常用混凝剂一览表

常用混凝剂一览表
常用混凝剂一览表

混凝剂

A、混凝剂一般指无机盐类的,主要是使得被处理对象脱稳、破乳的,常见的如:聚 合氯化铝、聚合硫酸铁等。 絮凝剂指能加速固体和液体分离的水溶性高分子聚合物,最常用的是聚丙烯酰胺。 凝聚剂、助凝剂是絮凝剂的其他称呼,事实上就是指絮凝剂。 B、助凝剂 - 定义助凝剂是用于调节或改善混凝条件,促进凝聚作用所添加的药剂或 为改善絮凝体结构的高分子物质。前者如硫酸、磷酸、石灰、氯气等(可调整pH值);后者如聚丙烯酰胺、活化硅酸(或称活性硅土)、骨胶、海藻酸钠以及各种聚合电解质,可使其与混凝剂结合生成较大、较坚固、密实絮体。助凝剂的密度和重量、促使 沉淀加速;在微凝絮间起粘结架桥作用,使凝絮粗大而有广阔表面,充分发挥吸附卷 带作用以提高澄清效果。在废水的混凝处理中,单独使用混凝剂不能取得良好效果时,常使用助凝剂已达到目的。目前应用较广的助凝剂是活化硅酸,是由硅酸钠经活化过 程制得,实质上属于一种阴离子型无机高分子电解质,一般与明矾或亚铁盐合用。 1.矾花不结实,密度不大,不易下沉,这是导致矾花上浮的主要因素。因而可以增加 助凝剂,如活化硅酸或粘士,增强絮凝效果。曾有水厂投加粘土作为助凝剂,增强絮 凝效果,基本上可以解决短时间矾花上浮的现象。 2.有些水厂设计的絮凝池,絮凝时间取的是标准的中间值,即在12min左右。和新手 册相比,絮凝池的絮凝时间稍短,矾花生长的时间不够,当其达到沉淀池时,还有很 多颗粒没有长到沉淀尺度,不易沉降,是矾花上浮的一个原因。但是增加絮凝时间, 如果流量不变,就需增加池容,而这是不大可能的;如果池容不变,则过水流量就需 减少,从而减少了处理水量。 3.矾花进入沉淀池前矾花的密实度不够,在沉淀池中难以下沉。

常用的絮凝剂

常用得絮凝剂 1.1无机絮凝剂得分类与性质 无机絮凝剂按金属盐可分为铝盐系及铁盐系两大类;铝盐以硫酸铝、氯化铝为主,铁盐以硫酸铁、氯化铁为主。后来在传统得铝盐与铁盐得基础上发展合成出聚合硫酸铝、聚合硫酸铁等新型得水处理剂,它得出现不仅降低了处理成本,而且提高了功效。这类絮凝剂中存在多羟基络离子,以OH-为架桥形成多核络离子,从而变成了巨大得无机高分子化合物,相对分子质量高 达1×105。无机聚合物絮凝剂之所以比其她无机絮凝剂能力高、絮凝效果好,其根本原因就在于它能提供大量得如上所述得络合离子,能够强烈吸附胶体微粒,通过粘附、架桥与交联作用,从而促使胶体凝聚、同时还发生物理化学变化,中与胶体微粒及悬浮物表面得电荷,降低了Zet a电位,使胶体粒子由原来得相斥变成相吸,破坏了胶团得稳定性,促使胶体微粒相互碰撞,从而形成絮状混凝沉淀,而且沉淀得表面积可达(200-1000)m2/g,极具吸附能力。也就就是说,聚合物既有吸附脱稳作用,又可发挥黏附、桥联以及卷扫絮凝作用。 1。2改性得单阳离子无机絮凝剂 除常用得聚铝、聚铁外,还有聚活性硅胶及其改性品,如聚硅铝(铁)、聚磷铝(铁)。改性得目得就是引入某些高电荷离子以提高电荷得中与能力,引入羟基、磷酸根等以增加配位络合能力,从而改变絮凝效果,其可能得原因就是:某些阴离子或阳离子可以改变聚合物得形态结构及分布,或者就是两种以上聚合物之间具有协同增效作用。 近年来国内相继研制出复合型无机絮凝剂与复合型无机高分子絮凝剂。聚硅酸絮凝剂(PSA A)由于制备方法简便,原料来源广泛,成本低,就是一种新型得无机高分子絮凝剂,对油田稠油采出水得处理具有更强得除油能力,故具有极大得开发价值及广泛得应用前景。聚硅酸硫酸铁(PFSS)絮凝剂,发现高度聚合得硅酸与金属离子一起可产生良好得混凝效果。将金属离子引到聚硅酸中,得到得混凝剂其平均分子质量高达2×105,有可能在水处理中部分取代有机合成高分子絮凝剂、聚磷氯化铁(PPFC)中PO43-高价阴离子与Fe3+有较强得亲与力,对Fe3+得水解溶液有较大得影响,能够参与Fe3+得络合反应并能在铁原子之间架桥,形成多核络合物;对水中带负电得硅藻土胶体得电中与吸附架桥作用增强,同时由于PO43-得参与使矾花得体积、密度增加,絮凝效果提高。聚磷氯化铝(PPAC)也就是基于磷酸根对聚合铝(PAC)得强增聚作用,在聚合铝中引入适量得磷酸盐,通过磷酸根得增聚作用,使得PPAC产生了新一类高

浅谈水处理的混凝方法与混凝剂(一)

