人员高空作业等,稍有不慎即可能发生重大安全责任事故,造成重大不良影响,因此必须严格管理。

(2)控制措施

①严格审核承包人的沉桩施工、风机吊安施工的安全技术措施,并经验收确认符合要求;

②监督现场施工作业人员佩戴安全防护用品,严格要求承包人按照国家现行标准、规章落实;

③检查悬空高处作业人员是否挂牢安全带,要求安全带的选用与佩带应符合国家现行标准的有关规定;

④监督临边高处作业安全防护设施的设置;确保承包人落实;

⑤高处作业人员应按规定定期进行体检,项目监理检查落实;

⑥监督钢管桩吊装、承台模板拼拆、现浇承台砼、风机安装等作业,督促试验作业人员注意安全。

海上风电机组要点总结

海上风电机组要点总结 一、概述: 中国已建和在建的海上风电项目有上海东海大桥10万千瓦项目、江苏如东潮间带15万千瓦示范项目以及2010年国家发改委启动的首轮100万千瓦海上风电招标项目 海上风电的优缺点: 二、基础结构的分类 基础结构类型可分为:桩式基础,导管架式基础,重力式基础,浮动式基础等多种结构形式。

1.1单桩基础 单桩基础由大直径钢管组成,是目前应用最多的风力发电机组基础,该中形式基础是用液压撞锤将一根钢管夯入海床或者钻孔安装在海床形成的基础。其重量一般为150t-400t,主要适用于浅水及 20~25 m 的中等水域、土质条件较好的海上风电场项目。这种基础目前已经广泛地应用于欧洲海上风电场,成为欧洲安装风力发电机的“半标准”方法。 优点:是无需海床准备、安装简便。 缺点:移动困难;并且于直径较大需要特殊的打桩船进行海上作业,如果安装地点的海床是岩石,还要增加钻洞的费用。 1.2多桩基础 多桩基础的概念源于海上油气开发,基础由多个桩基打入地基土内,桩基可以打成倾斜

或者竖直,用以抵抗波浪、水流力。 中间以灌浆或成型方式(上部承台/三脚架/四脚架/导管架)连接塔架适用于中等水深到深水区域风场。 优点:适用于各种地质条件、水深,重量较轻,建造和施工方便,无需做任何海床准备; 缺点:建造成本高,安装需要专用设备,施工安装费用较高,达到工作年限后很难移动。 应用情况:2007 年英国Beat rice示范海上风电场,两台5MW的风机均采用的四桩靴式导管架作为基础,作业水深达到了45m,是目前海上风机固定式基础中水深最大的;我国上海东大桥海上风场采用的是多桩混凝土承台型式。 2.三脚桩基础 三脚桩基础采用标准的三腿支撑结构,由中心柱和3根插入海床一定深度的圆柱钢管和斜撑结构组成。钢管桩通过特殊灌浆或桩模与上部结构相连,可以采用垂直或倾斜管套,中心柱提供风机塔架的基本支撑,类似于单桩基础。其重量一般在125~150t左右,适用水深为20~40m。 这种基础由单塔架结构简化演变而来,同时又增强了周围结构的刚度和强度,在海洋油气工业中较为常见。

风电工程项目质量控制管理办法

风电工程项目质量控制管理办法 质量控制包括隐蔽工程验收、不合格项处理、设备缺陷管理、特殊过程控制、监视和测量装置监控、质量事故处理、工程质量验收、工程质量考核等八个主要内容。 1.1 隐蔽工程质量验收管理 隐蔽工程是指那些在上一道工序结束,被下一道工序所掩盖的,正常情况下无法进行复查的项目。例如:工序中间环节验收、地基验槽、钢筋工程、地下砼结构工程、地下防水、防腐工程,以及设备封闭前的内部质量验收等。隐蔽工程质量验收的目的,在于对工程项目做到内部层层把关,把质量问题消除在封闭之前,从而有效地控制施工质量,求得工程项目整体质量得到保证,得到一个质量上可信任的工程项目。 1.1.1 隐蔽工程验收项目,土建工程参见“土建工程篇”验评标准,安装工程参见有关验收技术规范的验评标准,其中地基验槽验收设计专业人员必须参加。 1.1.2 隐蔽工程验收需提供的资料。 a.重要建筑及安装项目作业指导书(或技术措施)。 b.隐蔽项目施工程序。 c.与隐蔽工作有关的设备消缺、设计变更、不合格项处理及标准变更的签证记录。 d.经过复核的隐蔽部件材质检验报告。

e.经过复核隐蔽项目施工自检原始记录。 f.隐蔽工作报告(含施工作业质量与标准的差异,遗留问题的处理意见)。 1.1.3 执行程序 承包商应在自检合格的基础上提前一周向监理单位提交隐蔽工程项目验收申请,并附需检查的技术资料; 监理在资料审核合格后,提前通知项目公司和承包商验收的时间; 验收合格后应当场对验收结果进行认可,遗留问题作备忘录。隐蔽工程质量验收记录表一式四份,分别由项目公司工程部(一份)、承包商(三份)分别管理、备查。 1.1.4 隐蔽验收工作出现下列情况的处理原则: a.项目公司工程部、项目监理部事前确已收到通知,但未按时派员到场验收,承包商可自行隐蔽,但必须作好记录。事后项目公司、监理公司认为有必要进行重新进行隐蔽检查,承包商必须按要求重新进行隐蔽工程检查验收,如果检查结果有问题,重新隐蔽检查所发生的费用由承包商承担,反之由建设单位承担。 b.承包商未通知检查验收,或经检查验收发现问题不按要求消缺处理的,不能进行隐蔽、进行下道工序作业。否则项目部工程部、项目监理部有权通知承包商停工。 1.2 不合格项管理 1.2.1 不合格项目的界定

