静态拉伸法测弹性模量实验报告

静态拉伸法测弹性模量实验报告
静态拉伸法测弹性模量实验报告

静态拉伸法测弹性模量实验报告

弹性模量(亦称杨氏模量)是固体材料的一个重

要物理参数,它标志着材料对于拉伸或压缩形变的抵

抗能力。作为测定金属材料弹性模量的一个传统方法,

静态拉伸法在一起合理配置、误差分析和长度的放大

测量等方面有着普遍意义,但这种方法拉伸试验荷载

大,加载速度慢,存在弛豫过程,对于脆性材料和不

同温度条件下的测量难以实现。

1实验原理及仪器

胡克定律指出,对于有拉伸压缩形变的弹性形

体,在弹性范围内,应力

F与应变L ?成正比,即F式中比例系数E称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1) 可见,只要测量外力F、材料(本实验用金属丝)的长度L和截面积S,以及金属丝的长度变化量,就可以计算出弹性模量E。其中,F、S和L都是比较容易测得的,唯有很小,用一般的量具不易准确测量。本实验采用光杠杆镜尺组进行长度微小变化量的测量,这是一种非接触式的长度放大测量的方法。本实验采用的主要实验仪器有:弹性模量仪(如图1)、光杠杆镜尺组(如图2)、螺旋测微器、米尺、砝码等。图1 弹性模量测量装置图2 光杠杆

图3 光杠杆放大原理

仪器调节好后,金属丝未伸长前,在望远镜中可看到由平面镜反射的标尺的像,将望远镜的细叉丝对准标尺的刻度,读出读数为R 0;将砝码加在砝码托上后,金属丝被拉长

L ?,光杠杆镜面向后倾

斜了α角.根据光的反射定律可知,此时在望远镜中细叉丝对准的是镜面反射后的标尺上的刻度R 1,其对应的入射光和反射光的夹角为2α。

设N=R 1-R 2,K 为光杠杆的前后足之间的垂直距离,D 为光杠杆镜面到标尺之间的距离,考虑到

L ?<

α角很小,所以有

可得

(2) 将式(2)代入式(1)即得拉伸法测定金属丝弹性模量的计算公式

(3)

式中d 为金属丝的直径.

2 实验步骤

2.1 调整弹性模量仪

① 调节三脚底座上的调节螺丝,使立柱铅直。 ② 将光杠杆放在平台上,两前足放在平台前

面的横槽内,后足放在夹子B 上,注意后

足不要与金属丝相碰。

③ 加2 kg 砝码在砝码托上,把金属丝拉直。

检查夹子B 是否能在平台的孔中上下自由地滑动,金属丝是否被上下夹子夹紧。

2.2 调节光杠杆镜尺组

① 望远镜镜尺组放在离光杠杆镜面约 1.5 m

处,安放时尽量使望远镜和光杠杆的高度相当,望远镜光轴水平,标尺和望远镜光轴垂直。

② 调节望远镜时先从望远镜的外侧沿镜筒方

向观察,看镜筒轴线的延长线是否通过光杠杆的镜面,以及镜面内是否有标尺的像。若无,则可移动望远镜的三脚架并略微转动望远镜,保持镜筒的轴线对准光杠杆的镜面,直到镜筒上方能看到光杠杆镜内有标尺的像为止。

③ 调节望远镜的目镜,使镜筒内十字叉丝清

晰,再调节望远镜的调焦手轮,使标尺在望远镜中成像清晰无视差。

④ 仔细调节光杠杆小镜的倾角以及标尺的高

度,使尺像的零线(在标尺的中间)尽可能落在望远镜十字叉丝的横线上。

2.3 测量

① 轻轻依次将1 kg 的砝码加到砝码托上,共9次。

记录每次从望远镜中测得的标尺像的读数R i 。 ② 将所加的9 kg 砝码轻轻地依次取下,记录每减

少1 kg 砝码时的R i 。

注意加减砝码时勿使砝码托摆动,各砝码缺口交叉放置,以防倒落。 2.4 处理数据实验数据

① 将测量中采集到的数据R 0、R 1……R 9分成前后

两组,用逐差法处理数据,可得增减5kg 砝码时,望远镜中标尺像读数的变化量的平均值。 ② 弹性模量E 相对误差的计算

2

16NKd FLD

E π=

Er

U

3 实验数据及测量结果

3.1 各单次测量量 g=9.794m/s 2

D ±U D =84.5±0.5cm L ±U L =32.3±0.2cm K ±U K =45.5±0.5mm

3.2 金属丝直径d 的测量

螺旋测微器的初始读数= -0.056mm 螺旋测微器的仪器误差

in

?