浅谈水处理的混凝方法与混凝剂(一) 论文关键词:水处理混凝硫酸铝聚合氯化铝聚合硫酸铁聚丙烯酰胺论文摘要:在诸多的水处理方法中,混凝法是一种最常用的水处理物化方法。这种方法是通过向水中加入混凝剂而使胶体脱稳产生絮凝,从而去除污染物的方法。影响混凝的因素有很多,比如温度、PH值、水力条件、絮凝剂投加量和性质等,调节好这些因素能达到很高的去除效果。 0引言 在工业废水和生活废水处理中,有一种很重要的物化处理方法:混凝法。这种水处理方法应用广泛,各种污染指标去除率高。下面对这一方法进行简单介绍。 1混凝法 1.1混凝法的概念在天然水中和各种废水中,物质在水中存在的形式有三种:离子状态、胶体状态和悬浮状态。一般认为,颗粒粒径小于1nm的为溶解物质,颗粒粒径在1~100nm的为胶体物质,颗粒粒径在100nm~1mm为悬浮物质。其中的悬浮物质是肉眼可见物,可以通过自然沉淀法进行去除;溶解物质在水中是离子状态存在的,可以向水中加入一种药剂使之反应生成不溶于水的物质,然后用自然沉淀法去除掉;而胶体物质由于胶粒具有双电层结构而具有稳定性,不能用自然沉淀法去除,需要向水中投加一些药剂,使水中难以沉淀的胶体颗粒脱稳而互相聚合,增加至能自然沉淀的程度而去除。这种通过向水中加入药剂而使胶体脱稳形成沉淀的方法叫混凝法,所投加的药剂叫混凝剂。 1.2混凝的基本原理废水中的胶体物质具有巨大的比表面积,可以吸附液体介质中的正离子或负离子或极性分子等,使固液两相界面上的电荷呈不平衡分布,在界面两边产生电位差,这就是胶体微粒的双电层结构。形成双电层结构的微粒的整个胶体结构就称为胶团,整个胶团是电中性的。胶团中心是带有电荷的固体微粒本身,称为胶核。胶核所带电荷的符号就是胶体所带电荷的符号。胶体微粒之所以能在水中保持稳定性,原因在于胶体粒子之间的静电斥力(胶体常常带有同种电荷而具有斥力)、胶体表面的水化作用及胶粒之间相互吸引的范德华力共同作用。胶体微粒带电越多,其电位就越大,带电荷的胶粒和反离子与周围水分子发生水化作用越大,水化壳也越厚,越具有稳定性。向水中投加药剂,使胶体失去稳定性而形成微小颗粒,而后这些均匀分散的微小颗粒再进一步形成较大的颗粒,从液体中沉淀下来,这个过程称为凝聚。凝聚有以下几方面的作用: 1.2.1压缩双电层与电荷的中和作用。加入电解质,使固体微粒表面形成的双电层有效厚度减小,从而范德华力占优势而达到彼此吸引形成凝聚;或者加入电不同电荷的固体微粒,使不同电荷的粒子由于静电吸引而彼此吸引,最后达到凝聚。 1.2.2高分子絮凝剂的吸附架桥作用。高分子絮凝剂的碳碳单键一般情况下是可以旋转的,再加上聚合度较大,即主链较长,在水介质中主链是弯曲的。在主链的各个部位吸附了很多固体颗粒,就象是为固体颗粒架了许多桥梁,让这些固体颗粒相对地聚集起来形成大的颗粒。 1.2.3絮体的网捕作用。有些混凝剂(如铝盐或铁盐)有水中形成高聚合度的多羟基化合物的絮体,在沉淀过程中可以吸附卷带水中胶体颗粒共同沉淀,此过程称为絮凝剂的网捕作用。 2几种常见的混凝剂 常用的混凝剂有无机絮凝剂、有机高分子絮凝剂、生物絮凝剂等。无机絮凝剂主要产品有硫酸铝、聚合氯化铝、三氯化铁、硫酸亚铁和聚合硫酸铁、聚合硅酸铝、聚合硅酸铁、聚合氯化铝铁、聚合硅酸铝铁和聚合硫酸氯化铝等。有机高分子絮凝剂以聚丙烯酰胺类产品为代表,生物絮凝剂是一类由微生物产生的具有絮凝能力的高分子有机物,主要有蛋白质、黏多糖、纤维素和核酸。下面简单介绍几种常用的混凝剂。 2.1硫酸铝(AS)无水硫酸铝是无色结晶,易溶于水,常温下硫酸铝以含十八水合物最为稳定。Al2(SO4)3·18H2O是具有光泽的无色颗粒或粉末晶体,极易溶于水,水溶液呈酸性(PH2.2聚合氯化铝(又称碱式氯化铝PAC)聚合氯化铝是应用最广泛的一种絮凝剂,它的固体呈无色至黄色

混凝剂比较

混凝剂的比较 1.硫酸铝 硫酸铝含有不同数量的结晶水,Al2(SO4)3·18H2O,其中n=6、10、14、16,18和27,常用的是Al2(SO4)3·18H2O 其分子量为666.41,比重1.61,外观为白色,光泽结晶。 硫酸铝易溶于水,水溶液呈酸性,室温时溶解度大致是50%,pH值在2.5以下。沸水中溶解度提高至90%以上。 硫酸铝使用便利,混凝效果较好,不会给处理后的水质带来不良影响。当水温低时硫酸铝水解困难,形成的絮体较松散。 硫酸铝在我国使用最为普遍,大都使用块状或粒状硫酸铝。根据其中不溶于水的物质的含量,可分为精制和粗制两种。 硫酸铝易溶于水,可干式或湿式投加。湿式投加时一般

采用10—20%的浓度(按商品固体重量计算)。硫酸铝使用时水的有效pH值范围较窄,约在5.5—8之间,其有效pH值随原水的硬度含量而异:对于软水,pH值在 5.7— 6.6;中等硬度的水为6.6— 7.2;硬度较高的水则为7.2—7.8。在控制硫酸铝剂量时应考虑上述特性。有时加入过量硫酸铝,会使水的pH值降至铝盐混凝有效pH 值以下,既浪费了药剂,又使处理后的水发混。 粗制硫酸铝中有效氧化铝含量基本与精制相同,主要是不溶于水的物质含量高,废渣较多,最好用热水并拌以搅拌,才能完全溶解,因含有游离酸,酸度较高,腐蚀性强,溶解与投加设备应考虑防腐。 2.聚合氯化铝 聚合氯化铝是一种无机高分子混凝剂。六十年代,日本在制造与应用方面做了大量工作,有逐步取代硫酸铝的趋势。我国在1973年曾在成都召开全国新型混凝剂技术经验交流会,会上对聚合氯化铝的产品质量提出了要求,其中要求含氧化铝(Al2O8)10%以上,碱化度为50—80%,不溶物1%以下等。 我国某些地区仍将聚合氯化铝称为碱式氯化铝[A1n(OH)m Cl3n-m],这是由于对它的基本化学式的不同理解而造成的。聚合氯化铝的化学式应表示为 [Al2(OH)n C18-n]m,其中n可取1到5中间的任何整数,m

