曲率变化率的化率连续逆向造型的A级曲面详解

曲率变化率的化率连续逆向造型的A级曲面详解
曲率变化率的化率连续逆向造型的A级曲面详解

在整个汽车开发的流程中,有一工程段称为 Class A Engineering,重点是在确定曲面的质量可以符合A级曲面的要求。

所谓A级曲面的定义,是必须满足相邻曲面间之间隙在 0.005mm 以下(有些汽车厂甚至要求到 0.001mm),切率改变 ( tangency Change )在0.16度以下,曲率改变 (curvature change) 在0.005 度以下,符合这样的标准才能确保钣件的环境反射不会有问题。

a-class包括多方面评测标准,比如说反射是不是好看、顺眼等等。当然,G2可以说是一个基本要求,因为g2以上才有光顺的反射效果。但是,即使G3了,也未必是a-class,也就是说有时虽然连续,但是面之间出现褶皱,此时就不是a-class

通俗一点说,class-A就必须是G2以上连接。G3连续的面不一定是CLASS-A曲面。

汽车业界对于a class要求也有不同的标准,GM要求比TOYOTA ,BMW等等要低一些,也就是说gap和angle要求要松一些。

关于A-class surfaces,涉及曲面的类型的二个基本观点是位置和质量。

位置——所有消费者可见的表面按A-Surface考虑。汽车的console(副仪表台)属于A-surf,内部结构件则是B-surf。

质量——涉及曲面拓扑关系、位置、切线、曲面边界处的曲率和曲面内部的patch结构。

有一些意见认为“点连续”是C类,切线连续是B类,曲率连续是A类。而我想更加适当地定义为C0、C1和C2,对应于B样条曲线方程和它的1阶导数(相切=C1)和它2阶导数(曲率=C2)。

因此一个A-surf有可能是曲率不连续的,如果那是设计的意图,甚至有可能切线不连续,如果设计意图是一处折痕或锐边,(而通常注塑或冲压不能有锐边,因此A-suuf一定是切线连续(C1)的)。

第二种思想以汽车公司和白车身制造方面的经验为基础,做出对A-surf更深刻的理解。他们按独立分类做出了同样的定义。

物理定义:A-surf是那些在各自的边界上保持曲率连续的曲面。

曲率连续意味着在任何曲面上的任一"点"中沿着边界有同样的曲率半径。

曲面是挺难做到这一点的,切向连续仅是方向的连续而没有半径连续,比如说倒角。

点连续仅仅保证没有缝隙,完全接触。

事实上,切连续的点连续能满足大部分基础工业(航空和航天、造船业、BIW等)。基于这些应用,通常并无曲率连续的需要。

A-surf首先用于汽车,并在消费类产品中渐增(牙刷,Palm,手机,洗机机、卫生设备等)。

它也是美学的需要。

*点连续(也称为G0连续)在每个表面上生产一次反射,反射线成间断分布。

*切线连续(也称为G1连续)将生产一次完整的表面反射,反射线连续但呈扭曲状。-

*曲率连续(也称为G2连续的,Alias可以做到G3!)将生产横过所有边界的完整的和光滑的反射线。

在老的汽车业有这样一种分类法:A面,车身外表面,白车身;B面,不重要表面,比如内饰表面;C面,不可见表面。这其实就是A级曲面的基础。

但是现在随着美学和舒适性的要求日益提高,对汽车内饰件也提到了A-Class的要求。因而分类随之简化,A面,可见(甚至是可触摸)表面;B面,不可见表面。

这是历史,是由来。

这5中连续性的名称分别叫做:G0-位置连续,G1-切线连续,G2-曲率连续,G3-曲率变化率连续,G4-曲率变化率的变化率连续

这些术语用来描述曲面的连续性。曲面连续性可以理解为相互连接的曲面之间过渡的光滑程度。提高连续性级别可以使表面看起来更加光滑、流畅。

G0-位置连续

图中所示的两组线都是位置连续,他们只是端点重合,而连接处的切线方向和曲率均不一致。这种连续性的表面看起来会有一个很尖锐的接缝,属于连续性中级别最低的一种。

G1-切线连续

曲率变化率的变化率连续逆向造型的A级曲面详解

在整个汽车开发的流程中,有一工程段称为Class A Engineering,重点是在确定曲面的质量可以符合A级曲面的要求。 所谓A级曲面的定义,是必须满足相邻曲面间之间隙在 0.005mm以下(有些汽车厂甚至要求到 0.001mm),切率改变( tangency Change )在 0.16度以下,曲率改变(curvaturechange)在 0.005度以下,符合这样的标准才能确保钣件的环境反射不会有问题。 a-class包括多方面评测标准,比如说反射是不是好看、顺眼等等。当然,G2可以说是一个基本要求,因为g2以上才有光顺的反射效果。但是,即使G3了,也未必是a-class,也就是说有时虽然连续,但是面之间出现褶皱,此时就不是a-class 通俗一点说,class-A就必须是G2以上连接。G3连续的面不一定是CLASS-A 曲面。 汽车业界对于a class要求也有不同的标准,GM要求比TOYOTA ,BMW等等要低一些,也就是说gap和angle要求要松一些。 关于A-class surfaces,涉及曲面的类型的二个基本观点是位置和质量。 位置——所有消费者可见的表面按A-Surface考虑。汽车的console(副仪表台)属于A-surf,内部结构件则是B-surf。 质量——涉及曲面拓扑关系、位置、切线、曲面边界处的曲率和曲面内部的patch结构。 有一些意见认为“点连续”是C类,切线连续是B类,曲率连续是A类。而我想更加适当地定义为 C0、C1和C2,对应于B样条曲线方程和它的1阶导数(相切=C1)和它2阶导数(曲率=C2)。

