聚羧酸减水剂买卖合同

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载

聚羧酸减水剂买卖合同

甲方:___________________

乙方:___________________

日期:___________________

篇一:聚愈酸减水剂产品销售合同标准范本

聚愈酸减水剂产品销售合同

合同编号:

合同双方当事人相关信息:

依照《中华人民共和国合同法》及相关法律、法规的规

定,本着诚实守信的原则,现就卖方向买方销售有限公司(以下简称“”)相关产品事宜,由上述双方当事人平等协商

订立本合同,以资共同遵守:

第一条产品名称、包装、数虽及价格

特别说明:

1.以上所列产品数虽、总价为预估数虽,结算以实际供货虽为准。工作液的价格将依据母液的价格在复配方案调整时作相应调整。

2.考虑原材料价格波动因素的影响,当卖方主要原材料采购价格上下波动幅度较大时,卖方将对产品销售价格予以合理调整。如买方不愿意接受调整价,合同

双方先进行沟通协商,如不能达成一致,则本合同自行

终止,并结清有关债权

债务。

3.付款及结算方式。如果在合同执行过程中付款与结

算方式发生变化,则上述单价

也随之进行调整。

(1)出厂价:由买方自提,卖方不负责送货。

(2)到站价:包含卖方将产品运至买方指定地点的运费。

4.产品包装米用以下第()方式

a.买方自带包装。

b.卖方免费提供包装桶,但买方在支付货款时需随货款一并按包装桶等值交

纳押金(200L包装桶元/只,1000L包装桶元/只)。买方在包装桶

返回之前应妥善保管,如有损坏照价赔偿。包装桶返回后,根据返回的数

虽退还相应押金,包装桶返回的运费由卖方承担。

第二条付款与结算

1.买方应当按以下第()款约定的方式和期限支付货款(在合同执行过程中。

如买方要求选择以下其它付款与结算方式,则买方应提出书面请求,卖方盖

章确认后方能执行):

(1)款到发货:发货前,买方将货款(包括包装押金,自有包装除外)汇入卖方

指定的银行账户或现金支付,经卖方财务核实确认后在一天之内予以发货。

如果数虽巨大,则根据卖方的产能优先考虑发货。

(2)货到付款:卖方在收到买方预付该批货款金额(包括包装押金,自有包装除

夕卜)的%以后予以发货。卖方将货物运达买方指定交货地点时,买方应

一次结清余下的商款(包括包装押金,自有包装除外) 将货款汇

入卖

方银行账户或以现金支付。

(3)月结:买卖双方签订合同后,前三个月按“款到发货”的方式进行付款和结

算。三个月后可实行月结方式:即卖方按照前三个月买方月平均用虽乘

以,作为该月的月结用虽上限。超出用虽上限的部分仍实行款到发货。

每月日前,双方当事人核对上月供货数虽,办理上月结算手续,买方在

日前支付上个月全额货款(包括包装押金,自有包装除外)

(4)滚动付款:每月日前,双方当事人核对供货数虽,办理结

算手续。买

方每月底向卖方支付不少于累计已发生货款(包括包装

押金,自有包装除外)

总额的%其余款项滚动结算。初始欠款额度为万元,

从下月开始

欠款额度根据上月货款的20%!增,但累计欠款总额上

限不超过元。

如超过总额,则按款到发货执行。当年累计的欠款在当

年12月31日前全额

支付给卖方,并保持欠款总额上限。如年底未结清当年

全额货款,从下年度

1月开始,累计欠款金额下调,下调金额为上年未结清货款总额。

(5)其它方式

2.开票时间:卖方采用以下第( )款约定开票。

(1)随货开票。

(2)以一个月(每月日至下月日)为一个供货周期,每月曰开票。

(3)每个月任何时间都可根据对账和支付条款的需要进行开票。

3.支付方式:买方采用以下第()的约定方式支付货

(1)货款的支付如以银行转帐的方式进行。卖方指定

的银行帐户如下:

(2)如买方采用银行承兑汇票方式支付货款,需事先经卖方同意。卖方可接受

承兑期不超过3个月的且经买方背书转让的银行承兑汇票。

第三条产品质H标准

1.卖方向买方销售的产品应符合现行的国家质虽标准和彳丁业有关标准。

2.卖方保证每批产品的质虽达到合同要求,并随车提供产品质虽证明书和质虽保证资料,否则买方有权拒收或退货,并视为卖方未如期供应,由此造成的直接

损失由卖方承担。

第四条交货及收货

1.交货方式:经双方一致同意,本合同项下的产品以下第()方式交付:

(1)买方自提:买方应自卖方发出提货通知后,准备交通工具前往卖方位于:

生产厂家所在地自行提取产品。

(2)卖方送货:卖方将按照买方的发货通知将产品(订购虽不少于吨/次)

2.交货时间:交货前,买方应当给予卖方合理的备货时间,一般应当提前个工

作日,以信件、邮件传真或其他书面方式告知卖方具体的交货时间,否则,卖

方不承担由此造成的迟延交货责任。

3.收货:买方应根据约定的交货时间在交货地点接收

货物,指定专人在卸车前检

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺 一、引言 一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。 与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。 但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。因此,本文在此予以简介之。 二、聚羧酸系高性能减水剂合成工艺简介。 聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。 (一)、聚酯类聚羧酸系高性能减水剂合成工艺。 1、合成工艺简图 冷凝器去离子水

聚乙二醇过硫酸铵↓ →→→→→→酯化→→→→→计量槽→→聚合中和成 甲基丙烯酸→→→→ →→→→→→反应→→→→→计量槽→→反应反应品 ↑↑ ↑↑ 去离子水氢氧化钠 2、反应过程如下: (1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。(经减压蒸馏脱水,酸化反应更为完全)。 (2)、聚合反应:采用过硫酸铵引发、水溶液聚合法。计量酯化产物即聚乙二醇单甲基丙烯酸酯1545kg,丙烯酸77.3kg,分子量调节剂十二烷基硫醇21.3kg,配以130 kg去离子水,泵入滴定罐A备用,是为A料。计量过硫酸铵34.5kg,配以950kg去离子水,泵入滴定罐B备用,是为B料。加去离子水1425kg 入釜,升温至85℃,同时滴定A、B料。A料3小时滴定完,B料3.5小时滴定完,保温1.5小时。(温度控制:90±2℃)。 (3)、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品。

