相似三角形与圆的综合应用

相似三角形与圆的综合应用
相似三角形与圆的综合应用

相似三角形与圆的综合应用

个性化辅导讲义:

的切线,A、B为切点,若∠ABO= .

边上运动,则当OM=

相似三角形与圆综合题

相似三角形与圆综合 第一部分:例题分析 例1、已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦A C与BF交于点H,且AE=BE.求证:(1)错误!=错误!;(2)AH·BC=2AB·BE. 例2、如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=A E;(2)AB·AE=AC·DB. 例3、AB是⊙O的直径,点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值. 例4、△ABC内接于圆O,∠BAC的平分线交⊙O于D点,交⊙O的切线BE于F,连结BD,CD. 求证:(1)BD平分∠CBE;(2)AB·BF=AF·DC. 例3、⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,求证:EF=FG. 第二部分:当堂练习 1.如图,AB是⊙O直径,ED⊥AB于D,交⊙O于G,EA交⊙O于C,CB交ED于F,求证:DG2=DE?DF 2.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA?MC=MB?MD

D C B A O M N E H 3.如图,AB 、AC 分别是⊙O的直径和弦,点D为劣弧AC 上一点,弦E D分别交⊙O于点E ,交A B于点H,交AC 于点F ,过点C的切线交ED 的延长线于点P. (1)若PC =P F,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2 =D E·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · A D成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立? 5.如图,AD 是△A BC的角平分线,延长AD 交△A BC 的外接圆O 于点E ,过点C 、D 、E 三点的⊙O 1与AC 的延长线交于点F ,连结E F、DF . (1)求证:△A EF ∽△F ED ; (2)若AD =8,DE =4,求EF 的长. 6.如图,PC 与⊙O 交于B ,点A 在⊙O 上,且∠PCA =∠B AP. (1)求证:P A 是⊙O 的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且P C=20,求PA 的长. D C B A O E 7.已知:如图, AD 是⊙O 的弦,OB ⊥A D于点E,交⊙O 于点C ,OE =1,BE =8,A E:A B=1:3. (1)求证:AB 是⊙O 的切线; (2)点F 是A CD 上的一点,当∠AOF =2∠B时,求AF 的长. 8.如图,⊿AB C内接于⊙O ,且BC 是⊙O 的直径,AD ⊥B C于D ,F是弧BC 中点,且AF 交BC 于E ,A B=6,AC =8,求CD ,DE ,及EF 的长. 9. 已知:如图,在Rt ABC △中,90ACB ∠=,4AC =,43BC =,以AC 为直径的O 交AB 于点D ,点E 是BC 的中点,连结OD ,OB 、DE 交于点F. A C P E D H F O

《相似三角形的应用举例》中考真题

相似三角形的应用举例 1. (2011浙江金华,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( ) A.600m B.500m C.400m D.300m 【答案】B 2. (2011浙江丽水,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直. 如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( ) A.600m B.500m C.400m D.300m 【答案】B 3. (2011湖南怀化,21,10分)如图8,△ABC,是一张锐角三角形的硬纸片,AD 是边BC 上的高, B C=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在B C 上,顶点G 、H 分别在AC ,AB 上,A D 与HG 的交点为M. (1) 求证:;AM HG AD BC (2) 求这个矩形EFGH 的周长.

【答案】 (1) 解:∵四边形EFGH 为矩形 ∴EF∥GH ∴∠AHG=∠ABC 又∵∠HAG=∠BAC ∴ △AHG∽△ABC ∴ ;AM HG AD BC = (2)由(1)得 ;AM HG AD BC =设HE=x ,则HG=2x ,AM=AD-DM=AD-HE=30-x 可得40 23030x x =-,解得,x=12 , 2x=24 所以矩形EFGH 的周长为2×(12+24)=72cm. 4. (2011上海,25,14分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,sin ∠EMP = 1213 . (1)如图1,当点E 与点C 重合时,求CM 的长; (2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域; (3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长. 图1 图2 备用图 【答案】(1)∵∠ACB =90°,∴AC . ∵S =12 AB CP ??=1 2 AC BC ??, ∴CP =AC BC AB ?=403050 ?=24. 在Rt△CPM 中,∵sin∠EMP =1213 , ∴1213CP CM =.