常用的絮凝剂

常用的絮凝剂 1.1 无机絮凝剂的分类和性质 无机絮凝剂按金属盐可分为铝盐系及铁盐系两大类;铝盐以硫酸铝、氯化铝为主,铁盐以硫酸铁、氯化铁为主。后来在传统的铝盐和铁盐的基础上发展合成出聚合硫酸铝、聚合硫酸铁等新型的水处理剂,它的出现不仅降低了处理成本,而且提高了功效。这类絮凝剂中存在多羟基络离子,以OH-为架桥形成多核络离子,从而变成了巨大的无机高分子化合物,相对分子质量高达1×105。无机聚合物絮凝剂之所以比其他无机絮凝剂能力高、絮凝效果好,其根本原因就在于它能提供大量的如上所述的络合离子,能够强烈吸附胶体微粒,通过粘附、架桥和交联作用,从而促使胶体凝聚。同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷,降低了Zeta电位,使胶体粒子由原来的相斥变成相吸,破坏了胶团的稳定性,促使胶体微粒相互碰撞,从而形成絮状混凝沉淀,而且沉淀的表面积可达(200-1000)m2/g,极具吸附能力。也就是说,聚合物既有吸附脱稳作用,又可发挥黏附、桥联以及卷扫絮凝作用。 1.2 改性的单阳离子无机絮凝剂 除常用的聚铝、聚铁外,还有聚活性硅胶及其改性品,如聚硅铝(铁)、聚磷铝(铁)。改性的目的是引入某些高电荷离子以提高电荷的中和能力,引入羟基、磷酸根等以增加配位络合能力,从而改变絮凝效果,其可能的原因是:某些阴离子或阳离子可以改变聚合物的形态结构及分布,或者是两种以上聚合物之间具有协同增效作用。 近年来国内相继研制出复合型无机絮凝剂和复合型无机高分子絮凝剂。聚硅酸絮凝剂(PSAA)由于制备方法简便,原料来源广泛,成本低,是一种新型的无机高分子絮凝剂,对油田稠油采出水的处理具有更强的除油能力,故具有极大的开发价值及广泛的应用前景。聚硅酸硫酸铁(PFSS)絮凝剂,发现高度聚合的硅酸与金属离子一起可产生良好的混凝效果。将金属离子引到聚硅酸中,得到的混凝剂其平均分子质量高达2×105,有可能在水处理中部分取代有机合成高分子絮凝剂。聚磷氯化铁(PPFC)中PO43-高价阴离子与Fe3+有较强的亲和力,对Fe3+的水解溶液有较大的影响,能够参与Fe3+的络合反应并能在铁原子之间架桥,形成多核络合物;对水中带负电的硅藻土胶体的电中和吸附架桥作用增强,同时由于PO43-的参与使矾花的体积、密度增加,絮凝效果提高。聚磷氯化铝(PPAC)也是基于磷酸根对聚合铝(PAC)的强增聚作用,在聚合铝中引入适量的磷酸盐,通过磷酸根的增聚作用,使得PPAC产生了新一类高电荷的带磷酸根的多核中间络合物。聚硅酸铁(PSF)它不仅能很好地处理低温低浊水,而且比硫酸铁的絮凝效果有明显的优越性,如用量少,投料范围宽,矾花形成时间短且形态粗大易于沉

污水处理常用药剂

污水处理常用药剂 根据用途的不同,可以将这些药剂分为以下几种: ①絮凝剂:有时又称为混凝剂,可作为强化固液分离的手段,用于初沉池、二沉池、浮选池及三级处理或深度处理工艺环节。 ②助凝剂:辅助絮凝剂发挥作用,加强混凝效果。 ③调理剂:又称为脱水剂,用于对脱水前剩余污泥的调理,其品种包括上述的部分絮凝剂和助凝剂。 ④破乳剂:有时也称为脱稳剂,主要用于对含有乳化油的含油污水气浮前的预处理,其品种包括上述部分絮凝剂和助凝剂。 ⑤消泡剂:主要用于消除曝气活搅拌过程中出现的大量泡沫。 ⑥PH调整剂:用于将酸性污水和碱性污水的PH值调整为中性。 ⑦消毒剂:用于在污水处理后排放活回用前的消毒处理。 一、絮凝剂 絮凝剂是能够降低或消除水中分散微粒的沉淀稳定性和聚合稳定性,使分散微粒凝聚、絮凝成聚集体而除去的一类物质。 按照化学成分,絮凝剂可分为无机絮凝剂、有机絮凝剂以及微生物絮凝剂三大类。 1、无机絮凝剂 无机絮凝剂包括铝盐、铁盐及其聚合物,具有原料易得,制备简单、价格便宜、处理效果适中等特点,因而在水处理中应用较多。在工业废水及污水处理中应用较多的是铝、铁和硅类的无机高分子絮凝剂,其中广泛使用的为聚合氯化铝PAC。 絮凝剂的选择主要取决于水中胶体和悬浮物的性质及浓度,如果水中污染物颗粒细小,主要呈胶体状态,则应首选铁盐絮凝剂。普通铁盐、铝盐的头家范围是10-100mg/l,聚合盐为普通盐投加量的1/2-1/3. PH值强烈影响絮凝剂的水解速度、水解产物的存在形式和性能。水的碱度对PH值有缓冲作用,当碱度不够时,应添加石灰等药剂予以补充。当水的PH值偏高时,则需要家算调整PH 值到中性。 絮凝剂的水解反应多是吸热反应,水温较低时,水解速度慢且不完全。此时即使增加絮凝剂的投加量,絮体的形成还是很缓慢,而且结构松散、颗粒细小。 水中杂质颗粒还有大量有机物是,混凝效果会变差,需要增加投药量或投加氧化剂等起助凝作用的药剂。水中的钙镁离子、硫化物、磷化物一般对混凝有利,而某些阴离子、表面活性物质对混凝有不利影响。 2、有机高分子絮凝剂 我国目前生产的人工合成有机高分子絮凝剂中80%是聚丙烯酰胺类产品。 固体有机高分子絮凝剂容易吸水潮解成块,必须使用防水包装,保存地点干燥,避免露天存放。有机高分子絮凝剂固体产品或高浓度液体产品在使用之前必须配制成水溶液再投加到待处理水中。配制水溶液的溶药池必须安装机械搅拌设备,溶药连续搅拌要控制在30min以上。水溶液的浓度一般为0.1%左右。对固体有机高分子絮凝剂,进行溶解时,固体颗粒的投加点一定要在水流紊动最强烈的的地方,同时一定要以最小投加量向溶药池中缓慢加入,而且投加点一定要远离机械搅拌器的搅拌轴。 3、絮凝剂种类和投加量的确定 使用混凝法处理任何污水,都存在最佳絮凝剂和最佳投加量。一般通过混凝烧杯搅拌试验来取得相应的数据。试验包括快速搅拌、慢速搅拌和静止沉降三个步骤。一般按快速搅拌2min,n=300r/min;慢速搅拌3min,n=60r/min。静止20min。 二、助凝剂

常用混凝剂(速凝剂)

常用混凝剂(絮凝剂)的溶解与使用方法 “建业净水”PAC(聚合氯化铝)的溶解与使用(1)PAC 为无机高分子化合物,易溶于水,有一定的腐蚀性; (2)根据原水水质情况不同,使用前应先做小试求得最佳用药量(具体方法可参见第 2 条:聚合硫酸铁的溶解与使用-加药量的确定);(参考用量范围:20-800ppm) (3)为便于计算,实验小试溶液配置按重量体积比(W/V),一般以2~5%配为好.如配3% 溶液:称PAC3g,盛入洗净的200ml 量筒中,加清水约50ml,待溶解后再加水稀释至100ml 刻度,摇匀即可; (4)使用时液体产品配成5-10%的水液,固体产品配成3-5%的水液(按商品重量计算); (5)使用配制时按固体:清水=1:5(W/V)左右先混合溶解后,再加水稀释至上述浓度即可; (6)低于1%溶液易水解,会降低使用效果;浓度太高易造成浪费,不容易控制加药量; (7)加药按求得的最佳投加量投加; (8)运行中注意观察调整,如见沉淀池矾花少,余浊大,则投加量过少,如见沉淀矾花大且上翻,余浊高,则加药量过大,应适当调整; (9)加药设施应防腐. 2,聚合硫酸铁(PFS)的溶解与使用(1)PFS 溶液配制a, 使用时一般将其配制成5%-20%的浓度. b, 一般情况下当日配制当日使用,配药如用自来水,稍有沉淀物属正常现象. (2)加药量的确定因原水性质各异,应根据不同情况,现场调试或作烧杯混凝试验,取得最佳使用条件和最佳投药量以达到最好的处理效果. a, 取原水1L,测定其PH 值; b, 调整其PH 值为6-9; c, 用2ml 注射器抽取配制好的PFS 溶液,在强力搅拌下加入水样中,直至观察到有大量矾花形成,然后缓慢搅拌,观察沉淀情况.记下所加的PFS 量,以此初步确定PFS 的用量; d,