因此一个A-surf有可能是曲率不连续的,如果那是设计的意图,甚至有可能切线不连续,如果设计意图是一处折痕或锐边,(而通常注塑或冲压不能有锐边,因此A-suuf一定是切线连续(C1)的)。 第二种思想以汽车公司和白车身制造方面的经验为基础,做出对A-surf更深刻的理解。他们按独立分类做出了同样的定义。 物理定义: A-surf是那些在各自的边界上保持曲率连续的曲面。 曲率连续意味着在任何曲面上的任一"点"中沿着边界有同样的曲率半径。 曲面是挺难做到这一点的,切向连续仅是方向的连续而没有半径连续,比如说倒角。点连续仅仅保证没有缝隙,完全接触。 事实上,切连续的点连续能满足大部分基础工业(航空和航天、造船业、BIW等)。基于这些应用,通常并无曲率连续的需要。 A-surf首先用于汽车,并在消费类产品中渐增(牙刷,Palm,手机,洗机机、卫生设备等)。 它也是美学的需要。 *点连续(也称为G0连续)在每个表面上生产一次反射,反射线成间断分布。 *切线连续(也称为G1连续)将生产一次完整的表面反射,反射线连续但呈扭曲状。-*曲率连续(也称为G2连续的,Alias可以做到G3!)将生产横过所有边界的完整的和光滑的反射线。 在老的汽车业有这样一种分类法: A面,车身外表面,白车身;B面,不重要表面,比如内饰表面;C面,不可见表面。这其实就是A级曲面的基础。

曲面曲率计算方法的比较与分析

研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号:201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空 间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量和曲

率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1、K2,那么平均曲率则为:H= (K1 +K 2 ) / 2。 K 表示曲面的高斯曲率, 两个主曲率的乘积即为高斯曲率,又称

曲率与挠率

曲率与挠率 摘要:三维欧氏空间中的曲线中的曲率与挠率是空间曲线理论中最基本、最重要的两个概念,分别刻画空间曲线在一点邻近的弯曲程度和离开密切平面的程度,本文中给出了曲率与挠率的定义及其计算公式,并根椐公式 实例进行计算,以及曲率和挠率关于刚性运动及参数变换的不变性. 关键词:曲率与挠率 平面特征 刚性运动 1. 曲率与挠率的定义及其几何意义 1.1曲率的解析定义 设曲线C 的自然参数方程为()s r r =,且()s r 有二阶连续的导矢量r ,称()s r 为曲线C 在弧长为s 的点处的曲率,记为()()s r s k =,并称()s r 为C 的曲率向量,当 ()0≠s k 时,称()() s k s p 1 = 为曲线在该点处的曲率半径. 1.2 挠率的解析定义 空间曲线不但要弯曲,而且还要扭曲,即要离开它的密切平面,为了能刻画这一扭曲程度,等价于去研究密切平面的法矢量(即曲线的副法矢量)关于弧长的变化率,为此我们先给出如下引理. 引理:设自然参数曲线C :()s r r =本向量为βα ,和γ ,则0=?α r ,即r r 垂直于α . 另一方面由于1=r ,两边关于弧于s 求导便得 0=?r r , 即r 垂直于r ,这两方面说明r 与γα ?共线,即r 与β 共线. 由()βτ s r -=(负号是为了以后运算方便而引进的)所确定的函数()s r 称为曲线C

的挠率.当()0≠s τ时,它的倒数 () 1 s τ称为挠率半径. 1.3曲率与挠率的几何意义 1.3.1 曲率的几何意义 任取曲线C :()s r r =上的一点()p s 及其邻近点()Q s s +?,P 和Q 点处的单位 切向量分别为()()s r s =α和()()s s r s s ?+=?+ α,它们的夹角设为θ?,将()s s ?+α 的起点移到()p s 点,则()()2 sin 2θ αα?=-?+s s s ,于是 ()() s s s s s s ?????=??= ?-?+θθθ θαα2 2sin 2sin 2 故 ()()s r s k = ()() s s s s s s s s ??=?????=?-?+=→?→?→?→?θθθθ ααθθ000 lim lim 2 2sin lim lim 这表明曲线在一点处的曲率等于此点与邻近点的切线向量之间的夹角关于弧长的变化率,也就是曲线在该点附近切线方向改弯的程度,它反映了曲线的弯曲程度.如果曲线在某点处的曲率愈大,表示曲线在该点附近切线方向改变的愈快,因此曲线在该点的弯曲程度愈大. 1.3.2挠率的几何意义 由挠率的定义和()γ τ =s ,因此挠率的绝对值表示曲线的副法向量关于弧长的变化率,换句话说,挠率的绝对值刻画了曲线的密切平面的变化程度.所以曲线的挠率就绝对值而言其几何意义是反映了曲线离开密切平面的快慢,即曲线的扭曲程度. 1.4 直线与平面曲线的特征

proe教程(曲面曲率)

