CMI编码解码器设计与实现

CMI编码解码器设计与实现
CMI编码解码器设计与实现

学术诚信声明

本人声明:所呈交的报告(含电子版及数据文件)是我个人在导师指导下独立进行设计工作及取得的研究结果。尽我所知,除了文中特别加以标注或致谢中所罗列的内容以外,报告中不包含其他人己经发表或撰写过的研究结果,也不包含其它教育机构使用过的材料。与我一同工作的同学对本研究所做的任何贡献均己在报告中做了明确的说明并表示了谢意。报告资料及实验数据若有不实之处,本人愿意接受本教学环节“不及格”和“重修或重做”的评分结论并承担相关一切后果。

本人签名: 日期:年月日

目录

第一章总体设计方案 (1)

1.1设计原理 (1)

1.2设计思路 (1)

1.3设计环境 (1)

第二章详细设计方案 (3)

2.1原理框图 (3)

2.2功能模块的设计与实现 (3)

2.2.1 选择译码电路设计与实现模块 (3)

2.2.2 计数器模块设计与实现 (4)

第三章仿真设计 (6)

3.1输入数据 (6)

3.2仿真输出 (6)

参考文献 (8)

附录(关键部分程序清单) (9)

第一章总体设计方案

1.1 设计原理

CMI(Coded Mark Inversion)码是传号反转码的简称,与双相码类似,它也是一种双极性二电平码。其编码规则是“1”码交替用“11”或“00”两位码表示;“0”码固定地用“01”表示。CMI码易于实现,含有丰富的定时信息。此外,由于10为禁用码组,不会出现三个以上的连码,这个规律可以用来宏观检错。1.2 设计思路

根据CMI码的原理特点,将需要转换的数据输入,然后判断输出,将输出的数据放入寄存器然后选择输出。可以将电路分为以下几个部分:时钟控制电路,码分离以及信号编码电路,选择输出电路。

时钟控制电路:首先制定一个时钟控制电路,作为参考系统,一个二进制数据要对应两位CMI编码,即每个二进制数据占两个时钟周期,其对应的CMI编码占两个周期。

码分离以及信号编码电路:CMI编码的规则是当过来“0”码时,编码输出固定的“01”码;当过来的是“1”码时,编码输出“00”或者“11”码。当输入信号后需要区别对待0码和1码,因此首先要把进行码分离,其次0码和1码对应的处理方式不同,信号编码电路也需要两个不同的电路。

选择输出电路:实现不同码的编码译码后,数据送到同一根总线上,所以输出数据前需要进行数据选择,选择输出0码对应的CMI码或输出1码对应的CMI 码。

1.3 设计环境

设计及仿真软件:Altera公司的综合性PLD/FPGA开发软件Quartus II。

图1.31 程序设计界面

图1.32 仿真界面

第二章 详细设计方案

2.1 原理框图

图2.1 CMI 码编码解码器的原理图

2.2 功能模块的设计与实现

由2.1原理图可知,该设计方案可以分为五个模块:时钟控制电路、码分离电路、0信号编码电路、1信号编码电路以及选择输出电路。综合起来可以分为选择译码与选择输出两大模块。整体电路图如下:

图2.2 整体电路图

2.2.1 选择译码电路设计与实现模块

此模块就是将一位二进制数据转化为CMI 码,即0对应01,1对应00或11。

图2.21 选择译码电路

CMI编码模块Verilog HDL代码:

if(data==0)

begin

if(e==0)

begin

CMI[0]=0;

CMI[1]=0;

e=1;

end

else

begin

CMI[0]=1;

CMI[1]=1;

e=0;

end

end

else

begin

CMI[0]=0;

CMI[1]=1;

end

2.2.2 计数器模块设计与实现

设计中的数据输入是已经编译完成的串行数据,送入数据选择器,通过门电路构成的数据选择器进行选择输出。该部分电路如下图所示:

图2.22 选择输出电路此模块Verilog HDL代码:

always @(posedge clk)

begin

if(data==0)

begin

if(e==0)

begin

CMI[0]=0;

CMI[1]=0;

e=1;

end

else

begin

CMI[0]=1;

CMI[1]=1;

e=0;

end

end

else

begin

CMI[0]=0;

CMI[1]=1;

end

end

第三章仿真设计

3.1 输入数据

设置CLK作为参考系统,每两个CLK周期输入一个数据,对应的两个CLK 周期输出一个CMI码。由于上升沿触发所以第一周期内无对应数据。输入第一组数据为1001时,输出数据为00 01 01 00或11 01 01 11。第二组数据为0101时,输出数据为01 00 01 00或01 11 01 11。

在Quartus II中的输入如下图所示:

图3.11 数据一的输入

图3.12 数据二的输入

3.2 仿真输出

功能仿真波形结果如下图所示,对比期望输出的编码对应关系可知输出结果是正确的,进而说明电路设计的正确性。

图3.21 数据一的仿真输出结果

图3.22 数据二的仿真输出结果

沈阳航空航天大学课程设计报告错误!未指定书

签。

参考文献

[1] 李景华. 可编程程逻辑器件与EDA技术[M].北京:东北大学出版社,2001

[2] 范延滨.微型计算机系统原理、接口与EDA设计技术[M].北京:北京邮电大学出版社,

2006

[3] 王爱英.计算机组成与结构(第4版)[M].北京:清华大学出版社,2006

[4] 王冠.Verilog HDL与数字电路设计[M].北京:机械工业出版社,2005

[5] 白中英.计算机组成原理[M].科学出版社出版社,2008

[6] 郑纬民.计算机系统结构[M].北京:清华大学出版社,1992

[7] 胡越明.计算机组成与设计[M].北京:科学出版社,2006

附录(关键部分程序清单)

程序代码

module CMI(clk,data,CMI);

input clk,data;

output [1:0] CMI;

reg [1:0] CMI;

integer e=1'b0;

always @(posedge clk)

begin

if(data==0)

begin

if(e==0)

begin

CMI[0]=0;

CMI[1]=0;

e=1;

end

else

begin

CMI[0]=1;

CMI[1]=1;

e=0;

end

end

else

begin

CMI[0]=0;

CMI[1]=1;

end

end

endmodule

光电编码器分类及作用

光电编码器分类及作用 光电编码器是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,主要由光源、码盘、光学系统及电路4部分组成, 光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器. 一、增量式编码器 增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志

信号。标志脉冲通常用来指示机械位置或对积累量清零。 二、绝对式编码器 绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。其位置是由输出代码的读数确定的。当电源断开时,绝对型编码器并不与实际的位置分离。重新上电时,位置读数仍是当前的。绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。并且在不同位置输出不同的数字码。从而可以检测绝对位置。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。优点:可以直接读出角度坐标的绝对值,没有累积误差,电源切除后位置信息不会丢失。编码器的抗干扰特性、数据的可靠性大大提高了。 三、混合式绝对值编码器 混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 四、旋转变压器 旋转变压器简称旋变,是一种可变耦合原理工作的交流控制电机。它的副方(次级)输出电压与转子转角呈确定的函数关系。由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电

编码器和译码器的应用

编码器、译码器及应用电路设计 一、实验目的: 1、掌握中规模集成编码器、译码器的逻辑功能测试和使用方法; 2、学会编码器、译码器应用电路设计的方法; 3、熟悉译码显示电路的工作原理。 二、实验原理: 1、什么是编码: 教材说:用文字、符号、或者数字表示特定对象的过程称为编码 具体说:编码的逻辑功能是把输入的每个高、低电平信号编成对应的二进制代码 2、编码器74LS147的特点及引脚排列图: 74LS147是优先编码器,当输入端有两个或两个以上为低电平,它将对优先级别相对较高的优先编码。其引脚排列图: 3、什么是译码:译码是编码的逆过程,把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出,译码器广泛用于代码转换、终端的数字显示、数据分配、组合控制信号等。 译码器按照功能的不同,一般分为三类:二进制译码器、二—十进制译码器、显示译码器。 (1)变量译码器(用以表示输入变量的状态) 74LS138的特点及其引脚排列图:反码输出。 ABC是地址输入端,Y0—Y7是输出端,G1、G2A’、G2B’为 使能端,只有当G1=G2A’=G2B’=1时,译码器才工作。 (2)码制变换译码器:用于同一个数据的不同代码之间的相互转换,代表是4—10线译码器 译码器74LS42的特点及其引脚排列图: 译码器74LS42的功能是将8421BCD码译成10个对象 其原理与74LS138类同,只不过它有四个输入端, 十个输出端,4位输入代码0000—1111十六种状态组合

其中有1010—1111六个没有与其对应的输出端, 这六组代码叫做伪码,十个输出端均为无效状态。 (3)数码显示与七段译码驱动器:将数字、文字、符号的代码译成数字、文字、符号的电路 a、七段发光二极管数码显示管的特点:(共阴极) b、七段译码驱动器: 4、在本数字电路实验装置上已完成了译码器74LS48和数码管之间的连接图。 三四五脚接高电频,数码管的单独端接低电频。

编码器工作原理及作用

编码器工作原理及作用-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

编码器工作原理及作用 工作原理 德国siko编码器 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 作用 它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信