聚羧酸减水剂

聚羧酸高效减水剂及其工程应用 摘要:作为高性能混凝土第五组分的高效减水剂主要经历了三种形式:第一代高效减水剂是20世纪60年代初开发出来的萘基高效减水剂和密胺树脂基高效减水剂又被称为超塑化剂;第二代高效减水剂是氨基磺酸盐;第三代减水剂是聚羧酸高效减水剂。本文以前人对聚羧酸高效减水剂的研究为基础,借鉴他们的研究成果从其分子特点、合成方法、作用机理、对混凝土性能的改善、工程应用与实践应用中存在的问题六个方面对聚羧酸减水剂做了介绍。关键字:聚羧酸减水剂、高效减水剂、高性能混凝土 1.聚羧酸减水剂的分子结构 聚羧酸系高性能减水剂采用不饱和单体共聚合而成,而不是传统减水剂使用的缩聚合成,合成原料非常多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应。 2.合成方法 2.1可聚合单体直接共聚法 单体直接共聚是先制备具有活性的大单体(一般是甲氧基聚乙二醇甲基丙烯酸酯) ,再聚合一定配比的单体(如丙烯酸、甲基丙烯酸、甲基丙烯磺酸钠等),采用溶液共聚的手段得到成品,即先酯化再聚合。该方法合成减水剂分子结构的可设计性好,可根据实际需要进行结构调整,产品质量稳定,目前很多聚羧酸的生产都采用此方法。但缺点是生产甲氧基聚乙二醇甲基丙烯酸酯大单体存在酯化控制难度,大单体酯化率和质量就直接影响了后续的共聚反应程度。同时中间分离纯化过程比较繁琐,生产成本较大。 2.2聚合后功能化法 聚合后功能化法是利用现有的聚合物进行改性,采用已知分子量的聚羧酸在催化剂和较高温度下聚醚通过酯化反应进行接枝。但现成的聚羧酸产品种类和规格有限,调整组成和分子量困难;同时聚羧酸和聚醚适应性不好,酯化实际操作困难,另外,随着酯化的不断进行,水分不断逸出,会出现相分离,如果能找到

萘系高效减水剂与聚羧酸系减水剂的性能比较.docx

萘系高效减水剂与聚羧酸系减水剂的性能比较 萘系高效减水剂与聚羧酸系减水剂的性能比较一、混凝土减水剂概述及作用机 理 减水剂是一种重要的混凝土外加剂,能够最大限度地降低混凝土水灰比,提高 混凝土的强度和耐久性。减水剂分为普通减水剂和高效减水剂,减水率大于5%小于 10%的减水剂称为普通减水剂,如松香酸钠、木质素磺酸钠和硬脂酸皂等 ; 减水率大于 10%的减水剂称为高效减水剂,如三聚氰胺系、萘系、氨基磺酸系、改性木质素磺酸系和聚羧酸系等。在众多高效减水剂中,具有梳形分子结构的聚羧酸系高效减水剂因其减水率高、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为近年来国内外研究和开发的重点。 减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影 响混凝土工作性的条件下,能使单位用水量减少 ; 或在不改变单位用水量的条件 下,可改善混凝土的工作性 ; 或同时具有以上两种效果,又不显著改变含气量的外 加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。 水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性 ( 又称工作性,主要是指新鲜混凝土在施工中,即 在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性 能 ) 。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加 会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若 能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混 凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶 液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面

聚羧酸减水剂使用注意事项

聚羧酸高效减水剂作为我国第三代减水剂的代表,其较之以木钙为代表的第一代减水剂和以萘系为代表的第二代减水剂,有着高减水率、高保坍性、高增强等优点。特别适用于配制高耐久性、大流动度、高保坍、高强度以及清水混凝土工程。但其对混凝土原材料的品质及生产工艺要求较高,对集料的含泥量尤为敏感,因此在实际使用过程中还应有所注意。 1、聚羧酸减水剂依然存在与水泥适应性的问题,对于个别水泥会出现减水率偏低,坍损较大的现象,因此当水泥适应性不好时应当进行混凝土试配调整外加剂掺量,以达到最佳效果。另外水泥的细度和储存时间也会影响聚羧酸减水剂的使用效果。在生产中应杜绝使用热水泥,如果使用热水泥与聚羧酸减水剂拌合后,表现出混凝土的初始坍落度更容易出来,但外加剂的保坍效果会减弱,有可能出现混凝土坍落度的迅速损失。 2、聚羧酸减水剂对原材料的变化较为敏感,当砂、石材料以及掺合料如粉煤灰、矿粉等原材料的质量发生较大变化时,将对掺聚羧酸减水剂的混凝土性能有一定影响,应重新以变化后的原材料进行试配试验以调整掺量达到最佳效果。 3、聚羧酸减水剂对于集料的含泥量特别敏感,含泥量过大会降低聚羧酸减水剂的性能。因此使用聚羧酸减水剂时应严格控制集料的品质。当集料含泥量增加时应提高使用聚羧酸减水剂的掺量。 4、聚羧酸减水剂因减水率较高,其混凝土坍落度对用水量特别敏感。因此在使用过程中必须严格控制混凝土的用水量。一旦超量时,混凝土会出现离析、泌水、板结及含气量过大等不良现象 5、使用聚羧酸减水剂在混凝土的生产过程中宜适量增加搅拌时间(一般比传统外加剂高一倍),这样聚羧酸减水剂的空间位阻能力能更容易的发挥,便于生产中对混凝土坍落度的控制。(搅拌时间不够,很可能出现送到工地现场混凝土的坍落度要比在搅拌站控制的混凝土坍落度偏大)。。 6、随着春季的来临,昼夜温差变化较大,在生产控制上应随时注意混凝土的坍落度变化情况及时的调整外加剂用量(做到低温低掺,高温高掺的原则)。 7、聚羧酸外加剂在试配(生产中)时,当只达到基本掺量,混凝土的初始工作性能得到满足,但混凝土经时损失会较大;因此在试配(生产)时,应适当提高掺量(即达到饱和掺量),才能解决坍落度损失较大的问题。 8、当降低胶凝材料用量后,在生产过程中,应更严格保证水胶比。如出现坍落度损失较大的情况,只能通过增加外加剂掺量和二次添加外加剂的方法,勿通过加水的方法解决,否则易造成强度的明显下降。 9、聚羧酸减水剂为高减水率,高分散性产品,在生产控制中更多的应以混凝土的流动性指标(扩展度)来衡量混凝土的工作性,坍落度只能作为一个参考值。 10、混凝土的强度主要由水胶比在决定,聚羧酸减水剂具有高减水率的特点,很容易降低生产配合比中的用水量,从而达到降低水胶比的目的,来降低混凝土的综合成本。生产中因原材料的波动比试验试配大,为更好的发挥聚羧酸减水剂产品的性能,生产中应随时根据原材料情况、环境温度变化等对混凝土工作性的影响,及时调整外加剂掺量。 11、聚羧酸减水剂不可与萘系减水剂混合使用,使用聚羧酸减水剂时必须将使用过萘系减水剂的搅拌机和搅拌车冲洗干净,否则可能会导致聚羧酸减水剂失去减水效果。 12、聚羧酸减水剂应避免与铁制材料长期接触。由于聚羧酸减水剂产品常呈现酸性,与铁制品长期接触会发生缓慢反应,甚至使其色泽变深、变黑,导致产品性能下降。建议采用聚乙烯塑料桶或不锈钢桶储存,以保证其性能稳定性。