曲面曲率 一、新建qumianqulv文件 1、打开proe; 2、设置工作目录。文件/设置工作目录,在弹出的对话框中右键单击,选择“新建文件夹”,取名为“3位学号+姓名”,单击“确定”。 3、在选择“新建”; 4、在名称中输入“qumianqulv”; 5、取消前的勾。缺省模板可以理解为默认的尺寸单位空间,proe 默认的单位是英寸磅秒(inlbs),而中国用的是公制单位毫米牛秒(mmns); 6、选择“确定”按钮; 7、在弹出的“新文件选项”对话框中,选择mmns_part_solid。表示以mmns为单位的实体零件文件。 8、选择“确定”,新建文件完成。 二、绘制过程 1、选择“top”视图; 2、选择“”,保持默认的草绘设置,选择“草绘”按钮; 3、选择“样条曲线”工具,捕捉参照绘制如图曲线;(标注角度尺寸要依次选择角的两边和顶点)以鼠标中键结束。

4、修改尺寸。此时所有尺寸为灰色,表示是“弱尺寸”。双击长度尺寸,修改为25。双击高度尺寸,修改为70。曲线的两端均为90度。修改后,尺寸颜色变为亮色,表示是强尺寸。 5、在“菜单栏”选择“插入”,选择“扫描”-“曲面”,在下拉“菜单管理器”中选择“选取轨迹”按鼠标中建选择默认设置。 6、进入截面绘制阶段,选择工具栏命令绘制如图直线,并将角度修改为88 度,高度修改为8 7、选择工具栏结束截面绘制,按鼠标中键确定。

8、选择工具栏“基准平面”工具,选择top平面,输入平移距离 为12,选择确定 9、选择工具栏工具,选择DTM1平面,进入草绘绘制,选择 命令,绘制如图曲线,尺寸修改方法同上。

曲率

曲率: . 1 ;0.) 1(lim M s M M :.,13202a K a K y y ds d s K M M s K tg y dx y ds s =='+''==??='?'???= =''+=→?的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α ααα α 定积分的近似计算: ???----+++++++++-≈ ++++-≈ +++-≈ b a n n n b a n n b a n y y y y y y y y n a b x f y y y y n a b x f y y y n a b x f )](4)(2)[(3)(])(2 1 [)()()(1312420110110 抛物线法:梯形法:矩形法: 定积分应用相关公式: ??--==?=?=b a b a dt t f a b dx x f a b y k r m m k F A p F s F W )(1)(1 ,2 2 2 1均方根:函数的平均值:为引力系数引力:水压力:功: 空间解析几何和向量代数:

。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+?=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++?? ? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用

曲率连续讲解

上图中,从左到右依次为G0—G4的过度面

最外侧是G4

注意看平面和过度面的连接处 G0—G4连续性的名称分别叫做:G0-位置连续;G1-切线连续;G2-曲率连续;G3-曲率变化率连续;G4-曲率变化率的变化率连续 用这些术语描述曲面的连续性。曲面连续性可以理解为相互连接的曲面之间过渡的光滑程度。提高连续性级别可以使表面看起来更加光滑、流畅。 连续性类型: G0-位置连续

图中的两组线都是位置连续,他们只是端点重合,而连接处的切线方向和曲率均不一致。这种连续性的表面看起来会有各很尖锐的接缝,属于连续性种级别最低的一种。

图中的两组曲线属于切线连续,他们不仅再连接处端点,而且切线方向一致(可以看到连接的两条线段梳子图的刺在接触点位置是在一条直线上的)。用过其他PC插图软件的拥护,比如COREDRAW,实际上通常得到的都是这种连续性的曲线。 这种连续性的表面不会有尖锐的连续性接缝,但是由于两种表面在连接处曲率突变,所以在视觉效果上依然会有很明显的差异,会有一种表面中断的感觉。 通常用倒角工具生产的过度面都属于这种连续性级别。因为这些工具通常使用圆周与两各表面切点间的一部分作为倒角面的轮廓线,圆的曲率是固定的,所以结果会产生一个G1连续的表面。如何想生成更高质量的过度面,还是需要自己动手。