译码器、编码器及其应用实验报告

实验四 译码器、编码器及其应用 实验人员: 班号: 学号: 一、实验目的 (1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。 二、实验设备 数字电路实验箱,74LS20,74LS138。 三、实验容 (1) 74LS138译码器逻辑功能的测试。将74LS138输出Y 0????~Y 7????接数字实验箱LED 管,地址Y 2Y 1Y 0输入接实验箱开关,使能端接固定电平(Y YY 或GND )。电路图如Figure 1所示: Figure 1 E Y 1YY 2Y ?????????? YY 2Y ??????????≠100时,任意拨动开关,观察LED 显示状态,记录观察结果。 E Y 1YY 2Y ?????????? YY 2Y ??????????=100时,按二进制顺序拨动开关,观察LED 显示状态,并与功能表对照,记录观察结果。 用Multisim 进行仿真,电路如Figure 2所示。将结果与上面实验结果对照。

Figure 2 (2) 利用3-8译码器74LS138和与非门74LS20实现函数: Y =Y ???Y ???+Y ???Y ???+YYY 四输入与非门74LS20的管脚图如下: 对函数表达式进行化简: Y =Y ???Y ???+Y ???Y ???+YYY =Y ???Y ???Y ???+Y ???Y ???Y +A Y ???Y ???+YYY =Y 0+Y 1+Y 4+Y 7=Y 0????Y 1????Y 4????Y 7????????????????????? 按Figure 3所示的电路连接。并用Multisim 进行仿真,将结果对比。 Figure 3

电机编码器解码器

maxon motor maxon motor control Encoder HEDL 550_Technical Documentation April 2000 edition The latest edition of these operating instructions may also be found in the internet under:https://www.360docs.net/doc/6f10727109.html,/Service&Support/Downloads/Tacho.htm Encoder Line Drivers Technical Data HEDL-550X/554X HEDL-556X/557X HEDL-560X/564X HEDL-9000/9100/9200HEDL-9040/9140 HEDL-9060/9160/9260HEDL-9061/9161 Features ? Available on Both Encoder Modules (HEDS-9000Series) and Encoder Kit Housings (HEDS-5500Series) ? Complementary Outputs ? Industry Standard Line Driver IC ? Single 5 V Supply ? Onboard Bypass Capacitor ? 70°C and 100°C Versions Available Description Line Drivers are available for the HEDS-55XX/56XX series and the HEDS-9000/9100/9200/9040/ 9140 series encoders. The line driver offers enhanced perform-ance when the encoder is used in noisy environments, or when it is required to drive long distances.The 70°C version utilizes an industry standard line driver IC (26LS31) which provides comple-mentary outputs for each encoder channel. The 100°C version utilizes an industry standard line driver IC, 26C31, which provides complementary outputs for each encoder channel. Thus, the output of the line driver encoder is A, A, B, B and I/I for three channel versions. Suggested line receivers are 26LS32 and 26LS33. For additional information, please refer to: HEDS-5500/5540/5600/5640data sheet, HEDS-90X0/91X0/92X0 data sheets, HEDS-9000 series extended resolution data sheet, and 26LS31 data sheet.Device Characteristics ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULB BE TAKEN TO AVOID STATIC DISCHARGE also refer to: https://www.360docs.net/doc/6f10727109.html,/motion/hedl550x.html

编码器的工作原理及分类

编码器的工作原理及分类 编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。 故障现象:旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”。。。联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理。 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用

编码器、译码器及应用电路设计

实验六编码器、译码器及应用电路设计 一、实验目的: 1、掌握中规模集成编码器、译码器的逻辑功能测试和使用方法; 1、学会编码器、译码器应用电路设计的方法; 3、熟悉译码显示电路的工作原理。 二、实验原理: 编码是用文字、符号或者数字表示特定对象的过程,在数字电路中是用二进制数进行编码的,相应的二进制数叫二进制代码。编码器就是实现编码操作的电路。本实验使用的是优先编码器74LS147,当输入端有两个或两个以上为低电平时,将对输入信号级别相对高的优先编码,其引脚排列如图6—1所示。 图6—1 74LS147引脚排列图图6—2 74LS138引脚排列图译码是编码的逆过程,是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配和组合控制信号等。不同的功能可选用不同种类的译码器。 译码器按照功能的不同,一般分为三类: 1、变量译码器(二进制译码器):用以表示输入变量的状态,如2—4线、3—8线、4—16线译码器。以3—8线译码器74LS138为例介绍: 图6—2为74LS138的引脚图,其中,A2A1A0为地址输入端,为译码器输出端,为使能端(只有当时,才能进行译码)。 图6—3 74LS42引脚排列图图6—5为CC4511引脚排列图 2、码制变换译码器:用于同一个数据的不同代码之间的相互变换。这种译码器的代表是4—10线译码器,它的功能是将8421BCD码译为十个对象,如74LS42等。它的原理与 74LS138译码器类同,只不过它有四个输入端,十个输出端。4位输入代码共有0000—1111