海上风电项目的“一体化设计”难点分析

海上风电项目的“一体化设计”难点分析 自从我国风电行业开始涉足海上项目以来,“一体化设计”的概念一直被广泛传播。这个最初源于欧洲海上风电优化设计的名词,相信无论是整机供应商、设计院,还是业主、开发商,都在各种场合不止一次地使用或者听到过。 而对于“一体化设计”的真正内涵以及国内风电项目设计中阻碍“一体化设计”目标实现的因素,并不是每个使用这个词的人都能说得清楚,甚至很多从业者把实现“一体化建模”等同于实现“一体化设计”,对该设计解决和优化了哪些问题也缺乏探究,不利于未来通过“一体化设计”在优化降本上取得切实成效。 本文对当前海上风电行业在“一体化设计”方向上需要解决的部分客观问题加以描述,以增进行业对此的了解,并提出可能的研究方向。 “一体化设计”的内容和意义 “一体化设计”是把海上风电机组,包括塔架在内的支撑结构、基础以及外部环境条件(尤其是风况、海况和海床地质条件)作为统一的整体动态系统进行模拟分析与校核,以及优化的设计方法。运用这种方法,不仅能更全面地评估海上风电设备系统的受力状况,提升设计安全性,也能增强行业对设计方案的信心,不依赖于过于保守的估计保证设计安全,为设计优化提供了空间,有利于系统的整体降本。

根据鉴衡认证对某5.5MW 四桩承台机组模拟测算的结果,相比现有的机组与基础分离迭代的设计方法,海上风电一体化设计能够进一步优化整体结构(见表1)。在平价上网压力下,“一体化设计”是海上风电行业降本的必然途径之一。 “一体化设计”难点分析 目前,机组和基础的设计分别由整机供应商、设计院负责。想要实现真正的“一体化设计”,仍有以下几个方面必须做到统一:设计标准、建模一体化、工况设定与环境条件加载的一体化以及动态载荷的整体提取。 一、标准一体化 当下,海上风电行业涉及的标准较多,与风电机组设计相关的主要是IEC61400系列国际标准及其对应国标,设计院的基础设计主要受港工设计标准(如:JTJ215、JTS167-4 等)以及部分行业标准(如:NB-T10105 等)的约束。国际标准从整体设计的角度,对基础的设计方法一并明确了要求,但其与港工设计标准、行业标准在一些要求或指标上存在重叠与冲突。其中一个比较突出的例子是,在极限载荷上,风电行业的国际标准通常使用1.35 的安全系数,而国内港标、行标使用1.4、1.5 的安全系数,从而增加了基础的成本。行业正在积极推进这些标准的统一化工作,例如,提出一些风电专属标准,以解除设计院受到的束缚。 二、建模一体化 海上风电机组、基础与多种外部环境条件是一个统一的整体,对这些结构和边界条件进行整体建模仿真是“一体化设计”最基本的要求,因为只有这样才能充分考虑机组和基础的整体动力学响应,并且有可能实现设计优化上的整体调整和全局寻优。目前,很多项目或多或少都会开展一体化建模工作,并将其作为完成了“一体化设计”的标志。但是如果因此就忽视了其他问题,可能让行业对“一体化设计”的理解过于狭隘。受限于机组和基础设计责任主体分离的现状,即使仅对“一体化建模”这一项,关注点也不应为有没有进行整体建模仿真,而是是否实现了全局寻优。 随着整机企业研发能力的提升,设计院合作模式的开放,以及第三方在其中可以起到的知识产权保护和协调粘合的作用,全局优化是可能实现的。由于基础模型相对于机组模型更易于开放,因此,这个任务更多地有赖于整机供应商机组整体设计能力的提升,以及他们能够影响设计院基础设计的程度。