图中的两组曲线属于曲率线续。顾名思义,他们不但符和上述两种连续性的特征,而且在接点处的曲率也是相同的。如图中所示,两条曲线相交处的梳子图的刺长度和方向都是一致的(可以为0)。 这种连续性的曲面没有尖锐接缝,也没有曲率的突变,视觉效果光滑流畅,没有突然中断的感觉(可以用斑马线测试)。 这通常是制作光滑表面的最低要求。也是制作A级面的最低标准。

proe常用曲面分析功能详解讲解

proe常用曲面分析功能详解 现在是针对曲面分析单独做的教程 曲面分析应该贯穿在这个曲面外型的设计过程中.而不该最后完成阶段做分析 由于时间关系我单独做个分析简单的教程,将来的教程中我将逐步体现造型过程中贯穿分析的教程 本文重点在简单的阐述下曲面分析的运用,并不过多的阐述曲面的做法,PRT实物来源于SONJ.无嗔等版大,为求对比好坏,我会将质量好的PRT.修改约束成差点的来深入的阐述曲面分析的作用和看法.在这里先谢谢这些版大无私分享,也求得他们的原谅,未经过允许就转载他们的PRT还乱改.我先道歉… 现在这个拉手大家都看见了,这一步是VSS直接扫出来的.现在显示的呢是网格曲面.这个网格曲面和多人认为用处不大.但我想说几点看法,第一看这个面是不是整面,很明显这个面的UV先是连接在一起的,他是个整面.第2看他的UC线的走向,是不是规则在某一方向上,有没有乱,有没有波动。这些是我们 肉眼能看见的,是一个初步的分析,也能帮助大家理解曲面的走向趋势是怎么个事情。至于曲线的分析其他教程中以有很多阐述我就不在追述,至于什么叫曲面G1和G2相信大家也看到很多类似的教程 这个图你就能看见多个曲面的网格在一起时候的显示,说明不是整面。

网格曲面另一个重要作用呢就是观察收敛退化,也就是大家长说的3角面。 收敛退化是我们最不想看到的,但收敛点在那里呢,根据经验呢,比如说我这个,在做边界混合时候 2条直线是一组,曲线是另一组,也就是退化点在2条直线相交的地方,但新手一般看见教程是跟着裁减那里的角,至于为什么是在哪个位置可能不是很清楚,就看下网格曲面吧 剖面分析来说呢相对的要求比较高,原理呢很简单就是所选择的曲面面组和基准面相交的曲线的

第四章曲面的第二基本形式与曲面上的曲率

第四章 曲面的第二基本形式与曲面上的曲率 §5 曲面上的曲率概念 利用上一节所作的准备,围绕曲面弯曲状况的刻画,本节将引入曲面上的基本的和重要的曲率概念,并简要讨论相关的几何体. 一.主曲率 定义1 曲面 S 上的点 P 处的法曲率关于切方向的两个最值,分别称为曲面 S 在点 P 处的主曲率;使得法曲率达到最值的两个切方向,分别称为曲面 S 在点 P 处的主方向. 注记1 ① Weingarten 变换的特征值和特征方向,分别是曲面的主曲率和主方向. ② 当两个主曲率 κ1(P ) ≠ κ2(P ) 时,曲面在点 P 处有且仅有正交的两组主方向,每一组的单位化向量分别就是Weingarten 变换的单位正交特征向量.而当两个主曲率 κ1(P ) = κ2(P ) 时,曲面在点 P 处的任何非零切向都是主方向,Weingarten 矩阵 ω(P ) = κ1(P )I 2 ,即 Ω(P ) = κ1(P )g (P ) . 主曲率和主方向的计算,自然归结为Weingarten 变换的特征值和特征方向的计算,也就是Weingarten 矩阵的特征值和特征方向的计算.即: ① 对于主曲率的算法,当易知Weingarten 矩阵 ω 之时,方程为 (4.3) 式,或直接写为 (5.1) |ω - λI 2 | = 0 ; 等价地,当易知系数矩阵 Ω 和 g 之时,其方程可变形为 (5.2) |Ω - λg | = 0 . ② 对于主方向的算法,各种等价算式为 a = a i r i ≠ 0 为主方向,即非零切方向 a 1:a 2 为主方向 ? ?λ , ?(a 1, a 2)ω = λ(a 1, a 2) , (a 1, a 2) ≠ (0, 0) ? ?λ , ?(a 1, a 2)Ω = λ(a 1, a 2)g , (a 1, a 2) ≠ (0, 0) ? det. ????(a 1, a 2 )Ω (a 1, a 2)g = 0