第14章:实现自定义的编码解码器

目录[-]编解码器的范围1.实现 Memcached 的编解码器 2.了解Memcached 二进制协议 https://www.360docs.net/doc/6f10727109.html,ty 编码器和解码器 4.实现Memcached 编码器 1.实现Memcached 解码器 2.测试编解码器 5.Summary https://www.360docs.net/doc/6f10727109.html,ty In Action 中文版 - 第十四章:实现自定义的编码解码器 本章讲述Netty 中如何轻松实现定制的编解码器,由于Netty 架构的灵活性,这些编解码器易于重用和测试。为了更容易实现,使用Memcached 作为协议例子是因为它更方便我们实现。 Memcached 是免费开源、高性能、分布式的内存对象缓存系统,其目的是加速动态Web 应用程序的响应,减轻数据库负载;Memcache 实际上是一个以key-value 存储任意数据的内存小块。可能有人会问“为什么使用Memcached ?”,因为Memcached 协议非常简单,便于讲解。 14.1 编解码器的范围 我们将只实现Memcached 协议的一个子集,这足够我们进行添加、检索、删除对象;在Memcached 中是通过执行SET ,GET ,DELETE 命令来实现的。Memcached 支持很多其他的命令,但我们只使用其中三个命令,简单的东西,我们才会理解的更清楚。 Memcached 有一个二进制和纯文本协议,它们都可以用来与Memcached 服务器通信,使用什么类型的协议取决于服务器支持哪些协议。本章主要关注实现二进制协议,因为二进制在网络编程中最常用。 14.2 实现Memcached 的编解码器 当想要实现一个给定协议的编解码器,我们应该花一些事件来了解它的运作原理。通常情况下,协议本身都有一些详细的记录。在这里你会发现多少细节?幸运的是Memcached 的二进制协议可以很好的扩展。 在RFC 中有相应的规范,并提供了Memcached 二进制协议下载地址:https://www.360docs.net/doc/6f10727109.html,/p/memcached/wiki /BinaryProtocolRevamped 。我们不会执行Memcached 的所有命令,只会执行三种操作:SET ,GET 和DELETE 。这样做事为了让事情变得简单。 14.3 了解Memcached 二进制协议 可以在https://www.360docs.net/doc/6f10727109.html,/p/memcached/wiki/BinaryProtocolRevamped 上详细了解Memcached 二进制协议结构。不过这个网站如果不翻墙的话好像访问不了。 14.4 Netty 编码器和解码器14.4.1 实现Memcached 编码器 先定义memcached 操作码(Opcode)和响应状态码(Status): [java] package netty.in.action.mem; 01. 02. /** 03. * memcached operation codes 04. * @author c.king 05. * 06. */ 07. public class Opcode { 08. 09. public static final byte GET = 0x00; 10. public static final byte SET = 0x01; 11. public static final byte DELETE = 0x04; 12. 13. } 14.[java]

主轴编码器

主轴编码器 ?主轴编码器应用于在数控车床车螺纹时,是利用其同步脉冲作为车刀进刀点和退刀点的控制信号,从而保证车削螺纹不会乱扣。它主要用于测量主轴的旋转速度,安装在主轴上来对元件进行检测。 目录 ?主轴编码器的作用 ?主轴编码器的原理 ?主轴编码器的安装 主轴编码器的作用 ?主轴编码器采用和主轴同步的光电脉冲发生器,通过中间轴上的齿轮1:1地同步传动。数控车床主轴的转动和进给运动之间,没有机械方面的直接联系,为了加工螺纹,就要求给定进给伺服电动机的脉冲数和主轴的转速应有相对应的关系,主轴脉冲发生器起到了对主轴转动和进给运动的联系作用。 主轴编码器的原理 ?如下图,在漏光盘上,沿圆周刻有两圈条纹,外圈为圆周等分线条,例如:1024条,作为发送脉冲用,内圈仅1条。在光栏上,刻有透光条纹A、B、C,A和B之间的距离应保证当条纹A和漏光盘上任一条纹重合时,条纹B应和漏光盘上另一条纹的重合度错位1/4周期。在光栏的每一条纹的后面均安置光敏三极管一只,构成一条输出通道。 光源发光→经过聚光镜聚光后成为平行光线→漏光盘和主轴同步旋转→漏光盘上的条纹和光栏上的条纹出现重合和错位→光敏接收信号并通过计数装置计数→反映主轴转速。 光源发出的散射光线经过聚光镜聚光后成为平行光线,当漏光盘和主轴同步旋转时,由于漏光盘上的条纹和光栏上的条纹出现重合和错位,使光敏管受到光