表1金属丝直径d

测量次数

钢丝直径d/(10-3m)

1

0.742 2

0.745 3 0.732 4 0.738 5 0.740 6 0.740 平均值 0.740 修正初读数后 0.796

d 的标准差S d

3-1040.4?

d 的A 类不确定度U A 3-1062.4?

d 的B 类不确定度U B

0.004 d 的不确定度U d 0.006

钢丝直径d=d ±Ud

0.796±0.006

3.3 望远镜中标尺像R i 的数据处理

表2望远镜中标尺像的数据处理

3.4 弹性模量E 及其不确定度的计算

由于是新仪器,公式改为:

2

16NKd FLD E π=

代入以上测量数据,得: ()2

2

2

32

210

55.410

22.110

796.0105.84103.32794.9516-----????????????=

π原式

211/1094.1m N ?≈ 不确定度的计算:

2

22222222222222222222104.506.022.1105.055.41006.0796.045.05.8412.03.32111411-?≈?+?+?+?+?=

++++=N K d D L Er U N

U K U d D U L U U 11

1121010.01094.1104.5?≈???==-E U U Er E ()211/1010.094.1m N E ?±=

次数

荷重/kg

增重 读数Ri/

m 102- 减重 读数Ri/

m 102-

平均读数

Ri/m 102-

N 值/m 102-

0 2.000 0 0

=0R 0

N 1=R 5-R 0 =1.18 1 3.000 0.30 0.20 =1R 0.25

2 4.000 0.45 0.40 =2R 0.42

N 2=R 6-R 1 =1.23 3 5.000 0.70 0.70 =3R 0.70 4 6.000 0.90 0.98 =4R 0.94

N 3=R 7-R 2 =1.29 5 7.000 1.15 1.20 =5R 1.18 6 8.000 1.45 1.50 =6R 1.48 N 4=R 8-R 3 =1.18 7 9.000 1.70 1.72 =7R 1.71 8 10.000 1.80 1.95 =8R 1.88 N 5=R 9-R 4

=1.20 9

11.00

0 2.10

2.18

=9R 2.14

N 的平均值 1.22

N 的标准偏差S N 2-1062.4? N 的A 类不确定度U A 2-1073.5?

N 的B 类不确定度U B 0.03 N 的不确定度U N

0.06

N U N N ±= 1.22±0.06

传统的杨氏弹性模量实验报告

杨氏弹性模量的测定 实验人: 杨氏弹性模量是材料弹性性质的一个主要特征量.本实验通过对钢丝杨氏弹性模量的测量,学习一种测量长度微小变化的方法:光杠杆镜尺法. [目的] 1.测定金属丝的杨氏弹性模量. 2.掌握光杠杆镜尺法测定长度微小变化的原理,学会具体的测量方法. 3.学习处理实验数据的两种方法:图解法和逐差法. [原理] 1.金属丝受外拉力作用,会有伸长,且遵从虎克定律,有L L S mg Y ?= 其中,Y:杨氏弹性模量 mg:外力 S:金属丝横截面积 L:金属丝长度 △L:金属丝伸长量 2.光杠杆镜尺法测微原理 如图1,该系统利用镜子放大微小变化,从而达到测微效果.结合虎克定律及光杠杆镜尺法,可得杨氏弹性模量为 图1. 拉伸法测量杨氏弹性模量原理图 标尺 l m sk LDg Y ??= 2

其中,L:金属丝原长 D:镜面到标尺的垂直距离 S:金属丝截面积 K:光杠杆前足到两后足连线的垂直距离m ?:单个砝码质量 l ?:加/减单个砝码时,标尺读数变化量 LDgSK 均为常量,l m ??/由图解法和逐差法求出 [仪器] 杨氏模量测定仪(如图M-4-3),调节方法如下: 1.调节光杠杆与望远镜在同一高度,光杠杆镜面尽可能铅直. 2.在望远镜外侧寻找光杠杆镜面上标尺的象(如看不到,应调节镜面方位和移动测定仪的位置) 3.移动望远镜,使其缺口与准星大致对准标尺的像. 4.调节望远镜目镜,使观察到的十字叉丝清晰. 5.调节望远镜调焦手轮,先观察到镜子,再观察到标尺,使观察到的标尺读数与十字叉丝均清晰而无视差. [实验步骤] 1.调节测定仪,使支架铅直. 2.在金属丝下端先挂一负载(如2千克),使金属丝完全拉直,此负载为初始负载,不计入作用力内. 3.用带有卡具的米尺量出金属丝长度L. 4.在不同位置,用螺旋测微计测10次金属丝直径d,取平均值. 5.安装光杠杆,调节望远镜,记录望远镜读数x 0,逐渐增加砝码到9×0.500kg,每次增加0.500kg,记录望远镜读数x i ’,再逐渐减少砝码,记录望远镜读数,则x i =0.5(x i ’+ x i ’’) 6.用钢皮尺测量光杠杆镜面到标尺的距离D 7.用游标卡尺测量光杠杆前足到后两足连线的垂直长度K. [注意事项] 1.调节望远镜时,注意消除视差,即要求标尺读数相对十字叉丝无相对位移.

拉伸法测弹性模量 实验报告0204192300

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。 成 绩 教师签字

实验中测定E , 只需测得F 、S 、l 和即可, 前三者可以用常用方法测得, 而的数量级l ?l ?很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖 直状态, 此时标尺读数为n 0。 当金属丝被拉长以l ?后, 带动平面镜旋转一角度α, 到图中所示M’位置; 此时读得标尺读数为n 1, 得到刻度变化为 。 Δn 与呈正比关系, 且根据小量 01n n n -=?l ?忽略及图中的相似几何关系, 可以得到 (b 称为光杠杆常数) n B b l ??= ?2将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 , 又在仪器关系上, 有x=2B , 则 , () 。 N p f x ?= N p f B ??=21100=p f 由上可以得到平面镜到标尺的距离B 。