风电质量控制要点

中国大唐集团公司风电工程质量控制要点 一、设备制造及监理 (一)一般要求 1.风电设备必须通过招标,选择资格业绩满足要求、技术成熟、质保体系完善的厂家制造。 2.风机塔筒设备的制造原则上不得分包加工,如有必要须经业主批准同意。 3.风电设备必须由第三方进行监造和监检(以下简称“监理”),塔筒设备不得由风机制造厂进行监理。 4.在设备供货合同中应明确规定,设备制造厂要积极配合监理单位的工作,并提交相应的资料。 (二)设备监理单位 1.在对塔筒监造的过程中,监造人员应从以下方面进行控制: (1)审查制造厂人员的资质(包括焊接人员资质和无损探伤资质等)和检测设备的计量证; (2)审查塔筒钢板材料、环锻法兰材料质量证明书并进行入厂复验; (3)审查焊接工艺文件; (4)审查焊材的质量证明书和油漆、热喷锌等防腐材料的质量证明书; (5)检查产品焊接试板检验报告; (6)下料、筒节卷制、焊接、组对、喷砂、防腐涂层等生产过程的控制; (7)焊缝无损探伤时的旁站(要求制造厂质监人员在进行相关检测前要提前通知监造人员)和检测报告的检查; (8)检测焊接后法兰内倾、平面度、平行度; (9)审核标准件高强螺栓质量证明书和合格证,并要求制造厂按规格、批次提供第三方检测机构出具的机械性能检测报告。 2.在对塔筒监造的过程中,监检人员应从以下方面进行控制: (1)进厂后核查制造厂质检部门针对项目的无损检测工艺卡是否合理; (2)监检抽查时应尽可能的抽取更多的塔筒和基础环段数,在重点部位(如与法兰连接的环焊缝、筒体的丁字接头处焊缝)加大抽检比例。对监检人员发现存在普遍焊接缺陷的制造厂,根据情况加大抽检比例。 (三)塔筒制造厂 1.在风机制造厂家提供满足风场海拔高度、温度、湿度、腐蚀、沙尘等环境要求的材质设计后,塔筒制造厂应对其产品进行以下控制: (1)选用正规厂家的钢板、法兰等,并有相应的产品合格证、质量证明书及入厂复验报告,无损探伤报告及热处理曲线记录等资料齐全。塔筒钢板材料下料前进行无损检测(大于等于40mm厚的板必须进行100%超声波探伤),环锻法兰入厂应进行几何尺寸及100%超声波探伤及100%磁粉探伤检验(含法兰脖的坡口处),材料代用应办理代用手续,并经业主审批认可; (2)焊接开始前制造厂要按标准要求做焊接工艺评定、塔筒加工制造的焊接工艺规程(WPS)及作业指导书,工艺评定应覆盖产品施焊范围; (3)塔筒焊接材料进厂后要按标准进行理化复验(化学成分和机械性能); (4)基础环下法兰钢板拼接数量应符合图纸及合同要求,钢板上炉批号应标识清晰,拼接焊缝进行100%超声波探伤;焊缝要热

海上风电工程潮间带施工的安全管理

Safety management of offshore wind power construction in intertidal zone LU Hui (CCCC Third Harbor (Shanghai)New Energy Engineering Co.,Ltd.,Shanghai 200000,China ) Abstract :In recent years,offshore wind power has developed rapidly,and the installed capacity has expanded rapidly,and gradually developed into deep sea.However,at present,there is still a large proportion of wind power stations in the intertidal zone along the coast from north of Shanghai to Shandong,which requires the construction of ships waiting for tide and sitting on beaches.The traffic is inconvenient,the safety risk is high,and the management of safety process is difficult.Through the identification of safety risks in the construction process of offshore wind farms in intertidal zone and the analysis of possible safety accidents or potential hazards,the corresponding safety control measures are given,and the safety management points in the main procedures of the main projects,such as the dismantling and installation of stable pile platform,the construction of single pile sinking,the separate installation of wind turbines,ar analyzed,which provides reference for the safety management of similar wind power construction in intertidal zone in the future. Key words :offshore wind power;intertidal zone;safety risk;safety management 摘 要:近年来,海上风电发展迅速,装机量日益迅猛扩大并逐渐向深海发展。但是,目前在上海以北到山东一带 沿海仍有较大一部分风电机位处于潮间带,需要船舶候潮坐滩施工,交通不便,安全风险大,安全过程管理困难。通过对潮间带海上风电场施工过程进行安全风险识别、分析可能导致的安全事故或潜在的危险,给出了相应的安全管控措施,并分析了稳桩平台拆装、单桩沉桩施工、风机分体式安装等主体工程主要工序的安全管理要点,为今后潮间带类似风电工程施工的安全管理提供参考与借鉴。关键词:海上风电;潮间带;安全风险;安全管理中图分类号:U655.1;U655.553 文献标志码:B 文章编号:2095-7874(2019) 12-0074-05doi :10.7640/zggwjs201912016 海上风电工程潮间带施工的安全管理 逯辉 (中交三航(上海)新能源工程有限公司,上海 200000) 收稿日期:2019-06-12 修回日期:2019-08-07 作者简介:逯辉(1983—),男,河南新乡人,工程师,机械设计制造 及自动化专业。E-mail :398920578@https://www.360docs.net/doc/6a774935.html, 中国港湾建设 第39卷第12期 2019年12月 Vol.39 No.12 Dec.2019 引言 近年来,海上风电发展迅速,装机量日益迅 猛扩大,并且逐渐向深海发展[1]。但是,目前在上 海以北到山东一带沿海仍有较大一部分风电机位处于潮间带,风电安装作业属于浅滩施工,部分机位甚至是高滩施工、露滩施工,需要船舶候潮坐滩施工,交通困难,安全风险大,安全过程管理困难。 目前,海上风电施工安全管理多从项目部安 全管理、船舶安全管理等进行分析。从施工现场主要工序的施工过程安全管理,整个项目的施工安全风险统计分析及提出的对应措施较少。元国凯等[2]对海上风电场建设的主体工程进行了风险识别、分析,并提出了相应的控制措施。常亮[3]从安全体系建设、制度建设等方面提出了海上风电场的安全管理重点。李尚界等[4]对当前海上施工船舶的安全管理进行了分析并提出了相关的对策。张蓝舟等[5]给出了有坐滩能力船舶的坐滩安全管理方案。 本文立足于国华东台四期(H2)300MW 海上风电场项目,该工程位于东沙北条子泥,离岸距