线亮、暗的变化,引起光敏管内电流大小发生变化,变化的信号电流经整流放大电路输出矩形脉冲。由于条纹A和漏光盘条纹重合时,条纹B和另一条纹错位1/4周期,因此A、B两通道输出的波形相位也相差1/4周期。 主轴编码器中漏光盘内圈的一条刻线和光栏上条纹C重合时输出的脉冲为同步(起步,又称零位)脉冲。利用同步脉冲,数控车床可实现加工控制,也可作为主轴准停装置的准停信号。数控车床车螺纹时,利用同步脉冲作为车刀进刀点和退刀点的控制信号,以保证车削螺纹不会乱扣。 主轴编码器的安装 因为原车床没有安装主轴编码器,为寻找安装主轴编码器的位置,对该车床主轴结构分析发现,只有主轴后端才能安装编码器。由此有两种安装方法:一种是将大齿轮固定在皮带轮上,小齿轮和编码器固定在一起,安装在支座上。另一种方法是将编码器通过联轴器直接和主轴后端相联接,编码器支架安装在主轴后端防护盖上。 而第二种方法相对来说比较好。为保证编码器的安装可靠性、稳定性和安装精度,在主轴后端防护盖3和主轴之间用螺栓联接固定在一起,并采用两个定位销保证重复安装的进度。

译码器和编码器实验

实验三译码器和编码器 一实验目的 1.掌握译码器、编码器的工作原理和特点。 2.熟悉常用译码器、编码器的逻辑功能和它们的典型应用。 二、实验原理和电路 按照逻辑功能的不同特点,常把数字电路分两大类:一类叫做组合逻辑电路,另一类称为时序逻辑电路。组合逻辑电路在任何时刻其输出的稳态值,仅决定于该时刻各个输入信号取值组合的电路。在这种电路中,输入信号作用以前电路所处的状态对输出信号无影响。通常,组合逻辑电路由门电路组成。 组合逻辑电路的分析方法:根据逻辑图进行二步工作: a.根据逻辑图,逐级写出函数表达式。 b.进行化简:用公式法、图形法或真值表进行化简、归纳。 组合逻辑电路的设计方法:就是从给定逻辑要求出发,求出逻辑图。一般分四步进行。 a.分析要求;将问题分析清楚,理清哪些是输入变量,哪些是输出函数。 b.列真值表。 c.进行化简:变量比较少时,用图形法。变量多时,可用公式化简。 d.画逻辑图:按函数要求画逻辑图。 进行前四步工作,设计已基本完成,但还需选择元件——集成电路,进行实验论证。 值得注意的是,这些步骤并不是固定不变的程序,实际设计时,应根据具体情况和问题难易程度进行取舍。 1.译码器 译码器是组合电路的一部分,所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。译码器分成三类: a.二进制译码器:如中规模2—4线译码器74LS139。,3—8线译码器74LS138等。 b.二—十进制译码器:实现各种代码之间的转换,如BCD码—十进制译码器74LS145等。 c.显示译码器:用来驱动各种数字显示器,如共阴数码管译码驱动74LS48,(74LS248),共阳数码管译码驱动74LS47(74LS247)等。 2.编码器 编码器也是组合电路的一部分。编码器就是实现编码操作的电路,编码实际上是译码相反的过程。按照被编码信号的不同特点和要求,编码器也分成三类: a.二进制编码器:如用门电路构成的4—2线,8—3线编码器等。 b.二—十进制编码器:将十进制的0~9编成BCD码,如:10线十进制—4线BCD码编码器74LS147等。 c.优先编码器:如8—3线优先编码器74LS148等。 三、实验内容及步骤 1.译码器实验 (1)将二进制2-4线译码器74LS139,及二进制3-8译码器74LS138分别插入实验系统IC 空插座中。 按图1.3.1接线,输入G、A、B信号(开关开为“1”、关为“0”),观察LED输出Yo、Y1、Y2、Y3的状态(亮为“1”,灭为“0”),并将结果填入表1.3.1中。