曲率变化率的化率连续逆向造型的A级曲面详解

在整个汽车开发的流程中,有一工程段称为 Class A Engineering,重点是在确定曲面的质量可以符合A级曲面的要求。 所谓A级曲面的定义,是必须满足相邻曲面间之间隙在 0.005mm 以下(有些汽车厂甚至要求到 0.001mm),切率改变 ( tangency Change )在0.16度以下,曲率改变 (curvature change) 在0.005 度以下,符合这样的标准才能确保钣件的环境反射不会有问题。 a-class包括多方面评测标准,比如说反射是不是好看、顺眼等等。当然,G2可以说是一个基本要求,因为g2以上才有光顺的反射效果。但是,即使G3了,也未必是a-class,也就是说有时虽然连续,但是面之间出现褶皱,此时就不是a-class 通俗一点说,class-A就必须是G2以上连接。G3连续的面不一定是CLASS-A曲面。 汽车业界对于a class要求也有不同的标准,GM要求比TOYOTA ,BMW等等要低一些,也就是说gap和angle要求要松一些。 关于A-class surfaces,涉及曲面的类型的二个基本观点是位置和质量。 位置——所有消费者可见的表面按A-Surface考虑。汽车的console(副仪表台)属于A-surf,内部结构件则是B-surf。 质量——涉及曲面拓扑关系、位置、切线、曲面边界处的曲率和曲面内部的patch结构。 有一些意见认为“点连续”是C类,切线连续是B类,曲率连续是A类。而我想更加适当地定义为C0、C1和C2,对应于B样条曲线方程和它的1阶导数(相切=C1)和它2阶导数(曲率=C2)。 因此一个A-surf有可能是曲率不连续的,如果那是设计的意图,甚至有可能切线不连续,如果设计意图是一处折痕或锐边,(而通常注塑或冲压不能有锐边,因此A-suuf一定是切线连续(C1)的)。 第二种思想以汽车公司和白车身制造方面的经验为基础,做出对A-surf更深刻的理解。他们按独立分类做出了同样的定义。 物理定义:A-surf是那些在各自的边界上保持曲率连续的曲面。 曲率连续意味着在任何曲面上的任一"点"中沿着边界有同样的曲率半径。 曲面是挺难做到这一点的,切向连续仅是方向的连续而没有半径连续,比如说倒角。

(八)曲面的主曲率、高斯曲率、平均曲率

3.6 曲面的主曲率、高斯曲率、平均曲率 一 主曲率 定义曲面上一点处主方向上的法曲率称为曲面在该点的主曲率。 因曲面在一点处的主方向是过此点的曲率线的方向,故主曲率即曲面在一点处沿曲率线方向的法曲率。 二 欧拉公式 结论:取曲面上的曲率线网为曲纹坐标网,设沿u-线的主曲率为 1κ,沿v-线的主曲率为2κ,曲面上任意方向(d)=du:dv 与曲线的夹角 为θ,则沿(d )的法曲率n κ满足2212cos sin n κκθκθ=+ . 这个公式叫做欧拉公式。 证明 因为曲纹坐标网是曲率线网,所以F= M =0,所以对曲面上 任意方向(d)=du:dv ,与其对应的法曲率22 22 n Ldu Ndv Edu Gdv κII +== I + . 沿u-线(0v δ=)的法曲率为主曲率1L E κ=,沿v-线(0u δ=)的法曲率为主曲率2N G κ= . 因为(d)=du:dv 与u-线的夹角是θ,所以 cos θ=, 所以2 2 22 cos Edu Edu Gdv θ= +, 2 2 22sin Gdv Edu Gdv θ=+,所以 2222 2212222222 cos sin n Ldu Ndv L Edu N Gdv Edu Gdv E Edu Gdv G Edu Gdv κκθκθ+==+=++++ 三 主曲率的性质 命题6 曲面上(非脐点)的主曲率是曲面在这点所有方向的法曲率中的最大值和最小值。

证明 设12κκ< (如果12κκ>,可以交换坐标u 和v)由欧拉公式知: 22212212cos sin ()cos n κκθκθκκκθ=+=+-,于是2221()cos 0n κκκκθ-=-≥, 所以2n κκ≥,同样可得2121()sin n κκκκθ-=-,所以1n κκ≤,故12n κκκ≤≤, 这就是说,曲率21,κκ分别是法曲率n κ 中的最大值和最小值。 四 主曲率的计算公式 结论 设(d)=du:dv 为曲面S: (,)r r u v = 在 P 点处的主方向,沿主方向的主曲率为N k ,则N k 的计算公式是 0N N N N L E M F M F N G κκκκ--=-- 即22 2()(2)()0N N EG F LG MF NE LN M κκ---++-=。 注:要求主曲率,只需求出两类基本量,然后由这个二次方程解出主曲率N k 即可。 证明 由Rodrigues 定理,N k 为主曲率dn dr λ?= ,即 ()()()N u v N u v N Ldu Mdv Edu Fdv n du n dv r du r dv Mdu Ndv Fdu Gdv κκκ--=-+?+=-+??--=-+? 即()()0 ()()0N N N N L E du M F dv M F du N G dv κκκκ-+-=??-+-=? 有非零解du:dv 0N N N N L E M F M F N G κκκκ--? =-- 即22 2()(2)()0N N EG F LG MF NE LN M κκ---++-= 五 高斯曲率、平均曲率 定义 设12,κκ为曲面上一点的两个主曲率,则它们的乘积12κκ 叫做曲面在这一点的高斯曲率,记为K, 即12K κκ=; 它们的平均数称为曲面在这一点的平均曲率,记为 H ,即121 ()2 H κκ=+。 由主曲率的计算公式和韦达定理可知高斯曲率、平均曲率的计算 公式是:高斯曲率2 2 LN M K EG F -=-,平均曲率222()LG MF NE H EG F -+=-。