(非常好)海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发

海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发 作者:张蓓文陆斌发布日期:2008-5-8 18:13:30 (阅270次) 关键词: 风电总结 DS 海上风电场的风速高于陆地风电场的风速,不占用陆地面积,虽然其电网联接成本相对较高,但是海上风 能开发的经济价值和社会价值正得到越来越多的认可,海上风电的发电成本也将越来越低。海上风电场的 建设对于风电行业的进一步发展而言很关键,现已进入到一个重要阶段,进一步发展可以吸引大量项目资 金的进入,其具有震撼力的阵形正在全球范围地受到沿袭[1]。全球海上风力发电场装机容量增长详见图1。欧洲地区的发展目前领先于全球。丹麦于1991年建成第一个海上风力发电场,此后直到2006年末,全球 运行了超过900MW装机容量的海上风电场,几乎所有发电场都在欧洲[2]。 表1.17座离岸1km以外的建成或在建风电场 建设地点始建年 份风电机组数量 (台) 风电机组型号总装机容 量 TunaKnob丹麦1995 10 VestasV39/500kW 5MW Utgrunden瑞典2000 7 EnronWind70/1500kW 10.5MW Middelgrunden丹 麦2001.3 20 Bonus76/2.000MW 40MW HornsRev丹麦2002.12 80 VestasV80/2.000MW 160MW Nysted丹麦2003.11 72 Bonus82,4/2.300MW 165.6MW NorthHoyle英国2003.12 30 VestasV80/2.000MW 60MW KentishFlats英国2005.8 30 VestasV90/3.000MW 90MW Beatrice英国2006.9 2 OWEZ荷兰2006.11 36 VestasV90/3.000MW 108MW 来源:“Off-andNearshoreWindEnergy”,上海科技情报研究所整理 国外海上风力发电场技术正日趋成熟,建成的风电场容量为2.75至165.6MW(详见表1),规划中的风电场容量为4.5至1000MW[3]。而海上风电场产业还处于“做中学”的阶段[5],对于以往的经验教训进行总结对未来产业发展是很有必要的。笔者之前已依据德国专业研究机构公开的 “CaseStudy:Eur opeanOffshoreWindFarms-ASurveyfortheAnalysisoftheExperiencesandLessonsLearntbyDevelope

海上风电施工控制重点

海上风电施工控制重点 (一)自然条件是影响海上风电施工的重要因素 1、分析 海上风电场都是离岸施工,工作场地远离陆地,受海洋环境影响较大,可施工作业时间偏短,因此施工承包商要根据工程区域海洋环境特点,选择施工设备、确定施工窗口期、制定施工工艺和对策,才能更好地完成本工程。 2、控制措施 (1)要求施工承包商必须充分收集现场自然条件资料,包括风、浪、流、潮汐、气温、降雨、雾等的历年统计资料和实测资料; (2)根据统计和实测资料,分析影响施工的自然条件因素; (3)分析统计影响施工作业的时间和可施工的窗口期; (4)根据统计资料和现场施工计划,有针对性的布置现场自然条件观测仪器,以便对自然条件的现场变化进行预测和指导施工安排。 (5)施工承包商必须根据自然条件的可能变化,做出有针对的现场施工应变措施。 (二)质量方面 1、海上测量定位是本工程的重点、难点 (1)分析 在茫茫大海是进行工程建设,测量定位是决定项目成败的关键。海上风电对质量要求很高,例如风机基础施工中单桩结构对桩的垂直度要求很高;导管架结构对桩台位置、桩的垂直度与间距要求很高,不是一般的测量与控制措施能够实现。另外,导管架安装定位精度高,如何通过测量定位手段指导安装导管架难度大,因此海上测量定位是本工程的重点、难点。 (2)控制措施 ①要求施工承包商制定测量施工专项方案;使用高精度测量仪器设备在投入工程使用前,必须进行精测试比对; ②借鉴其他海上风电场的成功施工经验,特制专用的打桩的定位及限制垂直度的定位及限定垂直度的辅助“定位架”,保证桩的垂直度及间距高精度要求; ③施工承包商必须有专用的打桩船,减少风浪对打桩的影响;

风电工程建设质量控制要点

中广核风力发电有限公司 CGNPC WIND POWER Co.,LTD. 正文页数:8 附件数: 15 无密级□限制使用□公司秘密□√ A 2010/05/05 孔岱王川李波李亦伦陈遂 版次日期编写审核会签审查批准编码CGNWP CX END2010054 风电工程建设质量控制要点 主办部门: 工程部审计部审查:李波 分发:公司各部门、各分公司、项目公司原件存:综合管理部 此文件产权属中广核风力发电有限公司所有,未经许可,不得以任何方式外传。 This document is the property of CGNPC WIND POWER Co., Ltd. (CGNWP), no part of this document may be reproduced by any means, nor transmitted without the written permission of the CGNWP.