《相似三角形的应用》教案

27.2.3 相似三角形的应用(王军) 一、教学目标 1.核心素养 通过学习相似三角形的应用举例,初步形成基本的推理能力和应用意识.2.学习目标 进一步巩固相似三角形的知识,学会用相似三角形知识解决不能直接测量的物体的长度或高度等一些实际问题. 3.学习重点 运用相似的判定和性质定理解决实际问题. 4.学习难点 灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).二、教学设计 (一)课前设计 1.预习任务 任务1 阅读教材P39-40,思考:如何测量不能到达顶部的物体的高度? 任务2 阅读教材P39-40,思考:如何测量不能直接到达的两点间的距离? 任务3 阅读教材P40-41,思考:什么是视点、视线、仰角、俯角?什么是盲区?2.预习自测 1.测量不能到达顶部的物体的高度,通常借助太阳光照射物体形成影子,根据同一时刻物高与影长______或利用相似三角形来解决. 2.求不能直接到达的两点间的距离,关键是构造___________,然后根据相似三角形的性质求出两点间的距离. 3.如图,小明测量某广场旗杆的高度,他从A走1.8m到C 处时,他头顶的影子正好与点A重合.已知小明身高1.58m, 并测得BC=7.2m,则旗杆的高度是( ) A.8m B.7.9m C.7.5m D.7.2m (二)课堂设计 1.知识回顾 1.三角形相似的判定方法:

(1)定义法:三个对应角相等,三条对应边成比例的两个三角形相似. (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (3)判定定理1(边边边):三边对应成比例,两三角形相似; (4)判定定理2(边角边):两边对应成比例且夹角相等,两三角形相似; (5)判定定理3(角角):两角对应相等,两三角形相似; (6)直角三角形相似的判定定理(HL):斜边和一条直角边成比例的两个直角三角形相似. 2.相似三角形的性质: (1)相似三角形对应角相等、对应边成比例. (2)相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比. 相似三角形对应线段之比等于相似比. (3)相似三角形的周长之比等于相似比. (4)相似三角形的面积之比等于相似比的平方. 2.问题探究 问题探究一如何测量不能到达顶部的物体的高度?重点、难点知识★▲ ●活动1 探究利用三角形相似测量物高 据史料记载,古希腊数学家、天文学家泰勒斯 曾经利用相似三角形的原理,在金字塔影子的 顶部立一根木杆,借助太阳光线构成的两个相 似三角形来测量金字塔的高度. 小组合作:自学课本第39页,例题4----测量金字塔高度问题。 例:如图,如果木杆EF长2 m,它的影长FD为3m,测得OA为 201m,求金字塔的高度BO. 怎样测出OA的长?

相似三角形与圆的结合

E D C B A B E D C B A B B B 相似三角形与圆的结合 1、 如图,圆中的弦AB 、CD 相交于E 点, 已知CE=4,BE=5,DB=6;求:弦AC 的长 2、 如图,AB 是⊙O 的直径,CD ⊥AB 于E ,观察图形, 你能得到哪些结论,请将你所得的结论写下来,和同学交流, 看谁写的多写的对。 3、 已知:如图,ABCD 是圆内节四边形,AC 、BD 相交于点E , 求证:AD ?BE=BC ?AE 4、 已知:如图,△AOB 中,∠AOB=90°,OC ⊥AB 于C , OA=3cm ,OB=4cm ,以O 为圆心,以2.4cm 为半径作⊙O 。 求证:⊙O 与AB 相切 5、 已知:如图,AB 是⊙O 的直径,C 是⊙O 外一点, CB 交⊙O 于D ,AD 2=CD ?BD 求证:AC 是⊙O 的切线 6、 已知:如图,AB 是⊙O 的直径,CD 切⊙O 于B , AC 交⊙O 于E ,AD 交⊙O 于F , 求证:AE ?AC=AF ?AD 7、 已知:如图,AB 是⊙O 的直径,CA 与⊙O 相切于点A , CE ∥AB 交⊙O 于D 、E. 求证;BE 2 =CD ?AB 8、 如图,AD 是△ABC 的高,AE 是△ABC 的外接圆的直径; 求证:AB ?AC=AD ?AE

19、如图,4531===∠=∠∠=∠BC DE AB D B ,,, (1)ABC ?∽ADE ?吗?说明理由。 (2)求AD 的长。 20、如图4,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 21、已知:如图,ΔABC 中,AD=DB,∠1=∠2. 求证:A E A C D E A B = 22、如图,在正方形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连接FC (),AE AB >试证明: EF 平分∠AFC. 23、已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD

完整版相似三角形与圆综合题

AB 于点D,交AC 于点E ,求证:(1)AD=AE ; C 在O O 上,/ BAC= 60°, P 是OB 上一点,过 P 作AB 的垂线与 AC 的延长线交于点 Q 连结OC 过点C 作CD L OC 交PQ 于点D. (1)求证:△ CDQi 等腰三角形; (2) 如果△ CDQ^A COB 求BP : PO 的值. 第一部分:例题分析 相似三角形与圆综合 △ ABC 内接于圆O, / BAC 勺平分线交O O 于D 点,交O O 的切线BE 于F ,连结 BD CD 求证:(1) BD 平分/ 例4、 例3、 O O 内两弦 E E AB CD 的延长线相交于圆外一点 E ,由E 引AD 的平行线与直线 BC 交于F ,作切线FG G 为切点, 求证: EF = FG 例3、AB 是O O 的直径,点 (2)AB ? AE=AC ? DB. BE. 例1、已知:如图,BC 为半圆O 的直径,ADI BC,垂足为D,过点B 作弦BF 交AD 于点E ,交半圆O 于点F ,弦AC

第二部分:当堂练习 1.如图,AB是O O直径,ED丄AB于D,交O O于G , EA交O O于C, CB交ED于F,求证:DG2= DE?DF

(1)若 PC=PF ,求证:AB 丄 ED ; ⑵点D 在劣弧AC 的什么位置时,才能使 AD 2 =DE DF ,为什么? 2 . 3. 如图,AB 、AC 分别是O O 的直径和弦,点 D 为劣弧AC 上一点, 弦ED 分别交O O 于点 E ,交AB 于点H ,交 AC 于点F ,过点C 的切线交ED 的延长线于点 P . 如图,弦EF 丄直径

圆与相似三角形综合训练题

圆与相似三角形专题训练 例1.如图,PD切⊙O于D,PC = PD,B为⊙O上一点,PB交⊙O于A,连结AC、BC. 求证:AC·PB = PC·BC 证明: 训练1. 如图,⊙O是弦AB∥CD,延长DC到E,EB延长线交⊙O于F,连结DF. 求证:AD·ED = BE·DF 证明:连结CB 2. 如图,CD切⊙O于P,PE⊥AB于E,AC⊥CD,BD⊥CD. 求证:① PE:AC = PB:PA;② PE 2 = AC·BD

例2.如图,△ABC内接于⊙O,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF 交BC于G. 求证:AB 2 = BG·BC 证明:连结AD 训练1. 如图,AB是⊙O的直径,弦CD垂直AB于M,P是CD延长线上一点,PE 切⊙O于E,BE交CD于F. 求证:PF 2 = PD·PC 证明:连结AE 2. 如图,△ABC中,AB = AC,O是BC上一点,以O为圆心,OB长为半径的圆与AC相切于点A,过点C作CD⊥BA,垂足为D. 求证:①∠DAC = 2∠B;② CA 2 = CD·CO

例3.如图,⊙O 1和⊙O 2 相交于点A和点B,且O 1 在⊙O 2 上;过点A的直线 CD分别与⊙O 1、⊙O 2 交于点C、D,过点B的直线EF分别与⊙O 1 、⊙O 2 交于 点E、F,⊙O 2的弦O 1 D 交AB于P. 求证:① CE∥DF;② O 1 A 2 = O 1 P·O 1 D 证明: 训练1. 如图,圆内接四边形ABCD的对角线AC平分∠BCD,BD交AC于点F,过点A作圆的切线AE交CB的延长线于E. 求证:①AE∥BD;②AD 2 = DF·AE 证明: 2. 已知:,过点D作直线交AC于E,交BC于F,交AB的延长线于G,经过B、G、F三点作⊙O,过E作⊙O的切线ET,T为切点. 求证:ET = ED 证明:

相似三角形的应用举例

27.2.2相似三角形应用举例 教学目标: 1.进一步巩固相似三角形的知识. 2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题. 3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力. 重点、难点 1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度. 2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题). 一、知识链接 1、判断两三角形相似有哪些方法? 2、相似三角形有什么性质? 二、.探索新知 1、问题1:学校操场上的国旗旗杆的高度是多少?你有什么办法测量? 2、在平行光线的照射下,不同物体的物高与影长成比例 练习:(1.)一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为( ) A.7.5米 B.8米 C.14.7米 D.15.75米

(2.)在某一刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的高为60 米,那么高楼的影长是多少米? 3. 世界现存规模最大的金字塔位于哪个国家,叫什么金字塔? 胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗? 3、例题讲解 例3: 据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度. 如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO.(思考如何测出OA的长?) 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度. 解: 4、课堂练习 在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米? (在同一时刻物体的高度与它的影长成正比例.)