弹性模量测量方法

弹性模量测量方法 点击次数:3972 发布时间:2010-10-22 弹性模量测量方法最简单的形变是线状或棒状物体受到长度方向上的拉 力作用,发生长度伸长。设金属丝(或杆)的原长为L,横截面积为S,在弹性限度内的拉力F作用下,伸长了L。比值F/S为金属丝单位横截面积上所受的力,叫做胁强(或应力),相对伸长量L/L叫胁变(或应变)。据虎克定律,胁强和胁变成正比,即: (1) 比例系数: (2) E叫做物体的弹性模量(或称杨氏模量)。E的大小与物体的粗细、长短等形状无关,只决定于材料的性质,它是表示各种固体材料抗拒形变能力的重要物理量,是各种机械设计和工程技术选择构件用材必须考虑的重要力学参量。 任何固体在外力作用下都会改变固体原来的形状大小,这种现象叫做形变。一定限度以内的外力撤除之后,物体能完全恢复原状的形变,叫弹性形变。杨氏弹性模量的测量方法有静态测量法、共振法、脉冲传输法等,其中以共振法和脉冲法测量精度较高。杨氏弹性模量的静态测量法就是在物体加载以后,测出物体的应力和应变,根据一定的计算式得到E值,主要有拉伸法、梁弯曲法等。 用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离处的绝对形变不同(AA'>BB'),而相对形变则相等,即弹性模量测量方法(6-3) 式中称为切变角,当值较小时,可用代替,实验表明,一定限度内切变角与切应力成正比,此处S为立方体平行于底的截面积,现以符号表示切应力,则 (6-4) 比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。 实验目的 1.掌握测量固体杨氏弹性模量的一种方法。 2.掌握测量微小伸长量的光杠杆法原理和仪器的调节使用。 3.学会一种数据处理方法——逐差法。 弹性模量测量方法实验仪器 杨氏模量仪、尺读望远镜、光杠杆、水准仪、千分尺、游标卡尺(精度0.02mm)及1kg砝码9个。 实验的详细装置如图1所示。其中尺读望远镜由望远镜和标尺架组成,望远镜的仰角可由仰角螺钉调节,望远镜的目镜可以调节,还配有调焦手轮。杨氏模量仪是一个较大的三脚架,装有两根平行的立柱,立柱上部横梁中央可以固定金属丝,立柱下部架有一个小平台,用于架设光杠杆。小平台的位置高低可沿立柱升降、调节、固定。三脚架的三个脚上配有三个螺丝,用于调节小平台水平。

杨氏模量实验报告记录

杨氏模量实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

一、实验目的:1.学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理 2.学会用“对称测量”消除系统误差 3.学习如何依实际情况对各个测量进行误差估算 4.练习用逐差法、作图法处理数据 二、实验原理: 在外力作用下,固体材料所发生的形状变化称之为形变。形变分为弹性形变和范性形变。如果加在物体上的外力停止作用后,物体能完全恢复原状的形变称之为弹性形变;如果加在物体上的外力停止作用后,物体不能完全恢复原状的形变称之为范性形变。 在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。本实验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。设细丝的原长为L ,横截面积为S ,两端受拉力(或 压力)F 后,物体伸长(或缩短)L ?。而单位长度的伸长量L L ?称为应变,单位横截面积所承受的力S F 称 为应力。根据胡克定律,在弹性限度内,应力与应变成正比关系,即 L L E S F ?= 式中比例系数E 称为杨氏弹性模量,简称杨氏模量。实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,而只决定于物体的材料。杨氏模量是表征固体材料性质的一个重要物理量,是选定机械构件材料的依据之一。 由上式得 L S FL E ?=0 在国际单位制(SI)中,E 的单位为2-m ?N 实验证明,杨氏模量与外力F 、物体长度L 和横截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量 设金属丝的直径为d ,则 2d 41 π=S L FL E ?=2d 4π 而L ?是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的L ?约为0.3mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量L ?的间接测量。

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

实验四岩石的弹性模量实验

实验四岩石的弹性模量实验 一、实验目的与要求 岩石在载荷作用下,会发生变形。随着载荷的不断增加或在恒定载荷下,随着时间的增长,岩石变形逐渐增大,最终导致岩石破坏。岩石变形有弹性变形、塑性变形和粘性变形。 岩石的弹性模量是指岩石在弹性变形阶段其应力与应变变化值之比。 通过本实验,要了解标准试件的加工机械、加工过程及检测程序,掌握岩石弹性模量的测试过程及数据处理、图形绘制的方法。 二、实验仪器、设备及工具 (一)仪器 1.电阻应变仪 2.电桥、万用表 3.数据采集仪或x——y函数记录仪 4.压力传感器 (二)设备 1.材料实验机 2.钻石机或车床、锯石机、磨石机或磨床 (三)材料 1.电阻应变片,标距为3×16mm~3×20mm,电阻值约为120Ω 2.胶结剂、防潮剂、清洁剂 (四)检验工具 游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表 三、试件规格、加工精度、数量 与岩石抗压强度相同 四、实验原理 电阻应变片是一种把机械位移转化为电量变化的传感器。应变片粘贴在岩石试件上。试件受压时,电阻丝跟着缩短,截面增加,电阻值减小。试件受拉时,电阻丝跟着伸长,截面 =K?。电阻应变缩小,电阻值增大。应变片电阻值R的变化量?R与试件的应变?成正比,即?R R 仪为直接把电阻值的变化转为应变量的仪器。因此通过测量得到电阻应变片的应变值?也即测得试件在受压过程时的纵向应变值?l和横向应变值?d,进而可通过计算得出岩石的弹性模量和泊松比。 五、实验内容 1.了解试件的加工机具、检测机具,规程对尺寸和精度的要求及检测方法; 2.学会材料实验机的操作方法; 3.学会岩石试件的防潮处理及电阻应变片的粘贴、接线、焊接技术; 4.学会电阻应变仪的测读方法,岩石的弹性模量的测量方法。 六、实验步骤 1.测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、节理、裂隙、风化程 度、含水状态以及加工过程中出现的问题等进行描述,并填入记录表1内。 2.检查试件加工精度,测量试件尺寸填入记录表内。 3.选择材料实验机度盘时,一般满足下式:0.2P0