聚羧酸减水剂的优势

推广聚羧酸减水剂的重要意义 (1)节约能源、资源 目前我国正处于高速发展、建设时期,能源资源相对紧缺是制约快速发展的重要问题。一方面聚羧酸减水剂与掺合料具有良好的匹配性,促进了工业副产品的应用,另一方面以其高减水率,可以节约大量的水泥,这就意味着一个工程可以节约成千上万吨的水泥,缓解目前资源和能源紧缺的问题,同时减少熟料烧成带来的环境污染方面有着重要的作用,符合绿色建材的发展方向。 (2)低环境负荷,促进绿色建材发展 甲醛为较高毒性的物质,在我国有毒化学品优先控制名单上甲醛高居第二位。甲醛已经被世界卫生组织确定为致癌和致畸形物质,是公认的变态反应源,也是潜在的强致突变物之一。研究表明,甲醛具有强烈的致癌和促癌作用。甲醛对人体健康的影响主要表现在嗅觉异常、刺激、过敏、肺功能异常、肝功能异常和免疫功能异常等方面。其浓度与危害性见表1-1。 表1 甲醛对人体健康的影响 萘系减水剂为萘磺酸甲醛缩合物,采用工业萘经浓硫酸磺化后,再用一定量

的甲醛与萘磺酸反应生成甲醛缩合物,最后用碱来中和,得到萘的磺化甲醛缩合物的钠盐和硫酸钠的混合物,即萘系减水剂。合成分为四个反应步骤,即磺化反应、水解反应、缩合反应及中和反应。其中缩合反应需要用到大量的甲醛,对环境造成污染。如果生产时合成工艺控制不当,产品很容易带有大量的游离甲醛,在运输和使用过程中对环境造成二次污染。 为了进一步控制室内环境污染,提高民用建筑工程的室内环境质量,目前国家建设部及有关部门提出:加强对混凝土外加剂的甲醛污染控制,提出了在控制混凝土外加剂里面的氨气污染同时,控制混凝土外加剂里面的甲醛污染,从而有效避免毛坯房室内空气中甲醛超标。聚羧酸减水剂合成采用水溶液自由基聚合,整个过程无甲醛及其他有害释放物,无废水废气排放,符合绿色建材的发展方向。 同时,聚羧酸减水剂的使用,有利于缓解CO2温室效应。2008年中国水泥产量13.9亿吨,CO2排放量为62亿吨,超过美国,位居世界第一。聚羧酸减水剂以其高减水率,可降低10~15%的水泥,可减少1~2亿吨CO2排放。 (3)提高混凝土耐久性,促进混凝土高性能化发展 混凝土工程因其工程量大,耐久性不足对未来社会造成非常沉重的负担。美国有调查表明,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3000座,平均寿命30年,其中32%的水坝年久失修。美国对二战前后兴建的混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。目前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30-50年后,这些工程也将进入维修期,所需的维修费或重建费将更为巨大。因此,提高混凝土的耐久性对于当前实现可持续发展战略,更好地利用资源、节约能源和保护环境,都具有十分重要的意义。 众所周知,碱是诱发混凝土碱-骨料反应[23]的主要因素之一,是影响混凝土耐久性的重要因素。而由于碱-骨料反应导致大坝损毁的在国内外屡见不鲜,如巴西的Moxoto大坝和法国的Chambon大坝,前者在工程完工3年后便出现了碱-骨料反应,后者在建成后50~60年发生了碱-骨料反应。混凝土中碱主要来源于水泥、粉煤灰、减水剂等原材料。世界上对于碱含量的控制也非常重视,南非