共8页 文 件 修 改 跟 踪 页 作 者 文 件 修 改 原 因 日 期 修 改 页 修改 状态 0 孔岱初版10/05/05 全部

共8页 目 录 一. 目的 (4) 二. 应用范围 (4) 三. 细则 (4) 第一部分 土建工程 (4) 1.钢筋混凝土结构质量控制要点 (4) 1.1通用部分 (4) 1.2风机基础浇筑质量控制要点 (4) 2.屋面、楼面、厕浴间及地下沟道防水工程施工质量控制要点 (5) 3.地下管沟道施工质量控制要点 (5) 4.回填土施工质量控制要点 (5) 5.砌筑、装修、装饰、油漆工程质量控制要点 (5) 第二部分 安装工程 (6) 1.箱变安装质量控制要点 (6) 2.电缆及其桥架的敷设质量控制要点 (6) 3.主变压器安装质量控制要点 (7) 4.接地网安装质量控制要点 (7) 5. 35kv集电线路和配电装置安装质量控制要点 (7) 6.风机的吊装 (7) 7.设备运输 (8)

近海海洋风电地基基础的现状介绍

近海海洋风电地基基础的现状 1.海洋风电开发形势及前景 当今世界能源消耗量不断上升, 且以煤炭、石油、天然气等化石能源为主. 未来几十年内, 世界能源消耗还将持续增长. 然而, 由于化石能源可开发量日益减少, 能源需求的缺口越来越大. 并且, 化石能源的生产和消费对环境造成极大的破坏, 甚至影响到全球气候的变化. 因此, 当前全球经济发展与能源需求的矛盾日益突出, 能源危机已成为人们的共识.为应对全球气候变化, 我国提出了“到2020年非化石能源占一次能源需求15%左右和单位GDP二氧化碳排放比2005 年降低40%–45%”的目标, 目前正加快推进包括水电、核电等非化石能源的发展, 并积极有序做好风电、太阳能、生物质能等可再生能源的转化利用. 然而, 2011年3月日本福岛核电站事故给全球核能发展带来了极大的冲击, 各国对核能的发展采取了非常谨慎的态度, 中国甚至一度停止了核电的审批作业.事实上, 发展可再生的环境友好型能源是解决“能源危机”、缓解“气候变化”、保持社会可持续发展的关键举措. 风电是目前最具规模化发展前景的可再生能源, 世界各国发展风能开发技术呈现争先恐后之势. 1973 年石油危机后, 美国开始研发风能资源, 这是风能发展史上的重要里程碑. 与此同时,欧洲的风能业稳步发展, 经过1990 年后的20 年, 欧洲已俨然成为全球风能业的引领者. 由于土地资源有限, 大规模的陆地风电场越来越面临选址困难的问题. 而海上风能资源优于陆地,海上风的品质更加优越, 因为海面

粗糙度小, 风速大, 离岸10 km的海上风速通常比沿岸陆地高约25%;海上风湍流强度小, 具有稳定的主导风向, 有利于减轻风机疲劳; 且海上风能开发不涉及土地征用、噪声扰民等问题; 另外, 海上风场往往离负荷中心近、电网容纳能力强. 因而大规模发展海上风电越来越受到高度重视, 近十年来发展迅猛, 欧洲尤其是丹麦和英国引领着全球风电的发展. 2.海洋风电资源 海上风能资源储量相当丰富, 以我国海域的统计数据为例, 联合国环境计划署与美国可再生能源实验室的一份联合研究报告指出, 中国海上风能资源为600 GW. 中国气象局21世纪初的统计数据表明, 我国水深小于20 m海域的风能储量达750 GW,是陆上风能资源的3 倍左右. 2009年底国家气象局发布消息称, 我国沿海水深5–25 m海域的3类风能(平均风能密度大于300 W/m2)储量达200 GW。根据中国国家海洋局最新调整的数据, 我国海上风电可开发容量为400–500 GW.具有发展海洋风电的巨大风力资源。 3. 海上风电开发现状 欧洲是全球海上风电发展的先驱, 1990 年在瑞典的Nogersund 安装了世界第一台海上风力发电机组, 1991 年丹麦建成了世界上第一个海上风电场Vindeby, 但装机只有4.95 MW. 此后, 丹麦、瑞典、荷兰和英国相继建设了一批研发性的海上风电项目.2002年总装机160 MW的Horns Rev 海上风电场在北海建成, 这是全球首个真正意义上的大型海上风电场, 此前最大的海上风电项目规模仅为40