相似三角形综合练习相似与圆(难)

D C B A O M N E H A B C P E D H F O 相似三角形与圆 1.如图,AB 是⊙O直径,E D⊥AB 于D,交⊙O 于G ,EA 交⊙O 于C,CB 交ED 于F ,求证:DG 2=D E?DF 2.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:M A?M C=MB ?MD 3.(2006年黄冈)如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙O 于点E ,交AB 于点H ,交AC 于点F,过点C 的切线交ED 的延长线于点P . (1)若PC =PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么? 4.如图(1),AD 是△ABC 的高,A E是△ABC 的外接圆直径,则有结论:AB · AC =A E· A D成立,请证明.如果把图(1)中的∠AB C变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?

D C B A O E F 5.如图,AD 是△ABC 的角平分线,延长AD 交△ABC 的外接圆O于点E ,过点C、D 、E 三点的⊙O 1与A C的延长线交于点F,连结E F、DF . (1)求证:△AEF ∽△F ED ; (2)若AD =8,DE =4,求EF 的长. 6.如图,P C与⊙O 交于B ,点A 在⊙O上,且∠PCA =∠BAP . (1)求证:P A是⊙O的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且PC =20,求P A的长. 7.已知:如图, AD 是⊙O 的弦,OB ⊥AD于点E,交⊙O于点C ,OE =1,BE =8,A E:AB =1:3. (1)求证:AB 是⊙O 的切线; (2)点F 是ACD 上的一点,当∠AOF =2∠B时,求AF 的长. 8.如图,⊿A BC 内接于⊙O ,且BC 是⊙O 的直径,AD ⊥BC于D ,F 是弧BC 中点,且A F交BC 于E,AB =6,AC =8,求CD ,DE ,及EF的长.

相似三角形综合试相似与圆(难)

相似三角形综合试相似与圆(难)

————————————————————————————————作者:————————————————————————————————日期: 2

D C B A O M N E H A B C P E D H F O 相似三角形与圆 1.如图,AB 是⊙O 直径,ED ⊥AB 于D ,交⊙O 于G ,EA 交⊙O 于C ,CB 交ED 于F ,求证:DG 2=DE ?DF 2.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:MA ?MC =MB ?MD 3.(2006年黄冈)如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙O 于点E ,交AB 于点H ,交AC 于点F ,过点C 的切线交ED 的延长线于点P . (1)若PC =PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · AD 成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?

D C B A O E F 5.如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过点C、D、E三点的⊙O1与AC的延长线交于点F,连结EF、DF. (1)求证:△AEF∽△FED; (2)若AD=8,DE=4,求EF的长. 6.如图,PC与⊙O交于B,点A在⊙O上,且∠PCA=∠BAP. (1)求证:P A是⊙O的切线. (2)△ABP和△CAP相似吗?为什么? (3)若PB:BC=2:3,且PC=20,求P A的长. 7.已知:如图,AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3. (1)求证:AB是⊙O的切线; (2)点F是ACD上的一点,当∠AOF=2∠B时,求AF的长. 8.如图,⊿ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,AB=6,AC=8,求CD,DE,及EF的长.

(完整版)圆与相似三角形的综合常见题型

圆与相似三角形专题训练 27、如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB 。【2005成都】 ⑴求证:DE 是⊙O 的切线;⑵若AB =6,AE = 24 5 ,求BD 和BC 的长。 27、已知:如图,⊙O 与⊙A 相交于C 、D 两点,A 、O 分别是两圆的圆心,△ABC 内接于⊙O ,弦CD 交AB 于点G ,交⊙O 的直径AE 于点F ,连结BD 。【2006成都】 (1)求证:△ACG ∽△DBG ;(2)求证:2 AC AG AB =? ; (3)若⊙A 、⊙O 的直径分别为15,且CG :CD =1:4,求AB 和BD 的长。 E