聚羧酸减水剂的研究现状及发展趋势

聚羧酸减水剂的研究现状及发展趋势 摘要:聚羧酸减水剂的研发和推广是混凝土材料科学中的一个研究热点,推动着混凝土材料向高强、高性能化不断发展。论文主要针对国内、外对聚羧酸系高效减水剂的应用情况,分析聚羧酸减水剂的作用机理,通过总结当前研究与应用中存在的主要问题,对将来的发展趋势进行了展望。 关键词:聚羧酸;减水剂;现状;发展趋势 减水剂是一种重要的混凝土外加剂,是水泥混凝土必不可少的组成部分[1]。近年来,高性能混凝土在我国工程建设中发挥了重要作用[2,3],如聚羧酸系减水剂。其保坍性能优异、与水泥适应性良好,但因其价格昂贵,应用范围受到一定的限制[4]。从某种意义上说,目前各国在混凝土技术上的差距最重要的特征就是外加剂,尤其是高性能减水剂的发展水平。而新型多功能聚羧酸系高性能减水剂的开发则是目前研究的热点[5,6],发展迅猛[7],其应用越来越广泛[8,9],成为公认的配制高性能混凝土不可或缺的一种重要材料。 1、聚羧酸减水剂的分类 为了更好的满足市场需求,应该更系统地开发聚羧酸系列产品。根据不同的分类方式,聚羧酸减水剂有不同的分类。 1.1根据化学结构分类 聚羧酸减水剂化学上可以分为两类,以主链为甲基丙烯酸,侧链为羧酸基团MPEG(Methoxy polyethylene glycol),聚酯型结构。另外一种为主链为聚丙烯酸,侧链为Vinyl alcohol polyethylene glycol,聚醚型结构。 1.2根据使用情况分类 聚羧酸减水剂根据使用情况可被分为标准型、缓凝型、早强型、保坍型、减缩型、降粘型[10]。目前,各类产品还未发展完善,有待进一步提高。 2、聚羧酸减水剂的研究情况 2.1 国内研究情况 国内对聚羧酸减水剂的研究大多数偏向于分子结构设计、化学合成,而对减水剂作用下水泥水化的机理研究甚少[12~14]。只有少量用作坍落度损失控制剂与萘系减水剂复合使用,而且可供合成聚羧酸类减水剂的原料也极为有限。国内原材料单甲氧基聚乙二醇MPEG供应不足,MPEG国内没有商业化,必须依靠进口[15]。也有研究人员用聚乙二醇(PEG)代替MPEG,但是由于在制备过程中双官能度的PEG容易产生交联,使得产品性能较差,质量不稳定。可以说从减水剂原料到生产工艺降低成本提高性能等许多方面都仅仅是处于刚起步阶段[16]。 2.2 国外研究情况 在国外,聚羧酸类减水剂的研究已有相当长的历史其应用技术已经成熟[17],20世纪80年代起,国内外就开始积极研发非萘系减水剂。目前,日本、德国等国家生产的聚羧酸系减水剂质量稳定,用量已占到其国内减水剂总量的60%以上[18]。 3、聚羧酸减水剂的特点

聚羧酸分子结构

聚羧酸高效减水剂的分子设计与合成及性能 摘要:依据减水剂的作用机理,用自制单体设计、合成一种新型聚羧酸盐减水剂,得出其最佳合成配方及工艺为:m(马来酸酐):m(丙烯酸聚乙二醇单酯):m(丙烯基磺酸钠)=1:3:2.4;选用1%的k2 s2 o8为引发剂、反应温度85℃、反应时间6 h。试制产品性能测试结果表明:该聚羧酸减水剂具有优良的分散能力、和易性好,其最佳掺量为0.3% ,能显著减小水泥净浆的流动度经时损失。经红外光谱分析表明,合成产物的分子结构与设计的分子结构基本一致。 优质的高效减水剂能降低混凝土的水灰比,减小混凝土的塌落度损失,提高和易性、赋予混凝土高密实度和优异施工性能。在众多系列减水剂中,聚羧酸类减水剂适应范围广,具有高减水性、低塌落度损失、低掺量、环保等优点。依据目前对减水剂的认识和理解,减水剂是通过表面活性作用、络合作用、静电排斥力和立体排斥力等来阻碍或破坏水泥颗粒的絮凝结构。高性能减水剂的理想结构应该是高分子的聚合物,线性、多支链、疏水基团和亲水基团相间,疏水基链轻且短,亲水基链重且长。在水泥浆体中犹如梳子,疏水基牢牢地钉在水泥颗粒表面,封闭包裹住水泥粒子,而亲水基团伸向水溶液,既有产生静电排斥力的基团,又有产生立体排斥力的基团。 1 聚羧酸盐减水剂分子结构设计 用丙烯酸聚乙二醇单酯(pa)、马来酸酐(m)、丙烯基磺酸钠(sas)3种单体共聚合成聚羧酸盐减水剂。聚合物的分子结构如下: 使用高效减水剂,不仅要求能提高新拌混凝土的和易性及减水性,同时要提高耐冻性和较小的塌落度损失,所以,减水剂分子量要适当,相对分子质量应该控制在1 000-5 000。

聚羧酸减水剂配方

聚羧酸减水剂配方 摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。 关键词:聚羧酸减水剂;水泥净浆;流动度;配方 聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。 本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。 1 实验 1.1 原材料

丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流 动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体

聚羧酸减水剂实验室合成工艺

聚羧酸减水剂实验室合成工艺 聚羧酸类减水剂是继以木钙为代表的普通减水剂和以萘系为代表的高 效减水剂之后发展起来的第三代高性能化学减水剂,其综合性能优异,不仅具有高减水率,而且还可以有效的抑制坍落度损失,目前有较好的应用前景。日本首先于80年代初开发出聚羧酸系高效减水剂,1985年开始逐渐应用于混凝土工程。1995年以后,聚羧酸盐系减水剂在日本的使用量超过了萘系减水剂。目前国内对萘系、三聚氰胺系等高效减水剂的研究和应用已日趋完善,不少科研机构已开始转向对聚羧酸系高性能减水剂的开发与研究。聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大, 高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。本文在合成聚醚甲基丙烯酸酯大单体的基础上,采用水溶液共聚的方法合成出了聚羧酸系高效减水剂,通过因素试验确定最佳的合成工艺,并研究了其应用性能。 2 实验 2.1 实验原料及试验设备 聚醚(分子量为1200,上海台界化工有限公司) ; 对甲苯磺酸(国药集团化学试剂厂) ; 对苯二酚(天津市大茂化学试剂厂) ; 甲基丙烯磺酸钠(余姚市东泰精细化工有限公司) ; 甲苯(天津市大茂化学试剂厂) ; 甲基丙烯酸(成都科龙化工试剂厂) ; 过硫酸铵(天津市大茂化学试剂厂)等。 聚羧酸系减水剂:进口聚羧酸(p s1, 60% ) ; 国内聚羧酸(p s2, 40% ) ; 自制聚羧酸(p s3, 20% ) 。 水泥:炼石P·O 42.5 级普通硅酸盐水泥;建福P ·O42.5级普通硅酸盐水泥。 500ml三颈烧瓶;集热式恒温磁力搅拌器;温度计; 250ml滴液漏斗;旋转蒸发器等。