MW海上风电机组的汇总

.-MW海上风电机组的汇总

————————————————————————————————作者:————————————————————————————————日期:

海上风电机组的概念设计 目前,海上风力发电机组的主流机型是2.3~5MW双馈或半直驱机型,已交付或已有订单的机型主要如下表所示: 公司名称机组型号已交付使用正在安装已有订单丹麦vestas V90 /3MW257台260台(含V112)西门子公司SWT-2.3311台90台 西门子公司SWT-3.6151台593台 德国REpower5M8台351台 德国Multibrid M500027台245台德国Enercon E-126/6MW8台 GE公司GE 3.6sl 7台130台 华锐公司3MW 34台 德国BARD VM5MW 5台80台 德国Nordex2MW 8台 德国Nordex 2.5MW 11台 芬兰WinWind 3MW 10台 由上表可见丹麦vestas 的V90 /3MW,西门子公司的SWT-3.6,德国REpower的5M,德国Multibrid的M5000,GE公司的GE 3.6sl和德国BARD公司的VM5MW机组被市场认可,由此可 见3MW以上风电 机组是最近几年海 上风力发电机组的 主力机型。 V90 /3MW机 组是vestas在2002 年5月开始试制 的,右图为V90 /3MW的示意图。 V90 /3MW机

组是首台采用紧凑型结构的风力发电机组,可以认为是取消了低速轴。2009年9月vestas又研制出了V112-3.0MW离岸型风力发电机组,这是V90-3.0MW的改进型,其安全等级为IECS,适于在平均风速9.5m/s的海上使用,这种机组采用三级增速齿轮箱,永磁同步发电机,短低速轴。该机型应该是维斯塔斯准备大批量生产的产品,下图为V112-3.0MW的外形图。 V112-3.0MW机组计划安装在英国沃尔尼第二海上风力发电场,2011年年底交付使用。V112-3.0MW技术参数如下表所示: 序号部件单位数值 1 机组数据 1.1 制造厂家/型号V112-3.0MW 1.2 额定功率kW 3000 1.3 轮毂高度(推荐方案)m 84.94/119 1.4 切入风速m/s 3 1.5 额定风速m/s 12 1.6 切出风速(10分钟平均值)m/s 25 1.7 极端(生存)风速(3秒最大值)m/s 59.5(IECIIA)5 2.5(IECIIIA) 1.8 预期寿命y 20 2 风轮

海上风电施工简介(经典)

海上风电施工简介 目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19)

1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年后,随风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

海上风电施工简介(经典)

海上风电施工简介 二○一三年十月

目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19) 1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年以后,随着风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

风电场参观学习总结

风电场参观学习总结 风电场实习培训总结 XXXX 年 7 月 22 日,我们 XXXX 风力发电有限公司一行 6 人,在 X 工的带领下,慕名来到内蒙 XX 风力发电有限公司所属的 XX风电场进行了为期一个月的实习培训。短暂的实习培训工作将要结束了,回顾过去的时光,自己倍感收获巨大,感触颇深,总结起来有以下三方面的收获。一、全新的场容场貌给自己留下了深刻的印象。当我们进入风电场时,首先映入眼帘的是风电场的办公楼、后勤服务区和远处转动的风机、风叶。如此规模的风电场,对我们刚刚步入风电行业的学徒工来说感到既好奇新鲜又觉得荣幸自豪,不由的想到了自己将要从事的工作,肩上担负的重任。想到了我们 XXXX 风力发电有限公司即将投入运营的风电场也一定会像这里一样,生产蒸蒸日上,事业灿烂辉煌。实习培训开始前,XX 风场的 X 场长为我们详尽的介绍了风电场的基本情况。从中了解到,内蒙XX 风力发电有限公司 XX 风电场于 2016 年 10 月投产发电,直接管理 XX、查干塔拉两期风电场, XX 两期风机各33 台,风场风机为华锐 1500KW 风电机组、查干塔拉风场风机为联合动力 UP82-ⅢA 型 1500KW 风力机组,总装机容量为 9 万 KWH。XX 升压站为 220KV 升压站,所属两个风电场经主变升压并入电网。并且,这几个风电场在设计、建设、安装、调试和运营过程中都做出了较好的成绩,这些都