proe 曲面曲率

分析曲面曲率 模块概述 使用曲面特征设计产品时,曲面间的过渡扮演着重要的角色。曲面边的曲率连续性条件确定这些过渡的平滑程度。 在本模块中,您将学习如何分析曲面的曲率以及如何使用基于双向曲率的图形和着色曲率图形来确定曲面是否具有曲率连续性。此外,您将学习曲率连续曲面的创建方法。 目标 成功完成此模块后,您即可知道如何: ?分析曲面理论。 ?定义曲率和曲率连续性。 ?分析曲线的曲率。 ?分析曲面的曲率。 ?使用截面分析曲率。 ?使用法线分析曲率。 ?使用曲面的着色曲率。 ?使用着色截面曲率。 ?创建曲率连续曲面。

曲面分析理论 您可使用专用工具分析曲面模型,例如连续性、扭曲以及视觉特性。 ?其目标是为了创建高质量的曲面。 ?分析曲面的原因: o预期的平滑度和连续性 o预期的曲率 o无扭曲或扭结 o适合于制造过程 ?常用分析选项: o快速 o已保存 o特征 查看着色曲率

“保存的分析”对话框 剖面分析 曲面分析理论 Pro/ENGINEER 提供了许多不同的工具,以满足不同的建模要求。您可根据自己的目标使用特定工具分析曲面模型,例如连续性、扭曲以及视觉特性。

分析曲面的原因 创建曲面时,目标是创建具有高质量的曲面。请考虑以下分析曲面的原因: ?创建具有预期平滑度和连续性的曲面。可使用分析工具检验相切和曲率连续性。 ?创建具有预期曲率的曲面。可检查是否存在不需要的高曲率区域,这些区域表示曲面有问题。例如,曲面中的扭结会使曲率显示为突然增大,借助Pro/ENGINEER 的分析工具可轻松找出此类扭结。 ?创建无扭曲的曲面。扭结或小曲面片是曲面模型中常见的问题。在创建实体零件或创建制造序列时,它们可能在添加厚度时引起一些问题。 ?创建适合于制造过程的曲面。许多操作(例如创建加工序列) 都会将曲面侧考虑在内。曲面模型中的面组应具有相应的正法向侧。 常用分析选项 使用Pro/ENGINEER 的模型分析工具时有三个选项可用: ?快速(Quick) - 允许计算测量而不保存分析或在模型树中创建特征。关闭对话框后此分析消失。 ?已保存(Saved) - 允许保存测量以备今后使用。关闭对话框后此分析保留。可以为分析指定一个唯一名称,以使以后它对您有意义。 可通过单击“分析”(Analysis) > “保存的分析”(Saved Analysis)来启用、禁用或编辑保存的分析的显示。已保存分析更新为模型几何更改。“保存的分析”对话框如左下图所示。 ?特征(Feature) - 允许将分析作为一种特征保存在模型树中。该分析更新为模型几何更改。 定义曲率 曲面的曲率定义为与1/R 成正比,其中R 为曲面在指定位置的半径。

曲率及曲率变化率

一、曲率 曲率定义为一定弦长的曲线轨道(如30M )对应之园心角θ(度/30米)。度数大,曲率大,半径小。反之,度数小,曲率小,半径大。轨检车通过曲线时(直线亦如此),测量车辆每通过30米后车体方向角的变化值,同时测量车体相对两转向架中心连线转角的变化值,即可计算出轨检车通过30米曲线后的相应圆心角θ变化值。 测量曲率的传感器分布如图4-12。摇头速率陀螺YAW ,测量车体摇头角速率; 位移计DT1测量车体一位端的心盘处与一位转向架构架间的相对位移;位移计DT2、DT3测量车体二位端心盘前后两侧与二位转向架构架之间的相对位移;光电编码器TACH 提供速度距离信息,由于一阶模拟滤波器在处理模拟时间域信号时,其频率特性是固定不变的,但在处理YAW 所表示的空间域频率信号时,其频率特性就是变化的了。因此,一阶模拟滤波器输出信号经采样,进入计算机还需进行数字滤波处理。数字滤波的作用,是对一阶模拟滤波器引起的频率特性变化进行校正,使得模拟滤波和数字滤波混合处理后,在设计的通带范围内,空间域幅值特性不受列车运行速度的影响。 曲率测量的信号流程如图4-13。摇头速率陀螺输出信号经B(s)一阶模拟滤波处理后,进入计算机,再进行数字处理。)(z C 为一阶数字滤波器。)(z C 的输出,是单位采样距离对应的车体方向角x c ??/φ。用安装于一位转向架构架和车体间的位移计DT1测量一位转向架构架与车体间的位移d 1。用安装于二位转向架构架和车体间的位移计DT2和DT3,测量二位转向架构架和车体间的位移d 2。由d 1和d 2计算出单位采样距离相应的车体与两转向架中心连线间相对夹角x ct ??/φ。通过 x c ??/φ和x ct ??/φ的结合计算出两转向架中心连线对应于单位采样距离的方向