O D G C A E F B P 27.如图,A 是以BC 为直径的O e 上一点,AD BC ⊥于点D ,过点B 作O e 的切线,与CA 的延长线相交于点 E G ,是AD 的中点,连结CG 并延长与BE 相交于点 F ,延长AF 与CB 的延长线相交于点P .【2007成都】 (1)求证:BF EF =;(2)求证:PA 是O e 的切线; (3)若FG BF =,且O e 的半径长为32,求BD 和FG 的长度. 27. 如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧? AB 上的一个动点(不与点A 、点B 重合).连结AC 、BC ,分别与⊙M 相交于点D 、点E ,连结DE.若AB=23.【2008成都】 (1)求∠C 的度数;(2)求DE 的长; (3)如果记tan ∠ABC=y ,AD DC =x (0

相似三角形与圆的综合应用

个性化辅导讲义

1在厶ABC 中,AB = AC, / A = 36° , / ABC 的平分线 BD 与AC 交于D,求证: 知识概括、方法总结与易错点分析 相似三 角形的概念与判定 (一) 定义:对应角相等,对应边成比例的两个三角形叫相似三角形。 相似三角形的对应边的比叫做相似比(也叫相似系数)。 (二) 判定: ① 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形 相似。 ② 两边对应成比例且夹角相等的两个三角形相似。 ③ 有两个角对应相等的两个三角形相似。 ④ 三条边对应成比例的两个三角形相似。 ⑤ 一条直角边和斜边对应成比例的两个直角三角形相似。 ⑥ 直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似。 相似三角形的性质 2.两个相似三角形对应中线之比是 3:7,周长之和为30cm,贝陀们的周长分别是 AB BC 3 ?如图,已知AD = DE AC 求证:△ ABM A ACE 4. 在 Rt △ ABC 中,/ ACB=90 , CD! AB 于 D,贝U BD : AD 等于( (A ) a : b (B ) a 2 : b 2 (C ) a : . b ( D )不能确定 5. 如图,在△ ABC 中,/ ACB= 90°, CD! AB 于 D, DEI AC 于 E , DE = 1 求BC 的值。 (1) BC = BD (2)

1. 相似比:相似三角形对应边的比值 2. 相似三角形各组对应角相等 3. 相似三角形各组对应边的比值相等 4. 相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比 5. 相似三角形周长的比等于相似比 6. 相似三角形面积的比等于相似比的平方 7. 直角三角形中,斜边上的高线是两条直角边在斜边上的射影的比例中项 针对性练习 1 .两个相似三角形的对应角平分线的长分别为10cm和20cm,若它们的周长的差是60cm,则较大的三角形的周长是--—--,若它们的面积之和为260cnf,则较小的三角形的面积为--—-- cm2 2. 如图,PLMh为矩形,AD丄BC于D, PL : LM=5: 9,且BC=36cm AD=12cm 求矩形PLMlN勺周长 A 3. 如图,在Rt△ ABD中,/ ADB=90 ,CD丄AB于C, AC=20cm,BC=9cm求AB及BD的长 B

最新相似三角形综合练习相似与圆(难)

D C B A O M N E H A B C P E D H F O 相似三角形与圆 1.如图,AB 是⊙O 直径,ED ⊥AB 于D ,交⊙O 于G ,EA 交⊙O 于C ,CB 交ED 于F ,求证:DG 2=DE ?DF 2.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:MA ?MC =MB ?MD 3.(2006年黄冈)如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙O 于点E ,交AB 于点H ,交AC 于点F ,过点C 的切线交ED 的延长线于点P . (1)若PC =PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · AD 成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?

D C B A O E F 5.如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过点C、D、E三点的⊙O1与AC的延长线交于点F,连结EF、DF. (1)求证:△AEF∽△FED; (2)若AD=8,DE=4,求EF的长. 6.如图,PC与⊙O交于B,点A在⊙O上,且∠PCA=∠BAP. (1)求证:P A是⊙O的切线. (2)△ABP和△CAP相似吗?为什么? (3)若PB:BC=2:3,且PC=20,求P A的长. 7.已知:如图,AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3. (1)求证:AB是⊙O的切线; (2)点F是ACD上的一点,当∠AOF=2∠B时,求AF的长. 8.如图,⊿ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,AB=6,AC=8,求CD,DE,及EF的长.