给我们留下了深刻的印象。二、从理论学习到实际操作,使自己在感性认识上有了一个新的飞跃。风电场实习培训,是将课堂所学到的有关理论知识与实际操作工作紧密结合,加深对本专业感性认识必然要经过的阶段。只有通过实习培训, 才能牢牢掌握有关的生产工艺,生产设备、性能、配置及其工作流程、原理,生产中各项经济技术指标的分析与计算,生产的组织与管理。基于这些认识,我们在本次的实习培训过程中,以风电场运行生产为主战场,采取边实践边学习的方法。这期间,风电场的朱场长分别给我们讲解了风电场生产安全工作规程;风电场运行模式;升压站运行监控;升压站电气一次系统接线和运行方式;继电保护及二次设备;风机监控及故障处理;电气倒闸操作;“两票三制”的执行以及其它风电场日常工作。紧接着又对我们进行了入场安全教育。浅显易懂的讲解,让我们明白了风电运行生产操作的全过程。懂得了在今后的实际工作中,“安全无小事”不可懈怠,必须把安全生产放在工作首位,把“安全重于泰山”时刻挂在心上,要有“居安思危”的忧患意识,与电打交道,一不小心就会危及生命,就会给国家造成巨大的损失。所以说,“不伤害他人,不伤害自己,不被他人伤害”应作为自己的行为准则贯穿于今后工作学习和生产操作的全过程。跟班实际操作是这次实习培训的又一重要环节。在短

海上风力发电概况

摘要 绿色能源的未来在于大型风力发电场,而大型风电场的未来在海上。本文简要叙述了全球海上风力发电的近况和一些主要国家的发展计划,并介绍了海上风电场的基础结构和吊装方法。 关键词:海上风电;风力发电机组;基础结构;吊装方法。 要旨 このページグリーンエネルギーの未来は大型風力発電場、大型風力発電の未来は海上。本文は簡単に述べた世界の海上風力発電の近況といくつかの主要国の発展計画を紹介した海上風力発電の基礎構造と架設方法。 キーワード海上風力発電、風力発電ユニット;基礎構造;架設方法。

1 引言 1.1 风力发电是近年来世界各国普遍关注的可再生能源开发项目之一,发展速度非常快。1997~2004年,全球风电装机容量平均增长率达26.1%。目前全球风电装机容量已经达到5000万千瓦左右,相当于47座标准核电站。随着风电技术逐渐由陆上延伸到海上,海上风力发电已经成为世界可再生能源发展领域的焦点。 1.2 海上风能的优点 风能资源储量大、环境污染小、不占用耕地;低风切变,低湍流强度——较低的疲劳载荷;高产出:海上风电场对噪音要求较低,可通过增加转动速度及电压来提高电能产出;海上风电场允许单机容量更大的风机,高者可达5MW—10MW 2 海上风能的利用特点 海上风况优于陆地,风流过粗糙的地表或障碍物时,风速的大小和方向都会变化,而海面粗糙度小,离岸10km的海上风速通常比沿岸陆上高约25%;海上风湍流强度小,具有稳定的主导风向,机组承受的疲劳负荷较低,使得风机寿命更长;风切变小,因而塔架可以较短;在海上开发利用风能,受噪声、景观影响、鸟类影响、电磁波干扰等问题的限制较少;海上风电场不占陆上土地,不涉及土地征用等问题,对于人口比较集中,陆地面积相对较小、濒临海洋的国家或地区较适合发展海上风电海上风能的开发利用不会造成大气污染和产生任何有害物质,可减少温室效应气体的排放。 3 海上风电机组的发展 3.1 第一个发展阶段——500~600kW级样机研制 早在上世纪70年代初,一些欧洲国家就提出了利用海上风能发电的想法,到1991~1997年,丹麦、荷兰和瑞典才完成了样机的试制,通过对样机进行的试验,首次获得了海上风力发电机组的工作经验。但从经济观点来看,500~600kW级的风力发电机组和项目规模都显得太小了。因此,丹麦、荷兰等欧洲国家随之开展了新的研究和发展计划。有关部门也开始重新以严肃的态度对待海上风电场的建设工作。 3.2第二个发展阶段——第一代MW级海上商业用风力发电机组的开发 2002年,5 个新的海上风电场的建设,功率为1.5~2MW的风力发电机组向公共

风电基础施工方案(完整版)

风电基础施工方案 一、项目基本情况 河北省唐山乐亭菩提岛海上风电场300MW工程示范项目位于《河北省海上风电场工程规划》中的一号场址,地处唐山市京唐港与曹妃甸港之间的乐亭县海域,东经118°45.1′-118°51.3′,北纬38°55.2′-39°3.9′之间。风电场不规则形状,南北长在5.7-11.2km之间,东西宽约7.8km,场址范围面积约为68.2km2。场址水深约7-28m,场址中心距离岸线约18km,西侧距离曹妃甸港区东侧锚地最近约4.8km,南侧距离京唐港至天津新港习惯航路中心线最近约3.6km,东侧距离海上油气田约4.5km,场址距离曹妃甸港约20km,距离京唐港约26km,交通运输方便。 海上试验风场的试桩工作已于2016年5月4日开工,随着项目的推进海上升压站、陆上220kv送出线路、220kv海缆/35kv海缆的敷设工程将依据工程建设进度陆续开工。预计于2017年实现首回路共计6台风机并网发电,2018年底前实现整体项目建成投产。 二、水文、地质条件 1、地质情况 本工程地质由上至下依次为: 海床面:-17.5m~-21.9m, 淤泥:海床面~-27m, 粉砂:-27m~-28.1m, 粘土:-28.1m~-30.8m,