用拉伸法测材料弹性模量

实验21 用拉伸法测氏模量 林一仙 1 实验目的 1)掌握拉伸法测定金属氏模量的方法; 2)学习用光杠杆放大测量微小长度变化量的方法; 3)学习用作图法处理数据。 2 实验原理 相关仪器: 氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。 2.1氏模量 任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。本实验研究的是棒状物体弹性形变中的伸长形变。 设金属丝的长度为L ,截面积为S ,一端固定, 一端在延长度方向上受力为F ,并伸长△L ,如图 21-1,比值: L L ?是物体的相对伸长,叫应变。 S F 是物体单位面积上的作用力,叫应力。 根据胡克定律,在物体的弹性限度,物体的应力与应变成正比,即 L L Y S F ?= 则有 L S FL Y ?= (1) (1)式中的比例系数Y 称为氏弹性模量(简称氏模量)。 实验证明:氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 根据(1)式,测出等号右边各量,氏模量便可求得。(1)式中的F 、S 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。本实验采用光杠杆法进行间接测量(具体方法如右图所示)。 2.2光杠杆的放大原理 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。从下图我们可以看出:

h L tg ?= θ (2) 这时望远镜中看到的刻度为1N ,而且θ201=ON N ∠,所以就有: D N N tg 0 12-= θ(3) 采用近似法原理不难得出: L h D N N N ?= -=?201(4) 这就是光杠杆的放大原理了。 将(4)式代入(1)式,并且S=πd 2 ,即可得下式: N h d F LD Y ??=π2 8 这就是本实验所依据的公式。 2.3 实验步骤 1)将待测金属丝下端砝码钩上加1.000kg 砝码使它伸直。调节仪器底部三脚螺丝,使G 平台水平。 2)将光杠杆的两前足置于平台的槽,后足置于C 上,调整镜面与平台垂直。 3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D 约为1.5米左右。 4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L 。 5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。 6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。若有视差,应继续细心调节目镜,直到无视差为止。检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。记下水平叉丝(或叉丝交点)所对准的标尺的初读数N 0,N 0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。 7)每次将1.000kg 砝码轻轻地加于砝码钩上,并分别记下读数N '1、N '2、…、N i ',共做5次。 8)每次减少1.000kg 砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0。 9)当砝码加到最大时(如6.000kg )时,再测一次金属丝上、中、下的直径d ,并与挂1.000kg 砝码时对应的直径求平均值,作为金属丝的直径d 值。 10)用卡尺测出光杠杆后足尖与前两足尖的距离h ,用尺读望远镜的测距功能测出D (长短叉丝的刻度差乘100倍)。

动弹性模量试验方法

6. 动弹性模量试验 6.0.1 本方法适用于采用共振法测定混凝土动弹性模量。 6.0.2 动弹性模量试验采用尺寸为100mm×100mm×100mm的棱柱体试件。6.0.3 试验设备应符合下列规定: 1 共振法混凝土动弹性模量测定仪输出频率可调节范围应为(100—200)Hz,输出功率应能使试件产生受迫振动。 2 试件支撑体应采用厚度为20mm的泡沫塑料垫,宜采用表观密度为(16—18)Kg/m3的聚苯板 3 称量设备的最大量程应为20kg,感量不应超过5g。 6.0.4 试验步骤 1 首先应测量试件的质量与尺寸。试件的质量应精确至0.01kg,尺寸的测量应精确至1mm。 2 测定完试件的质量和尺寸后,应将试件放置在支撑体中心位置,成型面应向上,并应将激振换能器的测杆轻轻的压在试件长边侧面中线的1/2处,接收换能器的测杆轻轻的压在试件长边侧面中线距端面5mm处。在测杆接触试件前,宜在测杆于试件接触面涂一薄层黄油或凡士林作为耦合介质,测杆压力的大小应以不出现噪音为准。 3 放置好测杆后,应先调整共振仪的的激振功率和接收增益旋钮至适当位置,然后变换激振频率,并应注意观察指示电表的指针偏转。当指针偏转为最大时,表示试件到达共振状态,应以这时所示的共振频率作为试件的基频振动频率。每一次测量应重复测量两次以上。当两次连续测值之差不超过两个测值的算术平均值的0.5%时,应取这两个测值的算术平均值作为试件的基频振动频率。 4 当用示波器作为显示的仪器时,示波器的图形调成一个正圆时,应将接收换能器移至距试件端部0.224倍试件长处,当指示电表示值为零时,应将其作为真实的共振峰值。 6.0.5 试验结果计算及处理应符合下列规定: 1 动弹性模量应按下式计算: =13.244×10-4×WL3f2/a4 E d ——混凝土动弹性模量(Mpa); 式中:E d a——正方形截面试件的边长(mm);