相似三角形与实际应用

1 / 2 初中数学优秀生特长生培训方案 相似三角形与实际应用 一, 思想、方法解读 利用相似三角形解决实际问题的方法与步骤 1、 分析题意 2、 画出图形 3、 找出两个能解决问题的两个相似三角形 4、 证明这两个三角形相似 5、 写出比例式(要包含已知条件和题中要求的未知量或相关量) 6、 由比例式解决问题或由比例式列方程解决问题 二,思想方法分类例析 (一)利用相似三角形进行测量 例1.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m 的黄丽同学BC 的影长BA 为1.1m ,与此同时,测得教学楼DE 的影长DF 为12.1m ,如图所示,请你根据已测得的数据,测出教学楼DE 的高度.(精确到0.1m) 例2.我侦察员在距敌方200米的地方发现敌人的一座建筑物,但 不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼 前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。若 此时眼睛到食指的距离约为40cm ,食指的长约为8cm,你能根据上述 条件计算出敌方建筑物的高度吗?请说出你的思路。 例3.小明想利用树影测量树高,他在某一时刻测得长为1m 的竹竿影长0.9m ,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m ,又测得地面部分的影长2.7m ,他求得的树高是多少? 例4.如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆AB 的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水 平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC =20 米,斜坡坡面上的影长CD =8米,太阳光线AD 与水平地面成30° 角,斜坡CD 与水平地面BC 成30°的角,求旗杆AB 的高度(精确到1米). (二)利用相似三角形进行方案设计 例5、如图, ABC 是一块锐角三角形余料,边BC=120毫米,高 AH=80毫米,要把它加工成正方形零件,使正方形的一边在BC 上, 其余两个顶点分别在AB 、AC 上.这个正方形零件的边长是多少? 例6、一块直角三角形木板的一条直角边AB 长为1.5m ,面 积为1.22m ,工人师傅要把它加工成一个面积最大的正方形桌 面,请甲、乙两位同学进行设计加工方案,甲的方案如图(1),乙的 A B C D

圆与相似三角形复习知识点

圆中的基本图形和常见数学思想圆一直是初中阶段数学学习的一个难点,因为圆中知识点很多,综合性也很强。而且中考中圆常常和四边形,三角形,甚至代数中的二次函数结合起来考察学生的能力。 把圆中涵盖的知识点融入到几个基本图形中,并教会学生在复杂的图形中提炼出基本图形。另外一定要帮助学生进行解题方法的训练和总结。让他们熟悉圆中常用的数学方法。归纳了以下几个方面的内容,概述如下。 1 圆中基本图形主要有 这个图形中涵盖了: 1、垂径定理及其推论; 2、同弧所对的圆心角是圆周角的两倍; 3、半径、弦心距、弓形高、弦长四者的关系; 4、直径所对的圆周角是直角 这个图形中涵盖了: 1、圆的内接四边形的对角互补,外角等于内对角, 2、相似关系; 3、割线定理 这个图形中涵盖了: 1、弦切角等于所夹弧所对的圆周角, 2、相似关系;

3、切割线定理 这个图形中涵盖了: 1、三角形的外心是三角形三条垂直平分线的交点,并且到三角形三个顶点的距离相等2、同弧所对的圆心角是圆周角的两倍 这个图形中涵盖了: 1、从圆外引圆的两条切线,切线长相等。 2、三角形的内心是三角形三条角平分线的交点,并且到三角形三条边的距离相等3、三角形的面积和周长、内切圆半径三者的关系, 4、三角形两条内角角平分线组成的夹角与第三个内角的关系 这个图形中涵盖了: 1、同弧所对的圆周角相等, 2、相似关系, 3、相交弦定理 这个图形中涵盖了: 1、直径所对的圆周角是直角,90度的圆周角所对的弦是直径 2、相似关系,射影定理,

3、直角三角形的外心在斜边的中点 4、直角三角形的外接圆的半径等于斜边的一半 这个图形中涵盖了: 1、切线长定理 2、连心线垂直平分公共弦 3、圆的对称性 这个图形中涵盖了: 等边三角形的内切圆半径、外接圆半径、等边三角形的边长三者的比例关系。 这个图形中涵盖了: 正方形的内切圆半径、外接圆半径、正方形的边长三者的比例关系。 这个图形中涵盖了: 正六边形的内切圆半径、外接圆半径、正六边形的边长三者的比例关系。

中考试题相似三角形的应用

学科:数学 专题:相似三角形的应用 主讲教师:黄炜北京四中数学教师 重难点易错点解析 在构造相似模型时,务必找准对应边. 题一 题面:如图所示,AB是斜靠在墙壁上的长梯,梯脚B距离墙角1.6m,梯上点D距离墙1.4m,BD长0.55m,则梯子长为( ) A.3.85m B.4.00m C.4.40m D.4.50m 金题精讲 题一 题面:在已知半圆内,求作内接正方形.