常用混凝剂

常用混凝剂(絮凝剂)的溶解与使用方法 2007-03-30 08:31 1,PAC(聚合氯化铝)的溶解与使用 1) PAC为无机高分子化合物,易溶于水,有一定的腐蚀性; 2) 根据原水水质情况不同,使用前应先做小试求得最佳用药量(具体方法可参见第2条:聚合硫酸铁的溶解与使用-加药量的确定);(参考用量范围:20-800ppm) 3) 为便于计算,实验小试溶液配置按重量体积比(W/V),一般以2~5%配为好.如配3% 溶液:称PAC3g,盛入洗净的200ml量筒中,加清水约50ml,待溶解后再加水稀释至 100ml刻度,摇匀即可; 4) 使用时液体产品配成5-10%的水液,固体产品配成3-5%的水液(按商品重量计算); 5) 使用配制时按固体:清水=1:5(W/V)左右先混合溶解后,再加水稀释至上述浓度即可; 6) 低于1%溶液易水解,会降低使用效果;浓度太高易造成浪费,不容易控制加药量; 7) 加药按求得的最佳投加量投加; 8) 运行中注意观察调整,如见沉淀池矾花少,余浊大,则投加量过少,如见沉淀矾花大且上翻,余浊高,则加药量过大,应适当调整; 9) 加药设施应防腐. 2,聚合硫酸铁(PFS)的溶解与使用 1) PFS溶液配制 a, 使用时一般将其配制成5%-20%的浓度. b, 一般情况下当日配制当日使用,配药如用自来水,稍有沉淀物属正常现象. 2) 加药量的确定 因原水性质各异,应根据不同情况,现场调试或作烧杯混凝试验,取得最佳使用条件和最佳投药量以达到最好的处理效果. a, 取原水1L,测定其PH值; b, 调整其PH值为6-9; c, 用2ml注射器抽取配制好的PFS溶液,在强力搅拌下加入水样中,直至观察到有大量矾花形成,然后缓慢搅拌,观察沉淀情况.记下所加的PFS量,以此初步确定PFS的用量; d, 按照上述方法,将废水调成不同PH值后做烧杯混凝试验,以确定最佳用药PH值; e, 若有条件,做不同搅拌条件下用药量,以确定最佳的混凝搅拌条件; f, 根据以上步骤所做试验,可确定最佳加药量,混凝搅拌条件等. 注意混凝过程三个阶段的水力条件和形成矾花状况. a) 凝聚阶段:是药剂注入混凝池与原水快速混凝在极短时间内形成微细矾花的过程,此 时水体变得更加浑浊,它要求水流能产生激烈的湍流.烧杯实验中宜快速(250-300 转/分)搅拌10-30S,一般不超过2min. b) 絮凝阶段:是矾花成长变粗的过程,要求适当的湍流程度和足够的停留时间 (10-15min),至后期可观察到大量矾花聚集缓缓下沉,形成表面清晰层. 烧杯实验 先以150转/分搅拌约6分钟,再以60转/分搅拌约4分钟至呈悬浮态. c) 沉降阶段:它是在沉降池中进行的絮凝物沉降过程,要求水流缓慢,为提高效率一般 采用斜管(板式)沉降池(最好采用气浮法分离絮凝物),大量的粗大矾花被斜管(板) 壁阻挡而沉积于池底,上层水为澄清水,剩下的粒径小,密度小的矾花一边缓缓下降, 一边继续相互碰撞结大,至后期余浊基本不变.烧杯实验宜以20-30转/分慢搅5分钟, 再静沉10分钟,测余浊. 表1:PFS适用范围及参考用量" 名称参考用量名称参考用量

混凝剂PAC

混凝剂 聚合氯化铝,俗称净水剂,或者混凝剂,又名聚氯化铝,简称聚铝,英文名字PAC。和碱式聚合氯化铝,喷雾干燥聚合氯化铝同属于相关类净水药剂。 1、用途 混凝剂主要用于生活饮用水的净化和工业废水,特殊水质的处理(如含油污水,印染造纸污水、冶炼污水,含放射性特质,含Pb,Cr等毒性重金属和含F污水等)。此外在精密铸造、石油钻探、制革、冶金造纸等方面也有广泛用途。 混凝剂就是在水处理过程中可以将水中的胶体微粒子相互粘结和聚集在一起的物质,通常混凝剂分为有机混凝剂和无机混凝剂两大类。混凝的过程就是在水处理的过程中加入药剂,使杂质产生凝聚、絮凝的过程。 给水处理: 以地面水为水源时,去除浊度和细菌。经混凝沉淀后一般浊度小于10 度。 废水处理 工业废水:用于处理一些特殊的废水,脱色、去除悬浮物等 印染废水处理:适用于含颜料、分散染料、水溶性分子量较大的等染料废水处理。混凝剂的选择与染料种类有关,需做混凝试验。可以单独用无机混凝剂,也可和有机高分子絮凝剂联用。 采用PAC 混凝剂,投加量为140mg/L 时,TOC 去除率为68%。 含油废水处理:乳化油颗粒小、表面带电荷,加混凝剂,压缩双电层。 通常采用混凝气浮工艺。 混凝剂作为水处理药剂的具体用途: ①不需加其它助剂,絮凝体形成快而粗大,活性高,沉性高,沉淀快。因而对高浊度水的净化效果特别明显。 ②、适应PH值范围宽,降低原水中PH值小,因而对管道设备无腐蚀作用。 ③、脱色、去污力强。净水效果是AL2(SO4)3的4-6倍,ALCL3的3-5倍。用量小,效力大;成本低,效益高。 2、选用原则 混凝剂种类繁多,如何根据水处理厂工艺条件、原水水质情况和处理后水质目标选用合适的混凝药剂,是十分重要的。混凝剂品种的选择应遵循以下一般原则:①混凝效果好。在特定的原水水质、处理后水质要求和特定的处理工艺条件下,可以获得满意的混凝效果。 ②无毒害作用。当用于处理生活饮用水时,所选用混凝剂不得含有对人体健康有害的成分;当用于工业生产时,所选用混凝药剂不得含有对生产有害的成分。③货源充足。应对所选用的混凝剂货源和生产厂家进行调研考察,了解货源是否充足、是否能长期稳定供货、产品质量如何等。 ④成本低。当有多种混凝药剂品种可供选时,应综合考虑药剂价格、运输成本与投加量等,进行经济比较分析,在保证处理后水质前提下尽可能降低使用成本。 ⑤新型药剂的卫生许可。对于未推广应用的新型药剂品种,赢取当地卫生部门的许可。