杨氏模量实验报告汇总

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班 学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

)调节测定仪支架螺丝,使支架竖直,使夹头刚好穿过平台上的圆孔而不会与平台发生摩擦(1 )将杠杆后尖脚置于夹头上,两尖脚置于平台凹槽上(2 )调节光杠杆与望远镜、米尺中部在同一高度上(3)调节望远镜的位置或光杠杆镜面仰角,直至眼睛在望远镜目镜附近能直接(不通过望远镜筒)从4(光杠杆镜面中观察到标尺中部的像)细微调节望远镜方位和仰角调节螺丝,直至望远镜上缺口与准星连线粗略对准光杠杆镜面(5 (6)调节望远镜目镜调焦旋钮,直至在望远镜中能看清叉丝。)调节望远镜的物镜调焦旋钮直至在望远镜中能看清整个镜面。(如果只能看到部分镜面,应调节7(望远镜仰角调节螺丝,直至看到整个镜面)。 8)继续调节望远镜的物镜调焦旋钮,直至在望远镜中能看清标尺中部读数。()如果只有部分标尺清楚,说明只有部分标尺聚焦,应调节望远镜仰角调节螺丝直至视野中标尺读(9 数完全清楚。 四、实验内容和步骤:个底脚螺丝,同时观察砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的32kg(1)用放在平台上的水准尺,直至中间平台处于水平状态为止。 )调节光杠杆镜位置。将光杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下(2端圆柱形套管上(注意一定要放在金属套管的边上,不能放在缺口的位置),并使光杠杆镜镜面基本所示。垂直或稍有俯角,如图6-1左右处,松开望远镜固定螺钉,上下移动使得望远2m(3)望远镜调节。将望远镜置于距光杆镜移动望远镜固定架位置,从望远镜筒上方沿镜筒轴线瞄准光杠杆镜面,镜和光杠杆镜的镜面基本等高。直至可以看到光杠杆镜中标尺的像。然后再从目镜观察,先调节目镜使十字叉丝清晰,最后缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至从望远镜里可以看到清晰的标尺刻度为止。n砝,然后每加上1kg砝码时的读数作为开始拉伸的基数(4)观测伸长变化。以钢丝下挂 2kg0n,n,n,n,n,n,n,n这是钢丝拉伸过程中的读数变, 这样依次可以得到码,读取一次数据, 76543210''''''''nnnnnnnn砝码,读取一次数据,依次得到1kg化。紧接着再每次撤掉,这是钢丝收缩过程中50671342的读数变化。注意:加、减砝码时,应轻放轻拿,避免钢丝产生较大幅度振动。加(或减)砝码后,钢丝会有

水泥混凝土抗弯拉弹性模量试验方法

水泥混凝土抗弯拉弹性模量试验方法 1、目的、适用范围和引用标准 本方法规定了测定水泥混凝土抗弯拉弹性模量的方法和步骤。抗弯拉弹性模量是以 1/2抗弯拉强度时的加荷为准。 2、每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强 度,3根则用作抗弯拉弹性模量试验。 3、试验步骤 (1)至试验龄期时,自养护室取出试件,用湿布覆盖, 避免其湿度变化。清除试件表面污垢,修平与装置接触的 试件部分(对抗弯拉强度试件即可进行试验)。在试件上 下面即成型时两侧面)戈U出中线和装置位置线,在千分 表架共四个脚点处,用于毛巾先擦干水分,再用 502胶 水粘牢小玻璃片,量出试件中部的宽度和高度,精确至 1mm。 (2)将试件安放在支座上,使成型时的侧面朝天上, 千分表架放在试件上,压头及支座线垂直于试件 中线且无偏心加载情况,而后缓缓加上约1kN压 力,停机检查支座等各接缝处有无空隙(必要时需加金属

薄垫片),应确保试件不扭动,而后安装千分表,其触 电及表架触点稳立在小玻璃片上。 (3)取抗弯拉极限荷载平均值的 1/2 为抗弯拉弹性模 量试验的荷载标准(即F0.5)进行5次加卸荷载循环,由 1kN 起,以 0.15Kn/s-0.25Kn/s 的速度加荷, 至 3kN 刻度处停机(设为 Fo ),保持约 30s (在此段 加荷时间中,千分表指针应能起动,否 则应提高Fo至4kN等),记下千分表读数△ o, 而后 继续加至F0.5,保持约30s,记下千分表读数△ 0.5;再以同样速度卸荷至 1kN,保持约30s,为第一 次循环。 (4)同第一次循环,共进行五次循环,取第五次循环 的挠度值相差大于 0.5g时,须进行第六次循环, 直到两次相邻循环挠度值之差符合上述要求为止,取最后 一次挠度值为准。 ( 5)当最后一次循环完毕,检查各读数无误后,立即 去掉千分表,继续加荷直至试件折断,记下循环 后抗弯拉强度f‘ f观察断裂面形状和位置。如 1 > 断面在三分点外侧,则此根试件结果无效;如有两根试件 结果无效,则该组试验无效。