位似变换 满分冲刺 题一 题面:如图,小明准备测量学校旗杆AB的高度,当他发现斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成30°角,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度. 相似三角形的应用 题二 题面:如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________. 位似中心、平面直角坐标系

题三 题面:在已知三角形内,求作内接正方形. 相似三角形的应用 讲义参考答案 重难点易错点解析 题一 答案:C . 金题精讲 题一 答案:正方形EFGH 即为所求. 满分冲刺 题一 答案:20324 3 m .

题二 答案:位似中心的坐标是(1,0)或(-5,-2). 题三 答案:方法1:利用位似形的性质作图法(图16) 图16 作法:(1)在AB上任取一点G',作G'D'⊥BC; (2)以G'D'为边,在△ABC内作一正方形D'E'F'G'; (3)连结BF',延长交AC于F; (4)作FG∥CB,交AB于G,从F,G各作BC的垂线FE,GD,那么DEFG就是所求作的 内接正方形. 方法2:利用代数解析法作图(图17) 图17 (1)作AH(h)⊥BC(a); (2)求h+a,a,h的比例第四项x; (3)在AH上取KH=x; (4)过K作GF∥BC,交两边于G,F,从G,F各作BC的垂线GD,FE,那么DEFG就是所 求的内接正方形. 初中数学试卷 灿若寒星制作

九年级圆与相似三角形专题复习

九年级圆中三角形相似复习专题 1、 黄金分割点:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC>BC ),如果 AC BC AB AC = ,即AC 2=AB×BC,那么称线段AB 被点C 黄金分割,点C叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。其中AB AC 2 1 5-= ≈0.618AB 。 2、 黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点.作法: (1)过点B作BD⊥A B,使BD=0.5AB ; (2)连结AD,在DA 上截取DE=DB ; (3)在A B上截取AC =AE,则点C就是所求作的线段AB 的黄金分割点。 (4)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形 3、相似三角形 1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。 几种特殊三角形的相似关系:两个全等三角形一定相似。 两个等腰直角三角形一定相似。 两个等边三角形一定相似。 两个直角三角形和两个等腰三角形不一定相似。 补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等); 4、 性质:两个相似三角形中,对应角相等、对应边成比例。 5、 相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。 如△ABC 与△DEF 相似,记作△A BC ∽△D EF 。相似比为k 。 6、判定:①定义法:对应角相等,对应边成比例的两个三角形相似。 ②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。 三角形相似的判定定理: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似。(此定理用的最多) 判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似。 判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似;简述为:三边对应成比例,两三角形相似。 7、 直角三角形相似判定定理: (1) 斜边与一条直角边对应成比例的两直角三角形相似。 (2) 直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角 形也相似。

九年级数学上册《相似三角形的应用》学案分析

九年级数学上册《相似三角形的应用》 学案分析 【教材分析】 (一)教材的地位和作用 《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。 (二)教学目标 、。知识与能力: ) 进一步巩固相似三角形的知识. 2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)

等的一些实际问题. 2.过程与方法: 经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。 3.情感、态度与价值观: )通过利用相似形知识解决生活实际问题,使学生体验数学于生活,服务于生活。 2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。 (三)教学重点、难点和关键 重点:利用相似三角形的知识解决实际问题。 难点:运用相似三角形的判定定理构造相似三角形解决实际问题。 关键:将实际问题转化为数学模型,利用所学的知识来进行解答。 【教法与学法】 (一)教法分析 为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相