粉砂:-30.8m~-35.5m, 粉质粘土:-35.5m~-38.0m, 粉砂:-38.0m~-46.3m, 粉质粘土:-46.3m~-54.0m, 粉土:-54.0m~-57.5m, 粉质粘土:-57.5m~-60.0m, 粉砂:-60.0m~-66.0m, 粉质粘土:-66.0m~-68.0m, 粉土:-68.0m~-74.0m, 粉砂:-74.0m~桩尖标高 2、潮位 工程场区设计水位值 单位:m 要素平均高潮位平均低潮位设计高潮位设计低潮位50年一遇高 潮位 50年一遇低 潮位 1985国家高程基准0.324 -0.386 1.016 -1.077 2.589 -2.877 三、施工准备 沉桩施工前根据设计图纸要求和现场条件,绘制沉桩平面顺序图,校核各桩在允许偏差范围内是否有相碰情况存在,合理布置沉桩顺序。 1、施工现场调查 为充分做好前期准备工作,首先开展施工现场的地形地貌、地质条件、水文、气象等自然条件的调查研究,为制定合理的施工工艺、计算施工效率、编制施工进度计划提供科学的依据。

截至2017年8月我国在建海上风电项目概况

截至2017年8月我国在建海上风电项目概况

————————————————————————————————作者:————————————————————————————————日期:

截至2017年8月我国在建海上风电项目概况 截止2017年8月31日,我国开工建设的海上风电项共19个,项目总装机容量4799.05MW。项目分布在江苏、福建、浙江、广东、河北、辽宁和天津七个省(市、区)海域,其中江苏8个在建项目共计2305.55MW,福建6个在建项目共计1428.4MW,浙江、广东、河北、辽宁和天津分别有1个在建项目。 在建的19个海上风电项目里,使用(拟使用)上海电气机组总容量为2232MW;使用(拟使用)金风科技机组总容量为964.15MW;使用(拟使用)明阳智慧能源机组总容量为567MW;使用(拟使用)远景能源机组总容量为400.8MW;使用中国海装机组总容量为110MW;使用西门子歌美飒机组总容量为90MW。 一、华能如东八角仙300MW海上风电项目 华能如东八角仙300MW海上风电项目 开发商:华能如东八仙角海上风力发电有限责任公司。 项目概况:项目位于江苏省南通市如东县小洋口北侧八仙角海域,分南区和北区两部分,共安装风电70台,总装机容量302.4MW,配套建设两座110千伏海上升压站和一座220千伏陆上升压站。北区项目面积36平方千米,平均岸距15千米,平均水深0-18米,装机容量156MW,安装14台上海电气SWT-4.0-130机组和20台中国海装5.0MW机组(H171-5MW、H151-5MW两种机型都有安装),北区装机共34台;南区项目面积46平方千米,平均岸距25千米,平均水深0-8

海上风电机组的概念设计

海上风电机组的概念设计 目前,海上风力发电机组的主流机型是2.3~5MW双馈或半直驱机型,已交付或已有订单的机型主要如下表所示: 公司名称机组型号已交付使用正在安装已有订单丹麦vestas V90 /3MW 257台260台(含V112)西门子公司SWT-2.3 311台90台 西门子公司SWT-3.6 151台593台 德国REpower 5M 8台351台 德国Multibrid M5000 27台245台德国Enercon E-126/6MW 8台 GE公司GE 3.6sl 7台130台 华锐公司3MW 34台 德国BARD VM5MW 5台80台 德国Nordex 2MW 8台 德国Nordex 2.5MW 11台 芬兰WinWind 3MW 10台 由上表可见丹麦vestas的V90 /3MW,西门子公司的SWT-3.6,德国REpower的5M,德国Multibrid 的M5000,GE公司的GE 3.6sl和德国BARD公司的VM5MW机组被市场认可,由此可见3MW以上风电机组是最近几 年海上风力发电机 组的主力机型。 V90 /3MW机 组是vestas在2002 年5月开始试制 的,右图为V90 /3MW的示意图。 V90 /3MW机 组是首台采用紧凑

型结构的风力发电机组,可以认为是取消了低速轴。2009年9月vestas又研制出了V112-3.0MW离岸型风力发电机组,这是V90-3.0MW的改进型,其安全等级为IECS,适于在平均风速9.5m/s的海上使用,这种机组采用三级增速齿轮箱,永磁同步发电机,短低速轴。该机型应该是维斯塔斯准备大批量生产的产品,下图为V112-3.0MW的外形图。 V112-3.0MW机组计划安装在英国沃尔尼第二海上风力发电场,2011年年底交付使用。V112-3.0MW技术参数如下表所示: 序号部件单位数值 1 机组数据 1.1 制造厂家/型号V112-3.0MW 1.2 额定功率kW 3000 1.3 轮毂高度(推荐方案)m 84.94/119 1.4 切入风速m/s 3 1.5 额定风速m/s 12 1.6 切出风速(10分钟平均值)m/s 25 1.7 极端(生存)风速(3秒最大值)m/s 59.5(IECIIA)5 2.5(IECIIIA) 1.8 预期寿命y 20 2 风轮

相关文档
最新文档