半导体材料概念简介---选修课论文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体材料

摘要:目前半导体产品广泛应用于生活生产中,半导体材料及其应用已经成为衡量一个国家经济发展和科技进步的重要标志。本文对半导体材料的定义、特性性能、材料分类及应用和发展方向作出简要解析。

关键词:半导体材料半导体材料分类半导体特性制备方法半导体材料应用引言:20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;70年代光纤通讯技术迅速发展并逐步形成高新技术产业,使人类进入信息时代;超晶格概念的提出及其半导体超晶格,量子阱材料的诞生,改变了光电器件的发展,纳米技术的发展与运用使得半导体进入纳米时代。然而半导体材料的价值仍在于它的光学、电学及其他各种特性,自硅出现在很长时间内,硅仍将是大规模集成电路的主要材料,如在军事领域中应用的抗辐射硅单体、高效太阳能电池用硅单体、红外CCD器件用硅单体等。

随着半导体技术的发展和半导体材料的研究,微电子技术朝着高密度,高可靠性方向发展,各种各样新的半导体材料出现,而 GaAs和InP基材料等还是化合物半导体及器件的主要支柱材料。与此同时以硅材料为核心的当代微电子技术趋向于纳米级,到达这一尺寸后,一些列来自期间工作原理和工艺技术本身的物理限制以及制造成本大幅度提高等将成为难以克服的问题,为满足人类社会不断增长的对更大信息量的需求,近年来新的半导体材料制备方法出现,新的制备方法的研究与发展极有可能触发当前国际前沿研究热点,从而引起新的技术革命。

中国半导体材料经过40多年的研究与发展,已具备了相当的基础,特别是在改革开放后,中国的半导体材料和半导体技术获得明显发展,除满足国内需求外,一些材料已经进入国际市场,然而综观中国半导体产业链的全局,上端的设计,制造业较弱,尤其凸显的瓶颈部位式设计与材料设备业,但是可以相信整个发展大路上市顺利的,中国半导体材料应该掌握自主知识产权,系统技术的开发人才,规模化产业化生产,尽快在材料设备业发展。

1.半导体材料的定义及性质

当今,以半导体材料为芯片的各种产品已广泛进入人们的生活生产中,电视机,电子计算机,电子表等等,半导体材料为什么会拥有如此巨大的应用,我们

需要从半导体材料的概念和特性开始了解。

自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围之间。在一般情况下,半导体电导率随温度的升高而增大,这与金属导体恰好相反。

凡具有上述两种特征的材料都可归入半导体材料的范围。

反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。

由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。

非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。目前无论在理论方面,还是在应用方面,半导体的研究正在很快地发展着。

2.半导体材料的分类与制备

2.1半导体材料的分类

半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、化合物半导体、有机半导体、固溶体半导体和非晶态与液态半导体。

元素半导体大约有十几种,处于ⅢA族—ⅦA族的金属元素与非金属元素交界处,如Ge,Si,Se,Te等;化合物半导体分为二元化合物半导体和多元化合物半导体;有机半导体分为有机分子晶体、有机分子络合物、和高分子聚合物,一般指具有半导体性质的碳-碳双键有机化合物,电导率为10-10~102Ω·cm。固溶体半导体是由两个或多个晶格结构类似的元素化合物相融合而成,有二元系和三元系之分,如ⅣA-ⅣA组成的Ge-Si固溶体,ⅤA-ⅤA组成的Bi-Sb固溶体。原子排列短程有序、长程无序的半导体成为非晶态半导体,主要有非晶硅、非晶锗等。

2.2半导体材料的制备

2.2.1分子束外延技术(MBE)

MBE技术实际上在超高真空条件下,对分支或原子数源和衬底温度加以精密控制的薄膜蒸发技术。MBE生长过程实际上是一个具有热力学和动力学同时并存,相互关联的系统。只有在由分子数源产生的分子束不受碰撞地直接喷射到受热的洁净衬底表面,在表面上迁徙,吸附或通过反射或脱附过程离开表面,而在衬底表面与气态分子之间建立一个准平衡区,是晶体生长过程接近于热力学平衡条件,即使每一个结合到晶格中的原子能选择到一个自由能最低的格点位置,才能生长出高质量的材料。

2.2.2金属有机化学汽相淀积技术(MOCVD)

MOCVD使用氢气将金属有机化合物蒸汽和气态非金属氢化物经过开关网络送入反应式加热的衬底上,通过热分解反应而最终在其上生长出外延层的技术。

2.2.3半导体微结构材料生长和精细加工相结合的制备技术

利用MBE 或MOCVD等技术首先生长半导体微结构材料如AlGaAs/GaAs2DEG 材料等,进而结合高空间分辨电子束曝光直写,湿法或干法刻蚀和聚焦离子束注

相关文档
最新文档