第二章第十三节曲面上法曲率的最值高斯曲率平均曲率极小曲面

第二章曲面论 第十三节曲面上法曲率的 最大值、最小值、 高斯曲率、平均曲率、极小曲面 根据法曲率的几何意义, 法曲 率完全反映了曲面在一点处沿指定 方向的弯曲程度和弯曲方向, 因此, 理论上曲面在一点处沿任意方向的 弯曲性是完全可以量化. 但实际上 是做不到的, 因为曲面在一点处有 无穷多个切方向. 于是我们自然提 出这样两个问题: 法曲率随方向变 化的变化规律是什么? 法曲率是否 有最大值和最小值? 下面针对这两 个问题展开讨论.得到的结论是: 由Euler 公式给处了曲面上一点沿各个方向, 法曲率的变化规律, 而且法曲率有最大值 和最小值, 它们被称为主曲率, 最后由主 曲率进一步引出Gauss曲率和平均曲率的概念.

一、 法曲率的最大值、最小值 曲面:(,)r r u v ∑=上一点P 沿一方向():d du dv =上的法曲率n k 为 n k II =I 22 22()2()()2()L du Mdudv N dv E du Fdudv G dv ++= ++ , (1) 我们考虑法曲率n k 的最大值、最小值问题。 设du dv λ=,则有 2 2 22n L M N k E F G λλλλ++=++,

这样一来,所求问题转化为求二次分式的极值问题。 222(2)0n L M N k E F G λλλλ++-++=, 2 ()2()0n n n L k E M k F N k G λλ-+-+-=, 此二次方程有根,当且仅当 2()()()0n n n M k F L k E N k G ----≥, 222()(2)()0 n n EG F k LG MF NE k LN M --+-+--≥。 设12,k k 12()k k ≤是方程 222()(2)()0 n n EG F k LG MF NE k LN M --+-+--=,(2) 的两个根, 则有12n k k k ≤≤, 于是n k 的最大值、最小值分别为 21,k k ,且由方程(2)所解出。 由 韦达定理,便得 2 122LN M k k EG F -=-,

曲率和挠率对空间曲线形状的影响要点

曲率和挠率对空间曲线形状的影响 摘 要:曲率和挠率是空间曲线的特性,不同的曲率和挠率函数决定不同形状的 曲线,研究常曲率和挠率的空间曲线有特别重要的意义。 本文对曲率和挠率的形 成及意义进行了探讨,并对常曲率和挠率的空间曲线进行了一定的研究. 给出了 常曲率和挠率的空间曲线特性? 关键词:曲率 挠率 空间曲线形状 我们知道,空间曲线的形状完全由曲率和挠率决定 ?而当一个空间曲线的曲 率或挠率为常数时,这种曲线具有很强的特性,对这种曲线的特性的研究有利于 对空间曲线这部分内容的掌握和理解? 一曲率的概念和几何意义 1曲率的概念 我们首先研究空间曲线的曲率的概念。在不同的曲线或者同一条曲线的不同 点处,曲线弯曲的程度可能不同。例如半径较大的圆弯曲程度较小, 而半径较小 的圆弯曲程度较大(图1-1)又如图1-2中所示,当沿着曲线从左向右移动时, 曲线弯曲的程度变大。为了准确地刻画曲线的弯曲程度,我们引进曲率的概念。 要从直观的基础上引出曲率的确切的定义, 我们首先注意到,曲线弯曲的程 度越大,则从点到点变动时,其切向量的方向改变得越快。所以作为曲线在已知 线段PQ 的平均弯曲程度可取为曲线在 P,Q 间切向量关于弧长的平均旋转角。 图1-1

设空间中c3类曲线(c)的方程为 曲线(C)上一点P,其自然参数为S,另一邻近点p i,其自然参数为S + A S。在P, P1两 点各作曲线(c)的单位切向量*is和〉s ?厶s。两个切向量间的夹角是丄(图1-3),也就是把点p的切向量〉s平移到点P后,两个向量〉s 和::i is: =s的夹角为「。 图1-3 定义空间曲线(C)在P点的曲率为 3豐忑, 其中厶S为P点及其邻近点p间的弧长,二!'为曲线在点P和p」勺的切向量的夹角。2曲率的几何意义 利用“一个单位变向量"((即卩(t)| = 1)的微商的模A '(t)的几何意义是丫(t)对于t的旋转速度”。把这个结果应用到空间曲线(C)的切向量〉上去,则有 '■ s 八。 由于「所以曲率也可表示为 由上述空间曲线的曲率的定义可以看出,它的几何意义是曲线的切向量对于弧长的旋转速度。当曲线在一点的弯曲程度越大,因此曲率刻画了曲线的弯曲程度。

