FTIR工作原理

FTIR工作原理
FTIR工作原理

红外光谱分析法实验讲义

红外光谱仪主要有两种类型:色散型和干涉型(傅立叶变换红外光谱仪)。色散型红外光谱仪是以棱镜或光栅作为色散元件,这类仪器的能量受到严格限制,扫描时间慢,且灵敏度、分辨率和准确度都较低。随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器——傅立叶变换红外光谱仪。

一、Fou rier变换红外光谱仪(FTIR)

Fourier变换红外光谱仪没有色散元件,主要由光源(硅碳棒、高压汞灯)、Michelson干涉仪、检测器、计算机和记录仪组成。核心部分为Michelson 干涉仪,它将光源来的信号以干涉图的形式送往计算机进行Fourier变换的数学处理,最后将干涉图还原成光谱图。它与色散型红外光度计的主要区别在于干涉仪和电子计算机两部分。这种新技术具有很高的分辨率、波数精度高、扫描速度极快(1秒内可完成)、光谱范围宽、灵敏度高等优点。

Fourier变换红外光谱仪的内部结构:

Nicolet公司的A V ATAR 360 FT-IR

Fourier变换红外光谱仪工作原理:

工作原理:光源发出的红外辐射,经干涉仪转变成干涉图,通过试样后得到含试样信息的干涉图,由电子计算机采集,并经过快速傅立叶变换,得到吸收强度或透光度随频率或波数变化的红外光谱图。

干涉图从数学观点讲,就是傅立叶变换,计算机的任务是进行傅立叶逆变换。

Michelson干涉仪工作原理:

仪器的核心部分是Michelson干涉仪,如图:M1和M2为两块平面镜,它们直互垂直直放置,固定不动,则可沿图示方向作微小的移动,称为动

镜。在和之间放置一呈45度角的半透膜光束分裂器BS(beam-splitters),可使50%的入射光透过,其余部分被反射。当光源发出的入射光进入干涉仪后就被光束分裂器分成两束光——透射光1和反射光2,其中透射光1穿过BS被动镜反射,沿原路回到BS并被反射到达探测器D,反射光2则由固定镜沿原路反射回来通过BS到达D。这样,在探测器D上所得到的1光和2光是相干光。1光和2光的光程差为波长的整数倍时,为相长干涉;分数倍时为相消干涉,动镜连继转动获得干涉图。

Fourier变换红外光谱仪的特点:

(1)扫描速度极快

Fourier变换仪器是在整扫描时间内同时测定所有频率的信息,一般只要1s左右即可。因此,它可用于测定不稳定物质的红外光谱。而色散型红外光谱仪,在任何一瞬间只能观测一个很窄的频率范围,一次完整扫描通常需要8、15、30s等。

(2)具有很高的分辨率

通常Fourier变换红外光谱仪分辨率达0.1~0.005 cm-1,而一般棱镜型的仪器分辨率在1000 cm-1处有3 cm-1 ,光栅型红外光谱仪分辨率也只有0.2cm-1 。

(3)灵敏度高

因Fourier变换红外光谱仪不用狭缝和单色器,反射镜面又大,故能量损失小,到达检测器的能量大,可检测10-8g数量级的样品。除此之外,还有光谱范围宽(1000~10 cm-1 );测量精度高,重复性可达0.1%;杂散光干扰小;样品不受因红外聚焦而产生的热效应的影响;特别适合于与气

相色谱联机或研究化学反应机理等。

二、试样的处理和制备

要获得一张高质量红外光谱图,除了仪器本身的因素外,还必须有合适的样品制备方法。

一、红外光谱法对试样的要求

红外光谱的试样可以是液体、固体或气体,一般应要求:

(1)试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。

(2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。

(3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。

二、制样的方法

1 .气体样品

气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。

2 . 液体和溶液试样

(1)液膜法

沸点较高的试样,直接滴在两片盐片之间,形成液膜。

对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱

图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。

(2)液体池法

沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。

3 . 固体试样

(1)压片法

将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)×107Pa 压力在油压机上压成透明薄片,即可用语测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。

(2)石蜡糊法

将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法

主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。

当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

三、联用技术

四、红外光谱图解析

1、红外光谱的吸收强度常定性地用vs(很强)、s(强)、m(中)、w(弱)、vw(极弱)等表示。

2、红外光谱中峰的形状有宽峰、尖峰、肩峰和双峰等类型。

3、习惯上把波数在4000 ~ 1330cm-1(波长为2.5 ~ 7.5um)区间称为特征频率区,简称特征区。特征区吸收峰较疏,容易辨认。各种化合物中的官能团的特征频率位于该区域,在此区域内振动频率较高,受分子其余部分影响小,因而有明显的特征性,它可作为官能团定性的主要依据。波数在1330 ~ 667cm-1(波长7.5 ~ 15um)的区域称为指纹区。在此区域中各种官能团的特征频率不具有鲜明的特征性。分子结构上的微小变化,都会引起指纹区光谱的明显改变,因此在确定有机化合物时用途也很大。

注意事项:

1、湿度:<60%

2、温度:18-25℃

3、二氧化碳的影响

4、压片时样品的用量、片的厚度:样品太多

五、实验内容

本实验采用压片法

(1)制样

用具:玛瑙研钵、药匙、压模及其附件、溴化钾粉料、压片机、红外灯

样品:苯甲酸、未知样品

方法:将固体样品先在玛瑙研钵中粉碎磨细,加入溴化钾粉料,继续研磨,

直到磨细并混和均匀。将已磨好的物料加到压片专用的模具上,合上模具在压片机上加压到25-30MPa,并维持1分钟。取出压成片状的物料,装入样品架待测。

(2)样品用量

样品的用量比例一般为(0.5-2):100,压片厚度在0.5-1mm之间。

(3)测样

红外光谱分析仪先预热30分钟,然后再进行测定。

要求:(1)对已知样品进行红外光谱分析;

(2)对未知样品的红外谱图进行分析,并推测出其分子结构。

相关文档
最新文档