聚羧酸减水剂作用机理简述

广东复特聚羧酸减水剂作用机理简述 关键词:聚羧酸减水剂 编制:广东复特新型材料科技有限公司 广东新业混凝土有限公司 聚羧酸减水剂是20世纪80年代中期开发出的一种新型高效混凝土减水剂,最先是在日本研制成功的。聚羧酸减水剂可明显提高混凝土的流动性和耐久性强度,因此近年来已成为世界许多国家混凝土工程界与材料界关注的热点。聚羧酸减水剂也是目前世界上公认的研究与应用前景最好和综合性能最优的减水剂。其作用机理简述如下: 1. 分散作用:水泥加水拌合以后,由于水泥颗粒分子引力的作用,使水泥浆形成絮凝结构,使10-30%的拌合水被包裹在水泥颗粒中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性。当加入聚羧酸减水剂以后,由于聚羧酸减水剂分子能定向吸附于水泥颗粒的表面,使水泥颗粒表面带上同一种电荷(一般为负电荷),形成静电排斥作用,使水泥颗粒相互分散,破坏絮凝结构,释放出被包裹的水,参与流动,从而有效地增加了混凝土拌合物的流动性。 2. 润滑作用:聚羧酸减水剂中的亲水基极性非常强,因此水泥颗粒表面的聚羧酸减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而进一步提高混凝土的流动性。 3. 空间位阻作用:聚羧酸减水剂结构中具有亲水性支链,其伸展于水溶液中,可在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层。当水泥颗粒相互靠近时,吸附层开始重叠,即在水泥颗粒间产生空间位阻作用,重叠越多,空间位阻斥力越大,对水泥颗粒间凝聚作用的阻碍也越大,使得混凝土的坍落度保持良好。 4. 接枝共聚支链的缓释作用:聚羧酸减水剂在制备的过程中,会在减水剂分子上接枝一些支链,这些支链不仅可以提供空间位阻效应,而且在水泥水化的高碱度环境中,这些支链还可以逐渐被切断,从而释放出具有分散作用的多羧酸,这样就可以提高水泥颗粒的分散效果,并控制坍落度损失。

聚羧酸系减水剂面临的问题与系列化发展趋势

1 前言 聚羧酸系高性能减水剂已经从试验走向实践,并正在从“贵族化”走向“平民化”。最初在三峡工程中使用的国外进口的聚羧酸系减水剂售价高达约1.5万元/吨,现在高速铁路用的聚羧酸系减水剂价格已经降低到4000~5000元/吨。聚羧酸系高性能减水剂的应用正在从重要工程扩展到普通的工程中。据混凝土外加剂协会的统计,我国2007年聚羧酸系减水剂的产量已经超过40万 吨(20%浓度)[1] ,按胶凝材料用量1%计算,使用聚羧酸系减水剂的混凝土约有1亿立方米。在聚羧酸系减水剂用量的快速增长和应用范围的不断扩大的同时,出现了很多新的问题需要研究解决,包括产品性能改进、应用技术研究和产品系列化问题。 2 聚羧酸系减水剂的产品性能和应用技术问题 2.1 聚羧酸系减水剂产品性能与适应性问题 目前聚羧酸减水剂大多用于重点工程或者重点部位的混凝土,这些混凝土往往都是以耐久性为主要指标,要求具有高耐久性、高尺寸稳定性、良好工作性以及较高强度。由于聚羧酸系减水剂的优势是减水率高、保塑性好,因此适用于配制高强混凝土、大流动性混凝土。但是在应用于普通的商品混凝土工程中时,减水率很高的聚羧酸系减水剂往往不能很好地适应商品混凝土生产需要,表现在混凝土工作性对掺量非常敏感 , 表1 减水剂与水泥适应性试验结果 摘要:本文讨论了聚羧酸系减水剂在应用发展过程中遇到的问题。聚羧酸系减水剂不仅与水泥之间存在相容性问题,与混凝土的其他原材料之间也存在相容性问题。聚羧酸系减水剂与水泥之间相容性问题的表现与萘系减水剂有很大区别,既表现出混凝土的流动性随时间损失,有时又会出现过流化现象。聚羧酸系减水剂与其他外加剂之间的相容性也比较敏感,应用时需要试验确定。不同的聚羧酸系聚合物之间复配性能较好,开发不同性能特点的聚羧酸系列产品是解决聚羧酸系减水剂与混凝土原材料适应性问题的有效方法。 关键词:聚羧酸;减水剂;适应性;黏土;系列化;相容性 聚羧酸系减水剂面临的问题与系列化发展趋势 王子明 (北京工业大学,北京市朝阳区平乐园100,wangziming@https://www.360docs.net/doc/851851947.html,)

江苏关于成立聚羧酸减水剂生产公司可行性分析报告

江苏关于成立聚羧酸减水剂生产公司 可行性分析报告 规划设计/投资分析/实施方案

报告摘要说明 减水剂行业工业化起源于20世纪10年代,当时主要是疏水剂和塑化剂;30年代美国研制出引气剂,解决了公路路面的抗冻问题,随后第一代 木质素类减水剂应运而生,我国在50年代左右开始木质素类减水剂的研究 和应用;20世纪60年代,日本研制出第二代高效减水剂,随后在混凝土工程中高效减水剂作为最主要的外加剂被大量运用;20世纪90年代,日本又研制出第三代高性能减水剂,聚羧酸系,相较第二代产品减水率更高、掺 量更低,并且更加环保。 xxx科技发展公司由xxx科技公司(以下简称“A公司”)与xxx 实业发展公司(以下简称“B公司”)共同出资成立,其中:A公司出 资1420.0万元,占公司股份71%;B公司出资580.0万元,占公司股 份29%。 xxx科技发展公司以聚羧酸减水剂产业为核心,依托A公司的渠道资源和B公司的行业经验,xxx科技发展公司将快速形成行业竞争力,通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx科技发展公司计划总投资8677.08万元,其中:固定资产投资6557.79万元,占总投资的75.58%;流动资金2119.29万元,占总投 资的24.42%。