常见的混凝剂助凝剂和絮凝剂

混凝剂、助凝剂和絮凝剂 混凝 水中悬浮的颗粒在粒径小到一定程度时,其布朗运动的能量足以阻止重力的作用,而使颗粒不发生沉降。这种悬浮液可以长时间保持稳定状态。而且,悬浮颗粒表面往往带电(常常是负电),颗粒间同种电荷的斥力使颗粒不易合并变大,从而增加了悬浮液的稳定性。 混凝过程就是加入带正电的混凝剂去中和颗粒表面的负电,使颗粒“脱稳”。于是,颗粒间通过碰撞、表面吸附、范德华引力等作用,互相结合变大,以利于从水中分离。 混凝剂是分子量低而阳电荷密度高的水溶性聚合物,多数为液态。它们分为无机和有机两大类。无机混凝剂主要是铝、铁盐及其聚合物。 絮凝 絮凝是聚合物的高分子链在悬浮的颗粒与颗粒之间发生架桥的过程。“架桥”就是聚合物分子上不同链段吸附在不同颗粒上,促进颗粒与颗粒聚集。 絮凝剂为有机聚合物,多数分子量较高,并有特定的电性(离子性)和电荷密度(离子度)。 实际过程要比上述理论复杂得多。由于混凝剂/絮凝剂都是高分子物质,同一产品中大大小小的分子都有,所谓“分子量”只是一个平均概念。所以,在用某一混凝剂或絮凝剂处理污水是,“电中和”和“架桥”作用会交织在一起同时发生。絮凝过程是多种因素综合作用的结果,目前仍有一些没有认清和解决的问题。就我们所知,絮凝过程与絮凝剂分子结构、电荷密度、分子量有关;与悬浮颗粒表面性质、颗粒浓度、比表面积有关;与介质(水)的pH值、电导、水中其他物质的存在、水温、搅动情况等因素有关。因此尽管有理论和经验可循,用实验来选择絮凝剂仍然是不可缺少的。

混凝处理中包括凝聚和絮凝两个阶段。在凝聚阶段水中的胶体双电层被压缩失去稳定而形成较小的微粒;在絮凝阶段这些微粒互相聚结(或由于高分子物质的吸附架桥作用相助)形成大颗粒絮体,这些絮体在一定的沉淀条件下可以从水中分离去除。 一、混凝剂与助凝剂 (一)常用的无机盐类混凝剂 常用的无机盐类混凝剂见下表。 常用的无机盐类混凝剂

混凝剂

混凝剂编辑词条 目录1用途 2选用原则 3投加方式 4应用 5产品种类 编辑本段用途 混凝剂主要用于生活饮用水的净化和工业废水,特殊水质的处理(如含油污水,印染造纸污水、冶炼污水,含放射性特质,含Pb,Cr等毒性重金属和含F污水等)。此外在精密铸造、石油钻探、制革、冶金造纸等方面也有广泛用途。 混凝剂就是在水处理过程中可以将水中的胶体微粒子相互粘结和聚集在一起的物质,通常混凝剂分为有机混凝剂和无机混凝剂两大类。混凝的过程就是在水处理的过程中加入药剂,使杂质产生凝聚、絮凝的过程。 给水处理: 以地面水为水源时,去除浊度和细菌。经混凝沉淀后一般浊度小于10 度。 废水处理 工业废水:用于处理一些特殊的废水,脱色、去除悬浮物等 印染废水处理:适用于含颜料、分散染料、水溶性分子量较大的等染料废水处理。混凝剂的选择与染料种类有关,需做混凝试验。可以单独用无机混凝剂,也可和有机高分子絮凝剂联用。 采用PAC 混凝剂,投加量为140mg/L 时,TO C 去除率为68%。 含油废水处理:乳化油颗粒小、表面带电荷,加混凝剂,压缩双电层。通常采用混凝气浮工艺。

混凝剂作为水处理药剂的具体用途: 1、不需加其它助剂,絮凝体形成快而粗大,活性高,沉性高,沉淀快。因而对高浊度水的净化效果特别明显。 2、适应PH值范围宽,降低原水中PH值小,因而对管道设备无腐蚀作用。 3、脱色、去污力强。净水效果是AL2(SO4)3的4-6倍,ALCL3的3-5倍。用量小,效力大;成本低,效益高。 编辑本段选用原则 混凝剂种类繁多,如何根据水处理厂工艺条件、原水水质情况和处理后水质目标选用合适的混凝药剂,是十分重要的。混凝剂品种的选择应遵循以下一般原则: (1)混凝效果好。在特定的原水水质、处理后水质要求和特定的处理工艺条件下,可以获得满意的混凝效果。 (2)无毒害作用。当用于处理生活饮用水时,所选用混凝剂不得含有对人体健康有害的成分;当用于工业生产时,所选用混凝药剂不得含有对生产有害的成分。 (3)货源充足。应对所选用的混凝剂货源和生产厂家进行调研考察,了解货源是否充足、是否能长期稳定供货、产品质量如何等。 (4)成本低。当有多种混凝药剂品种可供选时,应综合考虑药剂价格、运输成本与投加量等,进行经济比较分析,在保证处理后水质前提下尽可能降低使用成本。 (5)新型药剂的卫生许可。对于未推广应用的新型药剂品种,赢取当地卫生部门的许可。 (6)借鉴已有经验。查阅相关文献并考察具有相同或类似水质的水处理厂,借鉴其运行经验,为选择混凝剂提供参考。 对于各种混凝药剂混凝效果的比较及混凝剂投加量优化,混凝试验是最有效的方法之一。

污水处理中常用药剂

废水处理常用药剂 1.废水处理中常用药剂的种类有哪些? 为了使废水处理后达标排放或进行回用,在处理过程需要使用多种化学药剂。根据用途的不同,可以将这些药剂分成以下几类: ⑴絮凝剂:有时又称为混凝剂,可作为强化固液分离的手段,用于初沉池、二沉池、浮选池及三级处理或深度处理等工艺环节。 ⑵助凝剂:辅助絮凝剂发挥作用,加强混凝效果。 ⑶调理剂:又称为脱水剂,用于对脱水前剩余污泥的调理,其品种包括上述的部分絮凝剂和助凝剂。 ⑷破乳剂:有时也称脱稳剂,主要用于对含有乳化油的含油废水气浮前的预处理,其品种包括上述的部分絮凝剂和助凝剂。。 ⑸消泡剂:主要用于消除曝气或搅拌过程中出现的大量泡沫。 ⑹pH调整剂:用于将酸性废水和碱性废水的pH值调整为中性。 ⑺氧化还原剂:用于含有氧化性物质或还原性物质的工业废水的处理。 ⑻消毒剂:用于在废水处理后排放或回用前的消毒处理。 以上药剂的种类虽然很多,但一种药剂在不同的场合使用,起到的作用不同,也就会拥有不同的称呼。比如说Cl ,应用在加强污水的混凝处理效果时被称为助凝剂,用于氧化 2 废水中的氰化物或有机物时被称为氧化剂,用于消毒处理自然就被称为消毒剂。 2.什么是絮凝剂?其作用是什么? 絮凝剂在污水处理领域作为强化固液分离的手段,可用于强化污水的初次沉淀、浮选处理及活性污泥法之后的二次沉淀,还可用于污水三级处理或深度处理。当用于剩余污泥脱水前的调理时,絮凝剂和助凝剂就变成了污泥调理剂或脱水剂。 在应用传统的絮凝剂时,可以使用投加助凝剂的方法来加强絮凝效果。例如把活化硅酸作为硫酸亚铁、硫酸铝等无机絮凝剂的助凝剂并分前后顺序投加,可以取得很好的絮凝作用。因此,通俗地讲,无机高分子絮凝剂IPF其实就是把助凝剂与絮凝剂结合在一起制备然后合并投加来简化用户的操作。 混凝处理通常置于固液分离设施前,与分离设施组合起来、有效地去除原水中的粒度 ,可用在污水处理流程的预处为1nm~100μm的悬浮物和胶体物质,降低出水浊度和COD Cr