人教版九年级数学下册33.2.3相似三角形的应用专题练习【含答案】

人教版九年级数学下册33.2.3 相似三角形的应用专题练习 一、基础练习 1.如图1,AB是斜靠在墙壁上的长梯,梯脚B距离1.6m,梯上点D距墙1.4m,?BD?长0.55m,则梯子的长为_______m. (1)(2)(3) 2.?要做甲、?乙两个形状相似的三角形框架,?已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm.那么,?符合条件的三角形框架乙共有_____种,这种框架乙的其余两边分别为________. 3.在△ABC中,AB=3,AC=4,BC=5,?现将它折叠,?使点B?与点C?重合,?则折痕长是______. 4.如图2,矩形ABCD,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP,?△DPA,?△PCD两两相似,则a,b间的关系一定满足() A.a≥1 2 b B.a≥b C.a≥ 3 2 b D.a≥2b 5.如图3,已知三角形铁皮ABC的边BC=acm,BC边上的高AM=hcm?要剪出一个正方形铁片DEFG,使D、E在BC上,G、F分别在AB、AC上,则正方形DEFG的边长=_______. 6.如图4,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,?长臂端点升高______m(杆的宽度忽略不计). (4)(5)(6) 7.如图5,设在小孔口前24cm处有一枝长21cm的蜡烛AB,AB经小孔O形成的像A?′B′恰好浇在距小孔后面16cm处的屏幕上,则像A′B′的长是______cm. 8.如图6所示,一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠,使A、C两点重合,?折线MN=________. 9.如图7所示,ABCD为正方形,A、E、F、G在同一条直线上,并且AE=5cm,EF=3cm,?那么FG=_______cm.

圆与相似三角形、三角函数专题

圆与相似三角形、解直角三角形及二次函数的综合 类型一:圆与相似三角形的综合 1.如图,BC是⊙A的直径,△DBE的各个顶点均在⊙A上,BF⊥DE于点F.求证:BD·BE=BC·BF. 2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O 的切线,交BC于点E. (1)求证:点E是边BC的中点; (2)求证:BC2=BD·BA; (3)当以点O,D,E,C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形. 解:(1)连结OD,∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD =90°.又∵OD=OC,∴∠ODC=∠OCD, ∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点 (2)∵AC为直径,∴∠ADC=∠ACB=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴ABBC=BCBD,∴BC2=BD?BA (3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=90°-∠OCD=90°-45°=45°,∴Rt△ABC为等腰直角三角形 类型二:圆与解直角三角形的综合 3.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC的中点,

DE⊥AB,垂足为点E,交AC的延长线于点F. (1)求证:直线EF是⊙O的切线; (2)已知CF=5,cosA=25,求BE的长. 解:(1)连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD.∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线 (2)∵OD∥AB,∴∠COD=∠A,∴cos∠COD=cosA=25.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=ODOF=25.设⊙O的半径为r,则rr+5=25,解得r=103,∴AB=2OD=AC=203.在Rt△AEF中,∵∠AEF=90°,∴cosA=AEAF=AE5+203=25,∴AE=143,∴BE=AB-AE =203-143=2 4.(2015·资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连结DE. (1)求证:DE是⊙O的切线; (2)连结AE,若∠C=45°,求sin∠CAE的值. 解:(1)连结OD,BD,∵OD=OB,∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB =90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE =90°,∴DE是⊙O的切线 (2)过点E作EF⊥CD于点F,设EF=x,∵∠C=45°,∴△CEF,△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=2x,∴AB=BC=22x.在Rt△ABE中,AE=AB2+BE2=10x,∴sin∠CAE=EFAE=1010 5.如图,△ABC内接于⊙O,直径BD交AC于点E,过点O作FG⊥AB,交AC于点F,交AB 于点H,交⊙O于点G. (1)求证:OF·DE=OE·2OH; (2)若⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,求阴影部分的面积.(结果保留根号)解:(1)∵BD是直径,∴∠DAB=90°.∵FG⊥AB,∴DA∥FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OF?DE=OE?AD.∵O是BD的中点,DA∥OH,∴AD=2OH,∴OF?DE=OE?2OH (2)∵⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,∴OE=4,ED=8,OF=6,∴OH=6.在Rt △OBH中,OB=2OH,∴∠OBH=30°,∴∠BOH=60°,∴BH=BO?sin60°=12×32=63,∴S阴影=S扇形GOB-S△OHB=60×π×122360-12×6×63=24π-183 类型三:圆与二次函数的综合 6.如图,在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D. (1)求过A,B,C三点的抛物线的解析式; (2)求点D的坐标; (3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.

相关文档
最新文档