拉伸法测弹性模量

清华大学实验报告 系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2011年9月28日教师评定: 实验2.1拉伸法测弹性模量 一、实验目的 (1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。 二、实验原理 1.弹性模量及其测量方法 弹性形变范围内,正应力与线应变成正比,即 式中的比例系数 称作材料的弹性模量 利用本实验中直接测量的数据,可将上式进一步写为 测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F,测出钢丝 E。 2.逐差法处理数据 该方法称为逐差法,可以减小测量的随机误差和测量仪器带来的误差。 三、实验仪器 包括支架、读数显微镜、底座、钢尺和螺旋测微计(分别用来测量钢丝长度和直径)。 四、实验步骤与注意事项 (1)调整钢丝竖直。 (2)调节读数显微镜。先粗调再细调。 (3)测量。测量钢丝长度L D,测6次,并在测量前后记录螺旋测微计的零点d各3次。

五、数据表格及数据处理 1. 测量钢丝长度L 仪器编号;钢丝长度L=mm。 得到: = mm = mm 2. 测定钢丝直径D 测定螺旋测微计的零点d 测量前____,___,____ 测量后____,____,____ mm 得到: 3. 总不确定度计算

由计算公式推导出E的相对不确定度的公式 出 结论:拉伸法可以测量钢丝的弹性模量,由于实验仪器的精密程度有限,所得的弹性模量的不确定度较大。 六、思考题解答与分析 1. 在本实验中读数显微镜测量时那些情况下会产生空程误差?应如何消除它? 在测量中,转动手轮至标记点的过程中反转手轮会产生空程误差,在从增砝码变到减砝码手轮反转时会产生空程误差。 在测量中,应通过使手轮只向一个方向转动来消除空程误差,若是在调节某次标记线位置时,叉丝转过了标记线,则舍去这次的位移值,继续测量下一个位移值。在增减砝码手轮反转过程中,因尽量使手轮多转几圈,消除空程误差后,再进行下面的测量。 2. 从E的不确定度计算式分析哪个量的测量对E的结果的准确度影响最大?测量中应注意哪些问题? 通过多次测量取平均值来减小误差。另外,在测量前后要记录螺旋测微计的零点各3次,来减小系统误差对测量值的影响。 八、实验感受与收获 这是我的第一次实验,心情激动但也害怕结果会误差很大。事实证明顾虑其实是多余的,认真踏实的做实验就会有收获。通过本次试验,我锻炼了动手和观察能力,也深刻地体会到实验工作的辛苦,长时间使用读数显微计会使眼睛非常疲劳。 实验2.2动力学法测弹性模量 一、实验目的 (1)学习一种更实用、更准确的测量弹性模量的方法; (2)学习用实验方法研究与修正系统误差。

动态法测杨氏模量实验报告

动态法测量杨氏模量 一、 实验目的 1. 理解动态法测量杨氏模量的基本原理。 2. 掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3. 了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。学会用示波器观察判断样品共振的方法。 4. 培养综合运用知识和使用常用实验仪器的能力。 二、 实验原理: 在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。 根据杆的横振动方程式 02 244=??+??t y EJ S x y ρ (1) 式中ρ为杆的密度,S 为杆的截面积,?= s dS y J 2 称为惯量矩(取决于截面的形状),E 即为杨氏模量。 如图1所示,长度L 远远大于直径d (L >>d )的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为 02244=??+??t EJ y S x y ρ (1) 棒的轴线沿x 方向,式中y 为棒上距左端x 处截面的y 方向位 移,E 为杨氏模量,单位为Pa 或N/m 2;ρ为材料密度;S 为 截面积;J 为某一截面的转动惯量,??=s ds y J 2。 横振动方程的边界条件为:棒的两端(x =0、L )是自由端,端点既不受正应力也不受切向力。用分离变量法求解方程(1),令)()(),(t T x X t x y =,则有 2 24411dt T d T EJ S dx X d X ?-=ρ (2) 由于等式两边分别是两个变量x 和t 的函数,所以只有当等式两边都等于同一个常数时等式才成立。假设此常数为K 4,则可得到下列两个方程 044 4=-X K dx X d (3) 0422=+T S EJ K dt T d ρ (4) 如果棒中每点都作简谐振动,则上述两方程的通解分别为 图1 细长棒的弯曲振动

拉伸法测量金属丝弹性模量带大数据处理

本科实验报告(详写)【实验目的】 1.掌握拉伸法测量金属丝弹性模量的原理和方法。 2.学习光杠杆测量微小长度的变化的原理和方法。 3.进一步学习用逐差法,作图法处理数据。 4.多种长度测试方法和仪器的使用。 【实验内容和原理】 1.测定金属丝弹性模量 假定长为L、横截面积为S的均匀金属丝,在受到沿长度方向的外力F作用下伸长?L,根据胡克定律可知,在弹性限度内,应变?L /L与外F/S成正比,即 (E称为该金属的杨氏模量)(1)由此可得:

(2) 其中F,S 和L 都比较容易测量;?L 是一个很小的长度变化量。 2.光杠杆测量微小长度变化 当金属丝受力伸长?L 时,光杠杆后脚1f 也随之下降?L ,在θ较小(即?L << b )时,有 ?L / b = tan θθ≈ (1) 若望远镜中的叉丝原来对准竖尺上的刻度为0r ;平面镜转动后,根据广的反射定律,镜面旋转θ,反射线将旋转2θ,设这时叉丝对准新的刻度为1r 。令?n= |1r –0r |,则当2θ很小(即?n <

i n ?L 。其中2D/b 称为光杠杆的放大倍数。 bl d FLD E 28π= (3) 4.为减小实验误差依次在砝码钩上挂砝码(每次1kg ,并注意砝码应交错放置整齐)。待系统稳定后,记下相应十字叉丝处读数(i=1,2,……,6)。依次减小砝码(每次1kg ),待稳定后,记十字叉丝处相应读数(i=1,2,……,6)。取同一负荷刻度尺读数平均值 2n n n ' i i i += (i=1,2, (6) 5.按逐差法处理数据的要求测量弹性模量。 计算对应3Kg 负荷时金属丝的伸长量 i 3i i n -n n +=? (i=1,2,3,) 及伸长量的平均值 3 n n 3 1 i i ∑=?= ? 将n ?,L,D,K,d 各测量结果代入(3)式,计算出待测金属丝的弹性模量及测量结果的不确定度。 22222 2)()()()(4)()(F K n d D L E E F K n d D L ?+?+??+?+?+?=?? (4) 【实验仪器】

弹性模量、泊松比测试

弹性模量、泊松比测试 测样品的弹性模量通常分动态法和静态法,静态法是在试样上施加一个恒定的拉伸(或压缩)应力,测定其弹性变形量;动态法包括共振和超声波测试。 静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会。动态法属于不破坏试样结构和性能的一种无损检测方法,试样可重复测试,因此对于力学性能波动较大的脆性材料,反复多次的无损力学检测显得重要而有意义。 超声波法测弹性模量 1.原理: 在各向同性的固体材料中,根据应力和应变满足的胡克定律,可以求得超声波传播的特征方程: 其中,为势函数,c为超声波传播速度。 当介质中质点振动方向与超声波的传播方向一致时,成为纵波;当质点振动方向与超声波的传播方向垂直时,称为横波,在固体介质内部,超声波可以按纵波和横波两种波形传播,无论是材料中的纵波还是横波,其速度可表示为: 其中,d为声波传播距离,t为声波传播时间。 对于同一种材料,其纵波波速和横波波速的大小一般不一样,但是它们都由弹性介质的密度,杨氏模量,泊松比等弹性参数决定,即影响这些物理常数的因素都对声速有影响,因此,利用超声波方法可以测量材料有关的弹性常数。 固体在外力作用下,其长度的方向产生变形,变形时应力与应变之比定义为杨氏模量,用E表示。 固体在应力作用下,沿纵向有一正应变,沿横向有一负应变,横向纵向应变之比定义为泊松比,用u表示。 在各向同性固体介质中,各种波形的超声波声速为: 纵波声速: 横波声速: 相应的通过测量介质的纵波声速和横波声速,利用以上公式可以计算介质的弹性常数,计算公式如下: 弹性模量: 泊松比: 其中,,为密度 2.测试方法: 使用25DL PLUS型超声波弹性模量测试仪分别测试材料的纵波声速和横波声速,代入上述公式,计算得到弹性模量和泊松比数值。

杨氏模量实验报告

钢丝的杨氏模量 【预习重点】 (1)杨氏模量的定义。 (2)利用光杠杆测量微小长度变化的原理和方法。 (3)用逐差法和作图法处理实验数据的方法。 【仪器】 杨氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。 【原理】 1)杨氏模量 物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。在弹性形变范围内,按照胡克(HookeRobert1635—1703)定律,物体内部的应力正比于应变,其比值 (5—1) 称为杨氏模量。 实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。从微观结构考虑,杨氏模量是一个表征原子间结合力大小的物理参量。 2)用静态拉伸法测金属丝的杨氏模量 杨氏模量测量有静态法和动态法之分。动态法是基于振动的方法,静态法是对试样直接加力,测量形变。动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。静态法原理直观,设备简单。 用静态拉伸法测金属丝的杨氏模量,是使用如图5—1所示杨氏模量仪。在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个支架受力后变形极小,可以忽略。待测样品是一根粗细均匀的钢丝。钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B夹紧并穿过平台C的中心孔,使钢丝自由悬挂。通过调节三角底座螺丝,使整个支架铅直。下卡头在平台C的中心孔内,其周围缝隙均匀而不与孔边摩擦。圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。钢丝的伸长量δL是很微小的,本实验采用光杠杆法测量。 3)光杠杆