解码器与编码器的区别

解码器与编码器的区别 解码器 在多媒体方面,编码器主要把模拟视音频信号压缩数据编码文件,而解码器把数 据编码文件转为模拟视音频信号的过程。 解码器的分类: 解码器按照云台供电电压分为交流解码器和直流解码器。交流解码器为交流云台 提供交流230V或24V电压驱动云台转动;直流云台为直流云台提供直流12V或24V 电源,如果云台是变速控制的还要要求直流解码器为云台提供0-33或36V直流电压信号,来控制直流云台的变速转动。 按照通讯方式分为单向通讯解码器和双向通讯解码器。 单向通讯解码器只接收来自控制器的通讯信号并将其翻译为对应动作的电压/电流 信号驱动前端设备; 双向通讯的解码器除了具有单向通讯解码器的性能外还向控制器发送通讯信号, 因此可以实时将解码器的工作状态传送给控制器进行分析,另外可以将报警探测器等 前端设备信号直接输入到解码器中由双向通讯来传诵现场的报警探测信号,减少线缆 的使用。 按照通讯信号的传输方式可分为同轴传输和双绞线传输。一般的解码器都支持双绞 线传输的通讯信号,而有些解码器还支持或者同时支持同轴电缆传输方式,也就是将 通讯信号经过调制与视频信号以不同的频率共同传输在同一条视频电缆上。 解码器的电路是以单片机为核心,由电源电路、通讯接口电路、自检及地址输入电路、输出驱动电路、报警输入接口等电路组成。 解码器一般不能单独使用,需要与系统主机配合使用。 ●解码器到云台、镜头的连接线不要太长,因为控制镜头的电压为直流12伏左右,传输太远则压降太大,会导致镜头不能控制。另外由于多芯控制电缆比屏蔽双绞线要贵,所以成本也会增加。 ●室外解码器要做好防水处理,在进线口处用防水胶封好是一种不错的方法,而且 操作简单。 ●从主机到解码器通常采用屏蔽双绞线,一条线上可以并联多台解码器,总长度不超过1500米(视现场情况而定)。如果解码器数量太大,需要增加一些辅助设备,如增加控制码分配器或在最后一台解码器上并联一个匹配电阻(以厂家的说明为准)。

解码器的使用说明

TS110R解码器使用文档 (V 1.0.0) Topsee Technologies Co., Ltd. All rights reserved

修订记录 Date Version Editor Description 2009-07-06 V 1.0.0 胡建华初稿

简介 天视通网络视频解码器V1.00(以下简称解码器)是一款专为安防行业度身定做的云台解码器,设备采用了高性能的数字处理器,由视频解码模块、以太网接口以及模拟视频输出接口构成。解码器支持通过浏览器(Internet Explore)访问,完成各项查询配置,以及在线升级功能。解码器通过以太网接口,获得用户指定的MPEG4格式的流媒体并将数据解码,解码获得的模拟视频数据将在电视机上显示。此外,解码器能够处理云台协议 (PELCO-D、PELCO-P、SAMSUNG等) 控制命令。 采用了运算速度更快的数字处理器,能够快速压缩尺寸更大更加清晰的画面,采用了嵌入的服务器,完全脱离PC平台,系统调度效率高,代码固化在FLASH 中,系统运行稳定可靠。支持通过浏览器(Internet Explore)进行远程图像访问。 产品特点: * MPEG4视频压缩标准; * 支持D1和CIF两种尺寸; * 内嵌Web Server,全面支持Internet Explore监视、配置、升级 * 10/100M以太网接口支持 * 支持IO接口连接其他外设 * RS485接口,网络透明通道连接,客户端可通过解码器的透明通道控制 * 支持多个用户同时访问 建议机器配置:CPU 3.0GHz, 1G内存, 128M独立显存,2.1声卡,Audio输

密勒码编码器和解码器的设计

密勒码编码器和解码器的设计 1、基本原理 密勒码又称延迟调制码,它是双相码的一种变形。它的编码规则如下:“1”码用码元中心点出现跃变来表示,即用“10”或“01”表示。“0”码有两种情况:单个“0”时,在码元持续时间内不出现电平跃变,且与相邻码元的边界处也不跃变,连“0”时,在两个“0”码的边界处出现电平跃变,即“00”与“11”交替 由图可知双相码下跳沿对应着密勒码的跳变沿。因此用双相码的下降沿去触发双稳态电路即可输出密勒码。 2、设计方案 Miller码的主要特点是:(1)由编码规则可知,当信码序列出现“101”时,Miller码出现最大脉冲宽度为两个码元周期,而信码出现连“0时,它的最小脉冲宽度为一个码元周期,这一性质可用于进行误码检测。(2)比较双相码与Miller 码的码型,可以发现后者时前者经过一级触发器得来。 编译码过程如下: 编码: 1)、将NRZ码与位同步信号BS相异或,生成信号作为D0触发器的输入,D0触发器采用2BS频率的信号对其采样输出信号BPH码。 2)、BPH码取非后输入D1触发器双稳态电路,生成密勒码。 解码: 1)、将输出的密勒码输入触发器D2的D端,将2BS信号接入D2; 2)、触发器D2生成信号输入触发器D3的D端; 3)、将2BS信号接入触发器D3对密勒码进行采样,将D3生成信号与D2生成信号相异或后的信号作为触发器D4的输入。 4)、将BS信号接入触发器D4,即可输出密勒码解码输出。 编码、解码原理图如下所示:

仿真图: 波形分析:NRZ码输入为:01010011010011,BPH码输出为:01 10 01 10 01 01 10 10 01 10 01 01 10 10,密勒码输出为:00 01 11 10 00 11 10 01 11 00 01 10。观察BPH码与Miller码波形,可知BPH码下跳沿对应着密勒码的跳变沿,符合设计原理。观察NRZ输入码波形、BPH码波形、密勒码波形、译码输出码波形,BPH码波形和密勒码波形相对于NRZ码波形有0.25个码元延迟,译码输出码波形相对于NRZ码有2个码元延迟。 3、心得体会 刚接触这个课程设计,觉得对有些概念有点模糊,于是我们又重新翻开了通信原理这本书,把有关概念弄清楚,遇到不明白的地方我们相互讨论,加强对理论的理解,当然中间还涉及到了有关数电、模电的知识。接着我们把整体的思路、设计框架都大概写了出来。而在

编码器的工作原理及作用

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA 编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.

编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

解码器使用说明

在闭路监控系统中,解码器是一个重要的前端控制设备。在主机的控制下,解码器可使云台、镜头、雨刮器和照明灯等前端设备产生相应的动作。 解码器电路板正面示意图 本解码器可用RS232或RS485两种方式进行控制。在距离较近(小于100米)且云台数量不多(少于4个)时,可直接用RS232方式进行控制。在距离较远或云台数量较多时,需用RS485方式进行控制。工程上建议使用RS485方式,其最远控制距离可达1200米,总线最多可驱动64个负载,即64个解码器可并接在同一RS485总线上。

本解码器的RS485总线具有瞬变电压抑制功能,能防雷电和抗静电放电冲击。此外,解码器的所有输出均具有短路保护功能。一旦输出短路,内部电路将自动切断输出电流。此时应断开供电电源,确保排除短路故障,等待30秒后重新上电,解码器即可重新恢复正常工作。此功能对设备具有良好的保护作用。 接线及调试说明: 在完成所有连接之前,请不要接通电源,在确保连接无误后方可通电! (1)~POWER(黄色端子)为解码器电源输入,一般应接入~220V电源。有些 解码器应特殊要求,已改为~24V供电方式,则应接入~24V电源,而禁止接入~220V电源。接入正确电源后,解码器右侧上方的红色电源指示灯亮起。否则应检查电源接插件P1、P2和保险丝(5A)。 (2)RS232、RS485为通信接口,使用时只能连接其中之一。接入RS232时, 要注意正负极性,一般计算机的9针RS232串口输出的3脚为正,5脚为负,开机后这两根控制线不能短路,否则极易损坏计算机的串口;接入RS485时,也应按RS485的极性正确连接。 (3)云台、镜头控制线的接法如示意图所示,左面两排接线端子对应标志接 上即可。云台控制电压由JX1引出的接插件进行选择。当该接插件与P3相接时,可控制~220V云台;与P4相接时,即可控制~24V云台。解码器出厂时,设置为控制~24V云台。 (4)镜头控制电压可由电位器VR1进行无级调节,范围为5V—12V。逆时针方 向旋转电压增高,镜头动作加快;顺时针方向旋转电压降低,镜头动作变慢。VR1的右侧有两个测试点,用万用表可测试其直流电压,出产设置为8V左右。 (5)~OUT输出的交流电用来控制防护罩的雨刮器,其电压由JX2引出的接插 件进行选择。当该接插件与P5相接时,输出电压为~220V;与P6相接时,输出电压为~24V。出厂时,设置~OUT将输出~24V。 (6)~LIGHT输出交流电用来控制照明灯等,电压为~220V,最大电流为5A。 (7)O/C是常开的继电器输出,可用来控制交流或直流的通断,最大电压 250V,最大可通过电流为7A。 (8)AGND和+12V可为摄像机提供直流12V电源,最大电流800mA。 (9)~24V可为摄像机提供交流24V电源,最大电流500mA。 (10)为了调试方便,电路板上还提供了“镜头手动控制”、“云台及其它输出 手动控制”等控制口。调试时,可用短路块短接控制口相应的左右铜柱,查看对应的动作指示灯是否亮起,以及输出电压是否正常。

倍加福编码器工作原理及作用

德国P+F倍加福旋转编码器工作原理 P+F倍加福旋转编码器作用由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率-编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接-编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。