混凝剂

混凝剂 在20世纪初,用混凝剂进行工作的快滤池进入给水处理的实践中,其运转经验表明,混凝剂具有很高的消毒能力。从最早使用的天然混凝剂到初级合成 AIC13、FeS04-7H20或硅系列混凝剂,再到现今使用的高聚合类混凝剂(如聚合氯化铝PAC、聚合硫酸铁PFS、PASS、聚丙烯酰胺PAM等),以及即将到来的生物混凝剂,人类使用混凝剂的过程也会经历一个从天然到合成再到天然的循环。混凝方法也由简单的搅拌发展到精确控制搅拌的各种边界条件、混凝剂最适应用环境,进而形成许多的混凝理论,在水的净化处理过程起着重要的指导作用。 1 混凝剂的定义与分类 1.1 混凝剂的定义目前关于混凝剂的定义有两种方法:一种是根据胶体粒子聚集阶段的不同,即胶粒的表面改性及胶粒的粘连,将起胶粒表面改性作用的药品称为凝聚剂,使胶粒粘连的药品称为絮凝剂,兼有上述各种功能的药品为混凝剂;另外一种定义比较简单,将混凝剂与絮凝剂不加区分,因为从机理上区分凝聚与絮凝有时很困难。 1.2 混凝剂的分类目前,絮凝剂的品种繁多,按其化学成分可分为无机和有机两大类。无机类的品种较少,主要是铝和铁的盐类及其水解聚合产物,但在水和废水处理中的用量很大;有机类的品种很多,主要是高分子化合物,又可分为天然的及人工合成的两部分,但用量不如无机类大。 2 混凝剂在我国的发展现状 混凝剂剂的开发主要集中在无机高分子絮凝剂(IPF)的复合与混凝机理的研究方面,并提出了自己的某些理论,在指导新型混凝剂的开发方面起到了一定的作用。如汤鸿霄在 A113结构模型方面所做的研究与李圭白在利用 KMnO4去除微污染水中的腐殖质方面的研究都在国际上有一定的影响。 目前,我国无机混凝剂的品种比较齐全,但天然与人工合成有机高分子絮凝剂相对国外而言品种较少。例如,常用的聚合高分子主要是聚丙烯酰胺系列化合物,电荷基本局限于阴离子聚丙烯酰胺及非离子聚丙烯酰胺型,而一些发达国家无论在给水还是在废水处理中,阳离子型不同种类的聚合高分子的应用均明显超过阴离子型及非离子型聚合高分子。我国水处理混凝剂的研制工作在这方面有待加强。 3 混凝机理 混凝作用过程是水中胶体粒子聚集的过程,也就是胶粒成长的过程,而这个过程是在混凝剂的水解作用下进行的。因此,混凝作用机理与以下 3个因素有关:一是胶粒性质;二是不同混凝剂在不同条件下的水解产物;三是胶粒与混凝剂水解产物之间的相互作用。混凝剂水解产物与胶粒之间的作用有 4种,即压缩双电层、吸附-电中和作用、吸附-架桥作用和卷扫作用。 3.1 压缩双电层作用压缩双电层作用是指向水中投加混凝剂,增加反离子浓度,使胶体扩散层压缩,心电位降低,排斥势能也就随之降低。当混凝剂量继续增加、胶粒心电位逐渐降至零时,胶粒间排斥势能消失,此点称为“等电点”。按 DLVO理论,在等电点状态下,胶粒最易发生凝聚。DLVO理论提出了关于各种形状微粒之间的相互吸引能与双电层排斥能的理论计算方法,成功解释了胶体的稳定性及其凝聚作用。其缺点在于忽视了水中反离子水解形态的专属化学吸附作用,不能解释混凝过程中出现的胶粒改变电性而重新稳定的现象。为此,又提出了其它几种理论。 3.2 吸附-电中和作用用吸附-电中和理论可以解释高价混凝剂水解引起的胶体脱稳,能够解释压缩双电层理论所不能说明的一些问题。高价混凝剂(如铁盐、铝盐)在水中经水解

常用絮凝剂介绍

常用絮凝剂介绍 1、概念 絮凝指通过搅拌使失去电荷的颗粒互相接触聚集在一起,导致形成絮状物(絮体)的过程。依工艺不同,该过程一般为几分钟。凝聚指胶体被压缩双电层而脱稳的过程。这个过程时间很短,一般不到1秒钟。一般情况下,凝聚和絮凝的过程很难截然分开,一般统称其为混凝过程。将能使水溶液中的溶质、胶体或悬浮颗粒产生絮状物沉淀的物质都叫做絮凝剂。2、絮凝剂简介 2.1金属盐类絮凝剂 2.1.1硫酸铝 应用硫酸铝进行污水的处理,它对水的有效pH范围较窄,约5.5~8.0。硫酸铝是历史最悠久,使用最广泛的一种无机絮凝剂,化学式Al2(SO4)3?nH2O,n最常见为14或18。工业固体产品为白色或灰色粉末或块状结晶,在空气中易吸潮结块。 一般认为硫酸铝以两种方式对水体中的胶体颗粒起凝聚作用:一是吸附脱稳(吸附絮凝),当铝盐带正电的水解产物吸附在带负电的胶体颗粒表面,部分或全部中和胶体颗粒表面电荷,使胶体脱稳并相互碰撞粘结生长为大颗粒的絮凝过程;二是卷扫沉淀作用(沉淀型絮凝),当铝盐的各种水解产物包裹在水中胶体颗粒表面,并可通过这些水解物种连接胶体颗粒物形成较大的絮体,在絮体的沉降过程中卷扫水中其他胶体颗粒后共同沉淀的过程。这两种作用形式通常认为可能会交互发生,宏观上可认为是混凝作用。硫酸铝的使用范围较广泛,可应用于饮用水净化,温度在25~40℃之间,低温条件下,硫酸铝水解困难,絮粒较轻而疏松,处理效果较差,同时,硫酸铝还存在诸如成本高,腐蚀性大,在某些场合处理效果不理想等缺点。因此,近年来在许多场合正逐渐被新的絮凝剂(如聚合氯化铝)所取代。 2.1.2三氯化铁 三氯化铁,化学式FeCl3?6H2O,为黄褐色晶体,极易吸潮,易溶于水,具强腐蚀性。三氯化铁的混凝机理与硫酸铝相类似,最佳使用pH为5.0~6.0。与硫酸铝相比较,三氯化铁处理低温水时性能较好,絮状物强度较大,适用盐类范围较宽,除色能力强,消耗量较少。不足之处是Fe3+与某些有机物形成很强的有色可溶络合物,有可能增大水体的色度。因其具有强腐蚀性,对储存、运输、投加设备也提出了更高的防腐要求。 2.2高分子絮凝剂 2.2.1聚合氯化铝(PAC) 聚合氯化铝又叫羟基氯化铝,碱式氯化铝,化学通式为[Al2(OH)nCl6-n]m,其中n为1~