根据规划,xxx科技发展公司正常经营年份可实现营业收入18958.00万元,总成本费用14302.81万元,税金及附加174.22万元,利润总额4655.19万元,利税总额5471.51万元,税后净利润3491.39万元,纳税总额1980.12万元,投资利润率53.65%,投资利税率 63.06%,投资回报率40.24%,全部投资回收期3.99年,提供就业职位254个。 减水剂行业上游是环氧乙烷(EO),目前国内EO下游最大的消费领域 仍是乙二醇(EG),此时EO作为生产环节中的一环、不作产品销售,而从 可流通商品来看,EO下游包括聚羧酸减水剂单体、非离子表面活性剂、乙 醇胺等下游产品,用量最大的是聚羧酸减水剂聚醚单体,占比达到52%左右。

聚羧酸系减水剂优缺点

聚羧酸系减水剂优缺点 2011-11-12 14:42:59 作者:info 来源:浏览次数:40 网友评论 0 条同萘系、脂肪族、磺化三聚氰胺等减水剂相比,聚羧酸系减水剂的优点主要有以下几点: (1)保坍性好,90min内坍落度基本不损失或损失较小; (2)在相同流动性情况下,对水泥凝结时间影响较小,可很好地解决减水、引气、缓凝、泌水等问题; (3)聚羧酸盐高性能减水剂可以通过调节分子结构,制备具有特殊性能和用途的超减水剂,如:低温高早期强度型、零坍落度损失型、抗收缩型等。 (4)使用聚羧酸类减水剂,可用更多的矿渣或粉煤灰取代水泥,从而使成本降低; (5)合成高分子主链的原料来源较广,单体通常有:丙烯酸、甲基丙烯酸、马来酸、(甲基)丙烯酸乙酯、(甲基)丙烯酸羟乙酯、烯丙基磺酸钠、甲基丙烯酸甲酯等; (6)分子结构上自由度大,外加剂制造技术上可控制的参数多,高性能化的潜力大; (7)聚合途径多样化,如共聚、接枝、嵌段等。合成工艺比较简单,由于不使用甲醛、萘等有害物质,不会对环境造成污染。 3.2聚羧酸系减水剂缺点 聚羧酸系减水剂在使用过程中还是存在一定缺点,主要有以下几点: (1)产品性能的稳定性较差。在一定程度上,这一缺陷是由于我国的水泥品种太多、掺合料复杂、聚羧酸制备工艺不成熟造成的。 (2)在复配过程中,对引气剂、消泡剂的选择性较强。通过试配实验及使用经验可以发现,不同厂家、不同品牌的聚羧酸盐减水剂必须通过大量的实验来选择合适的引气剂和消泡剂。这一现象主要是由于聚羧酸盐减水剂的合成中,对聚合活性单体的选择性很大,不同的生产厂家可能聚合时使用的单体类型及合成工艺不尽相同,从而使得最终合成的聚羧酸减水

聚羧酸减水剂的优缺点

聚羧酸系减水剂的优缺点 更新时间:2010-4-26 10:53:31 聚羧酸系减水剂同萘系、脂肪族、磺化三聚氰胺等减水剂相比,聚羧酸系减水剂的优缺点如下: 聚羧酸系减水剂优点 (1)保坍性好,90min内坍落度基本不损失或损失较小; (2)在相同流动性情况下,对水泥凝结时间影响较小,可很好地解决减水、引气、缓凝、泌水等问题; (3)聚羧酸盐高性能减水剂可以通过调节分子结构,制备具有特殊性能和用途的超减水剂,如:低温高早期强度型、零坍落度损失型、抗收缩型等。 (4)使用聚羧酸类减水剂,可用更多的矿渣或粉煤灰取代水泥,从而使成本降低; (5)合成高分子主链的原料来源较广,单体通常有:丙烯酸、甲基丙烯酸、马来酸、(甲基)丙烯酸乙酯、(甲基)丙烯酸羟乙酯、烯丙基磺酸钠、甲基丙烯酸甲酯等; (6)分子结构上自由度大,外加剂制造技术上可控制的参数多,高性能化的潜力大;

(7)聚合途径多样化,如共聚、接枝、嵌段等。合成工艺比较简单,由于不使用甲醛、萘等有害物质,不会对环境造成污染。 聚羧酸系减水剂缺点 聚羧酸系减水剂在使用过程中还是存在一定缺点,主要有以下几点: (1)产品性能的稳定性较差。在一定程度上,这一缺陷是由于我国的水泥品种太多、掺合料复杂、聚羧酸制备工艺不成熟造成的。 (2)在复配过程中,对引气剂、消泡剂的选择性较强。通过试配实验及使用经验可以发现,不同厂家、不同品牌的聚羧酸盐减水剂必须通过大量的实验来选择合适的引气剂和消泡剂。这一现象主要是由于聚羧酸盐减水剂的合成中,对聚合活性单体的选择性很大,不同的生产厂家可能聚合时使用的单体类型及合成工艺不尽相同,从而使得最终合成的聚羧酸减水剂在分子量、分子量分布以及链结构等方面都会存在着较大的差异,所以其本身的引气性就会有很大的不同。 (3)在配置高强高性能混凝土、自密实混凝土过程中,存在着混凝土黏性太多、泵压太高的问题。这是由于目前国内市场上95%以上的聚羧酸盐产品,都属于第一代甲基丙烯酸系的聚羧酸减水剂,其结构上的缺陷是其在配制高强混凝土时出现黏性太大的基本