编码器与解码器

编码电路设计报告 目录 一、设计任务 二、题目分析与整体构思 三、硬件电路设计 四、程序设计 五、心得体会

一.设计任务 在数字系统中,编码指将特定的逻辑信号编为一组二进制代码。能够实现编码功能的逻辑部件称为编码器。一般而言,M 个不同的信号,至少需要N 位二进制数编码。M 和N 之间 满足2N≥M 的关系。在实际工作中,同时有多个输入被编码时,必须根据轻重缓急,规定好这些控制对象允许操作的先后次序,即优先识别。能够识别信号的优先级并进行编码的逻辑部件称为优先编码器。 8-3 线优先编码器是常见编码器之一,它有8 个输入端、3 个二进制码输出端,作用是将输入X0~X7 八个状态分别编成842l 码的反码输出,优先级分别从X7~X0 递减。 使用VHDL硬件描述语言的设计方法和思想设计8-3 线优先编码器。用ISE 软件运行仿真,观察波形图,并将程序下载到FPGA,验证编码器的逻辑功能。 使用VDHL语言实现8-3 线优先编码器,操作简单、易懂,将8个拨码开关的状态作为输入,3个LED显示高低电平作为输出,很容易理解编码器的工作原理。 二.题目分析与整体构思 题目要求使用VHDL 语言设计8-3 线优先编码器。用ISE 软件运行仿真,观察波形图,并将程序下载到FPGA,验证编码器的逻辑功能。用开发板EXCD-1上的8个拨码开关的状态作为输入,3个LED显示高低电平作为输出,通过改变8个拨码开关的开关来控制3个LED的输出状态。 三.硬件电路设计

拨码开关SW7~SW0输入,D0~D2输出高低电平,通过改变8个拨码开关的开关来控制3个LED的输出状态。 四.程序设计 (1)创建工程 制定工程名,工程路径以及顶层设计所使用的输入方式,此设计我们选择硬件描述语言作为顶层设计的输入方式HDL。 (2)选择目标器件 (3)创建新源文件 这里我们选择“VHDL Module”,进行新源文件模块定义,所定义的内容是所要设计模块的实体说明,即模块的端口说明。本实验所要实现的是编码器的设计,设定SW7~SW0 为六个输入端口,共3 个输出信号D(0)~D(2),选择输出为总线模式(Bus),Msb、Lsb 分别表示最大端口号与最小端口号(注意:选择端口方向in、out、inout)。 检查模块端口定义是否正确。 (4)添加源文件 (5)完成工程创建 在工程设置统计窗口,可以看到对工程的描述总结,目标器件的描述,以及新建源文件 的总结,此工程创建完成。 (6)设计输入 包括库的声明,包的声明,完整的实体说明以及结构体框架。使用VHDL 语言设计完善基本编码器电路设计,拨动开关SW0~SW1 作为六个输入端,LED0~LED2作为输出显示,以观察实验结果。 1. LED 与编码器电路对应关系 SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0D2D1 D0 0 0 0 0 00 01000 00 00 00 1×00 1

解码器型号与参数

LD-6001D单路解码器 产品资料: 产品类型:LD视音频解码服务器 视频压缩标准:H.264 视频处理芯片:DSP处理器。 订货型号 LD-6001D 特别说明 支持1路最高4CIF的解码输出,同时支持DCIF、2CIF、CIF、QCIF; 视频输入源为网络实时压缩码流(来自8000/7000网络硬盘录像机、6100视频服务器、4000视音频压缩板卡)。 硬件接口 1-RS-232串行接口2-ALARM报警输入、报警输出接口; 3-VOUT视频输出接口;4-LINE IN音频/语音输入接口; 5-AOUT音频/语音输出接口;6-UTP网络接口(同ETHERNET网络接口);7-RS-485串行接口8-DC +12V电源输入接口。

技术参数

LD-600xD多路解码器 产品资料 产品类型:LD视音频解码器。 视频压缩标准:H.264 视频处理芯片:DSP处理器。 典型应用:LD-600XD解码器系列是专为大型电视墙监控系统的部署与管理而设计的网络解码器,具有功能强大的解码引擎,一台设备支持多路解码,减少大型监控系统的部署成本。 订货型号 6004D、6008D 特别说明 每路最高支持4CIF的解码输出,同时支持DCIF、2CIF、CIF、QCIF 视频输入源为网络实时压缩码流(来自8000/7000网络硬盘录像机、6100视频服务器、4000视音频压缩板卡)。 硬件接口 1-VOUT AOUT 视频音频输出口2-RS-232串行接口 3-ETHERNET 网络接口(同UTP口)4-SW1 拨码开关485匹配电阻。5-RS-485 G 连接RS-485设备。6-电源AC220V 技术参数

相关文档
最新文档