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet公式摘要:本文研究了刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量—曲率和挠率以及空间曲线论的基本公式--Frenet公式,并且举例有关曲率、挠率的计算和证明. 关键词:空间曲线;曲率;挠率;Frenet公式 Spatial curvature,torsion and Frenet formulas Abstract:This paper studies space curves depict a point near the bend in the degree and extend of the amount of leave plane-the curvature and torsion and the basic formula of space curves-Frenet formulas,and for example the curvature and torsion of the calculation and proof. Key Words: space curves; curvature; torsion; Frenet formulas 前言 空间曲线的曲率、挠率和Frenet公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0 k>时为直线,0 τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1.空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c类空间曲线()c和()c上一点p.设曲线()c的自然参数表示是

曲面曲率计算方法的比较与分析

. 研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号: 201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量

和曲率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。 本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K 1、K 2,

A级曲面设计规范

XXXXX有限公司 A级曲面设计规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 20发布 20--实施 XXXXX有限公司发布

一、A级曲面光顺原则 1.所有特征都必须具有可扩展性和可编辑性。 2.所有特征都必须分解成单凸或单凹特征。 3.所有特征面的光顺保证2阶导数以上连续。 4.所有特征线(面)函数必须小于6阶。 5.所有特征间的连接要2阶导数以上连续(曲率连续) 6.所有特征间的连接偏差小于0.0001。 7.一块大面上多特征拼接的,建模默认误差小于0.0001,角度误差小于0.01度。 8.单一特征面的建模默认误差小于0.00001,角度误差小于0.001度 9.造型决定的不同特征形状可不要求曲率连续或相切连续。 10.在不能保证大特征面如上质量情况下,宁可牺牲边界线或缝线或特征连接,特征的连续保证相切连续(角度误差小于0.1度)。 11.不明显的局部特征过渡区(如A柱下端与翼子板过渡区),允许曲率不连续,但要保证相切连续。 12.外观特征筋线倒角R2~R5 仪表板边界相交倒角 R5~R10 13.顶盖、发动机盖、行李箱盖,与侧围做大面相交,然后以交线为中心,依据点云特征,进行曲率或相切连续。 14.大于R10的倒角,要考虑搭桥,保证曲率连续。 15.为获得A级曲面、允许与点云误差±5mm。 16.零件边界线必须光顺。 17.一块大面如果在两头曲率变化太大(相差2倍以上)必须分开特征,然后与主曲面拼接,拼接精度偏差小于0.0001,角度偏差小于0.01度)。 18.不可以用多个特征断面,用扫面(sweep)的方法,但可用单特征面(曲率变化不超过2倍)多个断面扫面。 19.不可用多个边界约束的小面拼接零件。

曲率和挠率对空间曲线形状的影响要点

曲率和挠率对空间曲线形状的影响 摘 要:曲率和挠率是空间曲线的特性,不同的曲率和挠率函数决定不同形状的曲线,研究常曲率和挠率的空间曲线有特别重要的意义。本文对曲率和挠率的形成及意义进行了探讨,并对常曲率和挠率的空间曲线进行了一定的研究.给出了常曲率和挠率的空间曲线特性. 关键词:曲率 挠率 空间曲线形状 我们知道,空间曲线的形状完全由曲率和挠率决定.而当一个空间曲线的曲率或挠率为常数时,这种曲线具有很强的特性,对这种曲线的特性的研究有利于对空间曲线这部分内容的掌握和理解. 一 曲率的概念和几何意义 1曲率的概念 我们首先研究空间曲线的曲率的概念。在不同的曲线或者同一条曲线的不同点处,曲线弯曲的程度可能不同。例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲程度较大(图1-1)又如图1-2中所示,当沿着曲线从左向右移动时,曲线弯曲的程度变大。为了准确地刻画曲线的弯曲程度,我们引进曲率的概念。 图1-1 图1-2 要从直观的基础上引出曲率的确切的定义,我们首先注意到,曲线弯曲的程度越大,则从点到点变动时,其切向量的方向改变得越快。所以作为曲线在已知线段PQ 的平均弯曲程度可取为曲线在P,Q 间切向量关于弧长的平均旋转角。

设空间中c 3 类曲线(c )的方程为 ()s γγ= 曲线(C )上一点P ,其自然参数为S,另一 邻近点p 1 ,其自然参数为s s ?+。 在p, p 1 两点各作曲线(c )的单位切向量()s α和()s s ?+α。两个切向量间的夹 角是??(图1-3),也就是把点p 1 的切向量()s s ?+α平移到点P 后,两个向量() s α和()s s ?+α的夹角为??。 图1-3 定义 空间曲线(C )在P 点的 曲率为 ()s s s ??=→?? κ0lim , 其中s ?为P 点及其邻近点p 1 间的弧长, ??为曲线在点P 和p 1 的的切向量 的夹角。 2曲率的几何意义 利用“一个单位变向量()t γ(即()t γ1=)的微商的模)(' t γ的几何意义是()t γ对于t 的旋转速度”。把这个结果应用到空间曲线(C )的切向量α上去,则有 ()? =ακs 。 由于? α=? ?γ,所以曲率也可表示为

相关文档
最新文档