聚羧酸减水剂

聚羧酸减水剂 简介 聚羧酸减水剂(Polycarboxylate Superplasticizer)是一种高性能减水剂,是水泥混凝土运用中的一种水泥分散剂,化学上可以分为两类,以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol),聚酯型结构。另外一种为主链为聚丙烯酸,侧链为Vinyl alcohol polyethylene glycol,聚醚型结构。 当然以此也衍生了许多类似产品。聚酯类聚羧酸由于在混凝土强碱性条件下容易水解和工艺的复杂性,所以其用量有可能在下降。水泥混凝土的强度取决于水和水泥的比例,W/C,水灰比,当W/C 越小时,混凝土材料的强度越高,这就是为啥也叫混凝土减水剂的原 历史发展上来说,在聚羧酸外加剂出现之前,有木质素磺酸盐类外加剂,萘系磺酸盐甲醛缩合物,三聚氰胺甲醛缩聚物,丙酮磺酸盐甲醛缩合物,氨基磺酸盐甲醛缩合物等等,这些产品在成本上有一定的优势和对砂石等材料高含泥量的适应性,固在市场上有很大的占有率,在混凝土工程中都有不同程度的运用。因。当然为了混凝土的施工,混凝土必须保持一定的工作度和流动性,常规检测是混凝土的坍落度。 高性能混凝土的优越性不单是强度高,更为重要的是这种结构材料具有一系列相应的优异性能。它早期强度发展迅速,即使在冬季也只需较短的养护龄期,保证了工程进展速度;它具有长期的耐久性;抗化学腐蚀性强,可用于各种特殊工程中;它在高减水率、高强度基础上同时具备工作性能优异、易泵送、易密实等优良的施工性能。在制备高性能混凝土的技术措施中,关键在于合理使用高性能化学外加剂,尤其是具有高效减水、适当引气并能减少和防止坍落度经时损失的高性能减水剂。从某种意义上说,目前各国在混凝土技术上的差距最重要的特征就是外加剂,尤其是高性能减水剂的发展水平。 聚羧酸高性能减水剂 [1] HSC聚羧酸高性能减水剂是本公司研制的新一代高性能减水剂。掺入本产品后,混凝土具有高坍落度保持性能,在半个小时内坍落度基本不损失,1h坍落度损失很小m时具有外回剂掺量低、减水率高、收缩小等特点。掺入本产品可大大提高混凝土的流动性,使混凝圭能较长时间表保持施工性能;同时能改善混凝土的和易性及物理力学性能,提高工程质量。 产品参数 掺HSC聚羧酸高性能减水剂的混凝土性能指标 检验项目性能指标检验结果 早醛含量,% ≤0.050.003

聚羧酸减水剂应用中的问题

聚羧酸系高性能减水剂应用中的几个问题 更新时间:2010-4-26 11:06:31 随着高性能混凝土技术的发展,特别是今后混凝土不但性能要高,而且必须向着绿色的,与环境和谐相处的可持续发展方向发展。聚羧酸系减水剂做为第三代减水剂,由于它在高性能混凝土中发挥了不可替代的优势,本身与环境友好的特点,在国内外已得到了普遍的认可。聚羧酸系减水剂从1986年日本触媒公司首次将产品打入市场至今也不过短短的20年时间。国内近几年来(进入21世纪以后),也给予极大的关注,最近这些年发展势头更加汹涌。仅仅四五年时间,进入商品领域的生产厂家由几家发展到了几十家。不少科研单位,高等院校都拥有了自主的知识产权,产品进入了各种工程用混凝土领域。国内发达地区近年建设的一些标志性工程几乎都使用了聚羧酸系高减水剂,如上海磁悬浮列车轨道梁工程,北京奥运主场馆工程、三峡工程、首都国际机场扩建工程、杭州湾跨海大桥工程,大小洋山深水港工程,北京——天津城际轨道交通工程等,都取得了满意的效果,同时也积累了许多的应用技术方面的经验,也发现了不少应用技术中的新问题。铁道部为即将开工的京沪高速铁路制定的高性能混凝土技术条件,空军的军用机场自密实水泥混凝土道面施工技术规范,在这些混凝土中也都考虑主要使用聚羧酸系高减水剂,为此,从06年就开展了相关的试验研究工作。 笔者有机会接触到了一些聚羧酸系高性能减水剂应用技术工作,在叹服聚羧酸系高性能减水剂优越性能的同时,也发现了一些应用当中出现的各种问题,这些现象的出现对长期习惯于应用以萘系为主的高效减水剂的人会感到非常不合常理、或者叫做在我们的预料之外,这与我们对聚羧酸系高减水剂原来过高的期望值产生了差距。人们原本期望新的外加剂不但性能优越而且能解决混凝土其它组分的在的一些问题,因为聚羧酸系高减水剂的“适应性”很好。过去已经习惯了一种好的外加剂应当能解决一切混凝土性能方面的问题,当混凝土出现了性能方面的问题,人们首先向外加剂供应方提出要求,而外加剂厂商也习惯了立即用各种复配手段来满足要求,很少或不能

聚羧酸减水剂性能

聚羧酸减水剂性能 常见的对聚羧酸减水剂性能的描述是:减水率高、与水泥适应性非常好、混凝土和易性好、一小时坍落度无损失等。事实上,胶凝材料成分复杂多变,从吸附一分散机理看,任何外加剂都不可能适应所有情况,聚羧酸外加剂与水泥适应性好也是与萘系减水剂相对比较而言的。 混凝土工作性,总体上可分为流动性指标和稳定性指标。掺加聚羧酸减水剂的混凝土和易性比较好,在较高的掺量或较高用水量时也不会发生明显的离析、泌水,混凝土在模板中的沉降也较小,也就是说从稳定性指标来说,聚羧酸减水剂与水泥的适应性要明显好于萘系减水剂。但从流动性指标来说,并不尽然。 ( 1 )聚羧酸减水剂的适应性与其掺量直接相关 我们都知道,萘系减水剂掺量较高的高标号混凝土流动性较好,坍落度损失较小;但中低标号混凝土往往流动性差,坍损也较大,而适当增加掺量是改善适应性的最有效措施。聚羧酸外加剂同样如此,笔者用北京地区常用的胶凝材料和骨料配制C30 混凝土,外加剂用聚羧酸减水剂,结果发现:减水剂掺量( 折固) 在0.13 % ~0.15 %间时,混凝土都能获得较好的流动性,但坍落度损失普遍较大,不管复配哪种常用缓凝剂,加多大剂量,当减水剂掺量达到0.16 %后,大部分混凝土1 小时后都能保持较好的流动性。 (2) 与萘系减水剂适应性差的水泥一般与聚羧酸减水剂适应性也较差 一般说来,碱含量高、铝酸盐含量高或细度高的水泥需水量大。萘系减水剂的掺量较高,坍落度损失较大,同样,用聚羧酸减水剂也有相同的规律。某些掺加萘系减水剂有滞后泌水现象的水泥,改用聚羧酸减水剂同样会泌水,但程度稍轻。若水泥由于石膏原因存在非正常坍落度损失( 混凝土在出机几分钟后即失去流动性) ,用聚羧酸减水剂也不会有改观,只能同时补充硫酸根离子才能从根本上解决,这跟萘系减水剂是一致的。 (3) 某一具体的聚羧酸产品的"适应面"不及萘系产品 萘系产品是由相同原材料在相同工艺条件下合成的结构性能相同的产品,聚羧酸减水剂是由不同种原材料在不同工艺条件下合成的具有相类似分子结构的一类产品。萘系产品的不同主要体现在原材料的品质和工艺条件的稳定性上,而聚羧酸产品的不同基于化学分子结构的不同。具体到应用上,萘系产品对不同情况的适应性更多表现在最佳掺量在一定范围内的波动或坍落度损失值的相对大小。对于某一具体聚羧酸产品,情况截然不同:如果该产品能适应混凝土材料,混凝土状态会很好,坍损也小;若不能适应混凝土材料,则结果就不是程度的