混凝剂

混凝剂在污水处理中的应用:颗粒中较大的粗粒悬浮物可以利用自然沉淀去除,但是更微小的悬浮物,甚至是某些有害的化学离子,特别是胶体粒子沉降得很慢,甚至能在水中长期保持分散的悬浮状态而不能自然下沉,难以用自然沉淀的方法从水中分离除去。混凝剂的原理是破坏这些细小颗粒的稳定性,使其互相接触而凝聚在一起,形成絮状物,并下沉分离。 利用混凝剂治理污水综合了混合、反应、凝聚、絮凝等九个过程。由于混凝剂投入水中,大多可以提供大量的正离子。正离子能把胶体颗粒表面所带的负电中和掉,使其颗粒间排斥力减小,从而容易想和靠近并凝聚程絮状细粒,实现了使水中细小胶体颗粒脱稳并凝聚成微小细粒的过程。微小的细粒通过吸附、卷带和架桥形成更大的絮体沉淀下来,达到了可从水中分离出来的目的。 污水治理中常用的混凝剂大致可以分为三类:有机混凝剂、无机混凝剂和高分子混凝剂。有机混凝剂有阴阳离子型之分;无机混凝剂有无机类、碱类、固体细粉类等区别;高分子混凝剂根据聚合度的不同可分为高聚合度混凝剂和低聚合度混凝剂,不同聚合度下又有阳离子型、阴离子型和非离子型,高分子混凝剂也有有机与无机类之分。选用混凝剂的品种、数量应根据处理对象,即不同的废水的试验资料和条件而定,必须从价廉、易得、投用量少、处理效率高且生成的絮状物容易沉淀分离等方面考虑。当投加单个混凝剂处理效果不理想时,还可以投加助凝剂或者可以考虑两种混凝剂按比例混合投加。 一、混凝剂种类 按无机和有机类可分成以下几种: 1、硫酸铝 硫酸铝含有不同数量的结晶水,Al2(SO4)3·18H2O,其中n=6、10、14、16,18和27,常用的是Al2(SO4)3·18H2O其分子量为666.41,比重1.61,外观为白色,光泽结晶。 硫酸铝易溶于水,水溶液呈酸性,室温时溶解度大致是50%,pH值在2.5以下。沸水中溶解度提高至90%以上。 硫酸铝使用便利,混凝效果较好,不会给处理后的水质带来不良影响。当水温低时硫酸铝水解困难,形成的絮体较松散。

常用混凝剂(絮凝剂)的溶解与使用方法

常用混凝剂(絮凝剂)的溶解与使用方法 1、PAC(聚合氯化铝)的溶解与使用 1)PAC为无机高分子化合物,易溶于水,有一定的腐蚀性 2)根据原水水质情况不同,使用前应先做小试求得最佳用药量(具体方法可参见第2条:聚合硫酸铁的溶解与使用-加药量的确定);(参考用量范围:20-800ppm) 3)为便于计算,实验小试溶液配置按重量体积比(W/V),一般以2~5%配为好。如配3%溶液:称PAC3g,盛入洗净的200ml量筒中,加清水约50ml,待溶解后再加水稀释至100ml刻度,摇匀即可。 4)使用时液体产品配成5-10%的水液,固体产品配成3-5%的水液(按商品重量计算); 5)使用配制时按固体:清水=1:5(W/V)左右先混合溶解后,再加水稀释至上述浓度即可。 6)低于1%溶液易水解,会降低使用效果;浓度太高易造成浪费,不容易控制加药量。 7)加药按求得的最佳投加量投加。 8)运行中注意观察调整,如见沉淀池矾花少,余浊大,则投加量过少,如见沉淀矾花大且上翻,余浊高,则加药量过大,应适当调整。 9)加药设施应防腐。 2、聚合硫酸铁(PFS)的溶解与使用 1)PFS溶液配制 a、使用时一般将其配制成5%-20%的浓度。 b、一般情况下当日配制当日使用,配药需要自来水,稍有沉淀物属正常现象。 2)加药量的确定 因原水性质各异,应根据不同情况,现场调试或作烧杯混凝试验,取得最佳使用条件和最佳投药量以达到最好的处理效果。 a、取原水1L,测定其PH值; b、调整其PH值为6-9; c、用2ml注射器抽取配制好的PFS溶液,在强力搅拌下加入水样中,直至观察到有大量矾花形成,然后缓慢搅拌,观察沉淀情况。记下所加的PFS量,以此初步确定PFS的用量; d、按照上述方法,将废水调成不同PH值后做烧杯混凝试验,以确定最佳用药PH值; e、若有条件,做不同搅拌条件下用药量,以确定最佳的混凝搅拌条件。 f、根据以上步骤所做试验,可确定最佳加药量、混凝搅拌条件等。 注意混凝过程三个阶段的水力条件和形成矾花状况。 a)凝聚阶段:是药液注入混凝池与原水快速混凝在极短时间内形成微细矾花的过程,此时水体变得更加浑浊,它要求水流能产生激烈的湍流。烧杯实验中宜快速(250-300转/分)搅拌10-30S,一般不超过2min。

混凝剂的作用机理

混凝剂的作用机理 聚氯化铝(PAC) 聚丙稀酰胺(PAM) 水处理中常用的混凝剂。 混凝机理: 1、压缩双电层:胶团双电层的构造决定了在胶粒表面处反离子的浓度最大,随着胶粒表面向外的距离越大则反离子浓度越低,最终与溶液中离子浓度相等。当向溶液中投加电解质,使溶液中离子浓度增高,则扩散层的厚度减小。 当两个胶粒互相接近时,由于扩散层厚度减小,ξ电位降低,因此它们互相排斥的力就减小了,也就是溶液中离子浓度高的胶间斥力比离子浓度低的要小。胶粒间的吸力不受水相组成的影响,但由于扩散层减薄,它们相撞时的距离就减小了,这样相互间的吸力就大了。可见其排斥与吸引的合力由斥力为主变成以吸力为主(排斥势能消失了),胶粒得以迅速凝聚。 这个机理能较好地解释港湾处的沉积现象,因淡水进入海水时,盐类增加,离子浓度增高,淡水挟带胶粒的稳定性降低,所以在港湾处粘土和其它胶体颗粒易沉积。 根据这个机理,当溶液中外加电解质超过发生凝聚的临界凝聚浓度很多时,也不会有更多超额的反离子进入扩散层,不可能出现胶粒改变符号而使胶粒重新稳定的情况。这样的机理是藉单纯静电现象来说明电解质对胶粒脱稳的作用,但它没有考虑脱稳过程中其它性质的作用(如吸附),因此不能解释复杂的其它一些脱稳现象,例如三价铝盐与铁盐作混凝剂投量过多,凝聚效果反而下降,甚至重新稳定;又如与胶粒带同电号的聚合物或高分子有机物可能有好的凝聚效果:等电状态应有最好的凝聚效果,但往往在生产实践中ξ电位大于零时混凝效果却最好……等。 实际上在水溶液中投加混凝剂使胶粒脱稳现象涉及到胶粒与混凝剂,胶粒与水溶液,混凝剂与水溶液三个方面的相互作用,是一个综合的现象。 2、吸附电中和: 吸附电中和作用指粒表面对异号离子,异号胶粒或链状离分子带异号电荷的部位有强烈的吸附作用,由于这种吸附作用中和了它的部分电荷,减少了静电斥力,因而容易与其它颗粒接近而互相吸附。此时静电引力常是这些作用的主要方面,但在不少的情况下,其它的作用了超过静电引力。举例来说,用Na+与十二烷基铵离子(C12H25NH3+)去除带负电荷的碘化银溶液造成的浊度,发现同是一价的有机胺离子脱稳的能力比Na+大得多,Na+过量投加不会造成胶粒再稳,而有机胺离子则不然,超过一定投置时能使胶粒发生再稳现象,说明胶粒吸附了过多的反离子,使原来带的负电荷转变成带正电荷。铝盐、铁盐投加量高时也发生再稳现象以及带来电荷变号。上面的现象用吸附电中和的机理解释是很合适的。 3、吸附架桥作用: 吸附架桥作用机理主要是指高分子物质与胶粒的吸附与桥连。还可以理解成两个大的同号胶粒中间由于有一个异号胶粒而连接在一起。高分子絮凝剂具有线性结构,它们具有能与胶粒表面某些部位起作用的化学基团,当高聚合物与胶粒接触时,基团能与胶粒表面产生特殊的反应而相互吸附,而高聚物分子的其余部分则伸展在溶液中,可以与另一个表面有空位的胶粒吸附,这样聚合物就起了架桥连接的作用。假如胶粒少,上述聚合物伸展部分粘连不着第二个胶粒,则这个伸展部分迟早还会被原先的胶粒吸附在其他部位上,这个聚合物就不能起架桥作用了,而胶粒又处于稳定状态。高分子絮凝剂投加量过大时,会使胶粒表面饱和产生再稳现象。已经架桥絮凝的胶粒,如受到剧烈的长时间的搅拌,架桥聚合物可能从另一胶粒表面脱开,重又卷回原所在胶粒表面,造成再稳定状态。

常用混凝剂(絮凝剂)的溶解与使用方法_百度文库解读

常用混凝剂(絮凝剂的溶解与使用方法 1、PAC (聚合氯化铝)的溶解与使用 1 PAC 为无机高分子化合物,易溶于水,有一定的腐蚀性; 2 根据原水水质情况不同,使用前应先做小试求得最佳用药量(具体方法可参见第 2 条:聚合硫酸铁的溶解与使用-加药量的确定);(参考用量范围:20-800ppm) 3 为便于计算,实验小试溶液配置按重量体积比(W/V),一般以 2~5%配为好。如配 3% 溶液:称 PAC3g,盛入洗净的 200ml 量筒中,加清水约 50ml,待溶解后再加水稀释至 100ml刻度,摇匀即可; 4 使用时液体产品配成 5-10%的水液,固体产品配成3-5%的水液(按商品重量计算); 5 使用配制时按固体:清水=1:5 (W/V)左右先混合溶解后,再加水稀释至上述浓度即可; 6 低于 1%溶液易水 2、聚合硫酸铁(PFS)的溶解与使用 1 PFS 溶液配制 a、使用时一般将其配制成 5%-20 %的浓度。 b、一般情况下当日配制当日使用,配药如用自来水,稍有沉淀物属正常现象。 2 加药量的确定 因原水性质各异,应根据不同情况,现场调试或作烧杯混凝试验,取得最佳使用条件和最佳投药量以达到最好的处理效果。 a、取原水 1L,测定其PH 值; b、调整其PH 值为 6-9; c、用 2ml 注射器抽取配制好的 PFS 溶液,在强力搅拌下加入水样中,直至观察到有大量矾花形成,然后缓慢搅拌,观察沉淀情况。记下所加的PFS 量,以此初步确定PFS 的用量;

d、按照上述方法,将废水调成不同PH 值后做烧杯混凝试验,以确定最佳用药PH 值; e、若有条件,做不同搅拌条件下用药量,以确定最佳的混凝搅拌条件; f、根据以上步骤所做试验,可确定最佳加药量、混凝搅拌条件等。 注意混凝过程三个阶段的水力条件和形成矾花状况。 a 凝聚阶段:是药剂注入混凝池与原水快速混凝在极短时间内形成微细矾花的过程,此时水体变得更加浑浊,它要求水流能产生激烈的湍流。烧杯实验中宜快速(250-300 转/分)搅拌 10-30S,一般不超过2min。 b 絮凝阶段:是矾花成长变粗的过程,要求适当的湍流程度和足够的停留时间(10- 15min),至后期可观察到大量矾花聚集缓缓下沉,形成表面清晰层。烧杯实验先以 150 转/分搅拌约6 分钟,再以60 转/分搅拌约4 分钟至呈悬浮态。 c 沉降阶段:它是在沉降池中进行的絮凝物沉降过程,要求水流缓慢,为提高效率一般采用斜管(板式)沉降池(最好采用气浮法分离絮凝物),大量的粗大矾花被斜管(板)壁阻挡而沉积于池底,上层水为澄清水,剩下的粒径小、密度小的矾花一边缓缓下降,一边继续相互碰撞结大,至后期余浊基本不变。烧杯实验宜以20-30 转/分慢搅5 分钟,再静沉 10 分钟,测余浊。 表1:PFS 适用范围及参考用量” 名称参考用量名 称参考用量 生活饮用水 1:20000-1:200000 纸箱厂废水1:5000- 1:10000 工业用水1:20000-1:200000 机加工乳化油废水1:5000- 1:12000 城市污水1:10000-1:50000 化工废水 1:3000-1:10000 电厂废水 1:10000-1:30000 油田钻井废水1:3000-

相关文档
最新文档