聚羧酸高效减水剂的结构与性能关系研究

聚羧酸高效减水剂的结构与性能关系研究 中国混凝土网[2006-5-31] 网络硬盘我要建站博客常用搜索 摘要:以过硫酸铵和双氧水为复合引发体系,采用不饱和单体直接共聚,得到一类主链为羧基、酯基、酰胺基,侧链为聚乙二醇醚基的新型聚羧酸高效减水剂,研究了共聚物的结构对分散性能的影响。 关键词:聚羧酸;高效减水剂;超塑化剂 1 前言 近年来,混凝土外加剂的研究与生产日趋向高性能、无污染方向发展。聚羧酸高效减水剂由于减水率高、保坍性能好、强度增长快,适宜配制高强、超高强混凝土、高流动性及自密实混凝土,成为国内外混凝土外加剂研究开发的热点[1,2]。 高效减水剂的作用机理主要基于两个理论,即静电斥力学说和空间位阻学说。静电斥力学说以DLVO 溶液分散与凝聚理论为基础,认为高效减水剂吸附在水泥颗粒上,产生较强的静电斥力的作用,从而使团聚的水泥颗粒得以分散,赋予浆体优良的工作性。空间位阻学说以Mackor 熵效应理论为基础,认为空间位阻作用取决于高效减水剂的结构和吸附形态或者吸附层厚度等[3]。 聚羧酸高效减水剂的分子结构呈梳形,特点是主链上带多个活性基团,并且极性较强;侧链带有亲水的活性基团,并且链较长、数量多;疏水基团的分子链段较短,数量也少[4]。聚羧酸高效减水剂的代表产物很多,但其结构都基本上遵循一定的规则,即:在梳型聚合物主链上引入一定比例的官能团,如羧基(—COOH)、磺酸基(— SO3H)等来提供电荷斥力;在支链上引入长短不同的聚氧烷基醚类侧链,其醚键的氧与水分子形成强力的氢键,并形成溶剂化的立体保护膜,该保护膜既具有分散性,又具有分散保持性;通过调整聚合物主链上各官能团的相对比例、聚合物主链和接技侧链长度以及接技数量的多少,达到结构平衡的目的。聚羧酸减水剂进入水泥-水体系中,疏水的主链立即吸附在水泥粒子

聚羧酸减水剂生产环保说明

聚羧酸减水剂生产环保说 明 The latest revision on November 22, 2020

聚羧酸外加剂生产说明 1、项目由来 随着我国城镇化进程进程和基础设施建设的步伐逐渐加快,混凝土的需求量不断增多,同时也大大推动混凝土外加剂的需求量。 从全国范围来看,掺有外加剂的混凝土约占混凝土总量的40%,与国外先进国家60%~80%的比例相比,我国在使用量上还存在较大差距,即外加剂的生产还有较大的发展空间。根据相关市场调查,我国每年对减水剂、助磨剂及多功能粉体材料的需求量高达几百万吨,由此可见,该类材料仍具有较大前景和市场需求。目前,聚羧酸减水剂在发达国家的使用率已占绝对优势,相比而言,我国的使用量并不客观,但该材料的使用在我国的高速铁路建设、公路桥梁建设、水利工程及高层建筑中已得到广泛的认可,其用量正以每年20%~30%的速度递增。 传统的萘系、三聚氰胺系以及木质素减水剂虽然能使新拌砂浆或混凝土具有较好的工作性,但塌落度经时变化大,运至施工现场时,必须重新加入减水剂来增加其流动性,这样会产生噪音并排放大量工业废气,而且这类减水剂大多采用有毒的甲醛,通过缩聚反应(有时还采用强腐蚀性的发烟硫酸或浓硫酸进行磺化反应)制备而成,这不可避免会对环境造成污染,不利于可持续发展。合成萘系磺酸盐减水剂的主要原料是精萘或工业萘,价格较贵,很难满足工程实际需要,萘被认为是致癌物质,限制了其发展。于是人们把目光转向了羧酸类聚合物——称之为第三代新型聚合物减水剂,聚羧酸减水剂不仅减水效果好,其成品本身也无毒性,生产加工过程中也无工艺性废水产生,无工艺性废气产生,属于绿色环保型材料。 聚羧酸减水剂是一种高性能减水剂,是水泥混凝土运用中的一种水泥分散剂,广泛应用于公路、桥梁、大坝、隧道、高层建筑等工程。该产品绿色环保,不易燃,不易爆,可安全使用火车和汽车运输。 2、工艺流程 从原料库房领取原材料,按照配方准确称量后加入去离子水、甲基烯丙基聚氧乙烯醚,配置成原材料溶液,;搅拌并升至18~24℃。按照配方把维生素C、巯基丙酸、去离子水投入预混罐中配制溶液成A,搅拌均匀后打入滴加罐A里;按配方把丙烯酸和去离子水分别投入预混罐中配制成溶液B,搅拌均匀后打入滴加罐B里。开始加入双氧水至反应釜中,打开溶液A出口阀,滴加10分钟后再打开B出口阀,滴加过程温度控制在50℃以下,滴加过程持续3~3.5小时。滴加完毕后再在反应釜中后补一定量去离子水,保温半小时。取样送质检部对聚羧酸聚合程度进行检测,经检验合格的产品进行冷却中和处理,然后出料至成品罐。如果检验聚合程度未达到规定程度时,则根据具体情况继续进行反应。整个工艺持续约6小时。

相关文档
最新文档