岩石应力-变形模量、弹性模量

1依据 1《水利水电工程岩石试验规程》SL264-2001; 2《工程岩体试验方法标准》GB/T50266-2013; 3《水利水电工程岩石试验规程(补充部分)》DL/T5368-2007。 2目的及范围 2.1目的 编制本作业指导书是为了规范、准确的完成对岩石单轴压缩变形试验的弹性模量和变形模量的测定。 2.2范围 本作业指导书可分为电阻应变片法和千分表法,适用于能制成规则试件的各类岩石。坚硬和较坚硬的岩石宜采用电阻应变片法,较软岩宜采用千分表法对于变形较大的软岩和极软岩可采用百分表测量变形。 3仪器设备 1钻石机、锯石机、磨石机; 2测量平台; 3烘箱和饱和设备; 4万用电表、兆欧表; 5静态电阻应变仪; 6千(百)分表; 7测量表架; 8材料试验机。 4实验步骤 4.1试件制备 4.1.1试件可用岩心或岩块加工制成,试件在采取、运输和制备过程中应避免扰动 4.1.2试件尺寸应符合下列规定: 1圆柱体直径或方柱体边长宜为48~54mm 2含大颗粒岩石的试件直径或边长应大于最大颗粒尺寸的10倍。 3试件高度与直径或边长之比宜为2.0~2.5。 4.1.3试件加工精度应符合下列规定: 1试件高度直径或边长的允许偏差为±0.3mm 2试件两端面的不平整度允许偏差为±0.05m 3端面应垂直于试件轴线允许偏差为±0.25°。 4方柱体或立方体试件相邻两而应互相垂直允许偏差为±025°。 4.1.3试件含水状态可根据需要选择天然状态、烘干状态或饱和状态并应符合下列规定: 1天然状态应在试样拆除密封后立即制备试件并测定其天然含水率 2烘干状态对于不含矿物结晶水的岩石应在105-110℃的恒温下烘24h。对于含有矿物结晶水的岩石应降低烘干温度,可在40±5℃恒温下烘24h。将试件从烘箱中取出放入干燥器内冷却至室温称试件质量。重复以上步骤直到相邻两

弹性模量和泊松比的测定

弹性模量和泊松比的测定

弹性模量和泊松比的测定

目录 一、弹性模量和泊松比 (2) 二、弹性模量测定方法 (2) 三、泊松比测定方法 (4) 四、结论 (4) 五、参考文献 (4)

一、弹性模量和泊松比 金属材料的弹性模量E为低于比例极限的应力与相应应变的比值;金属材料的泊松比μ指低于比例极限的轴向应力所产生的横向应变与相应轴向应变的负比值(详见GB/T 10623-2008 金属材料力学性能试验术语)。 二、弹性模量测定方法 铝合金材料的弹性模量E是在弹性范围内正应力与相应正应变的比值,其表达式为: E=σ/ε 式中E为弹性模量;σ为正应力;ε为相应的正应变。 铝合金材料弹性模量E的测定主要有静态法、动态法和纳米压痕法。 1.静态法 1.1测量原理 静态法测量铝合金材料的弹性模量主要采用拉伸法,即采用拉伸应力-应变曲线的测试方法。 拉伸法是用拉力拉伸试样来研究其在弹性限度内受到拉力的伸长变形。由上式有: E=σ/ε=FL/A△L 式中各量的单位均为国际单位。 可以看出,弹性模量E是在弹性范围所承受的应力与应变之比,应变是必要的参数。因此,弹性模量E的测试实质是测试弹性变形的直线段斜率,故其准确度由应力与应变准确度所决定。 应力测量的准确度取决于试验机施加的力值与试样横截面积,此时试验机夹具与试样夹持方法也非常关键,夹具与试样要尽量同轴;应变测量的准确度要求引伸计要真实反映试样受力中心轴线与施力轴线同轴受力时所产生的应变。 由于试样受力同轴是相对的,且在弹性阶段试样的变形很小,所以为获得真实应变,应采用高精度的双向平均应变机械式引伸计。 拉伸法测量弹性模量适用于常温测量,由于拉伸时载荷大,加载速度慢,

Brugg 弹性模量和疲劳测试方法

Event: SCX9项目确认 SCX9钢绳检测方法 一.弹性模量和伸长率测试方法: 1. 试验准备 a) 钢丝绳试样长度1.2-2m,应足以代表整根钢丝绳的特性,不应有缺陷。 b) 参考下图制作钢丝绳试样的两个固定端头。 c) 钢丝绳试样在试验机夹头或固定端的自由长度L0至少应为钢丝绳直径的30倍。 d) 在试样中部放置位移测试架,测试段间距L1为600mm 。 注:图中所示A,B:固定夹模,1:钢丝绳,2:位移传感器,3:紧固装置 2. 测试方法 a) 将制好的钢丝绳试样安装到拉伸试验机夹块之间. b) 检查所有的安装连接牢固可靠. c) 对试样加载至3%的钢丝绳最小破断力,位移传感器自动采集测试段长度 L1记录为初始长度So . d) 继续加载至8.5%的钢丝绳最小破断力,位移传感器自动采集测试段长度 L1记录为St . e) 对试样卸载至3%钢丝绳最小破断力,反复上述d)-e)步(加载-卸载)10次 f) 保持第十次3%的钢丝绳最小破断力的状态下,采集测试段L1的长度 记录为最终长度S1 g) 第十次加载至8.5%的钢丝绳最小破断力,采集测试段L1的长度记录为 载荷长度S2 注:长度测量误差: ±1mm 3. 伸长率的计算 %1001%结构(永久)伸长率x So So S -= %1001 1 2%弹性伸长率x S S S -= L0 L1 1 A B 3 2

二.含油率标准: 外层股含油率0.75%-1.3% ; 内层股&中心股含油率:1.0-2.5% 三.疲劳测试: 1 适用范围 电梯用钢丝绳弯曲疲劳寿命的要求和测试方法适用于本公司使用的各种结构和规格的电梯用钢丝绳。电梯用钢丝绳弯曲疲劳寿命的测试方法适用于钢丝绳疲劳试验机PL-1 2 注意事项 (1) 试验运行期间,应注意安全。并有专人随时观察试验运行情况。 (2) 每次记录前,应首先切断电源,等机器完全停稳后方可进行检测记录。 3 测试准备 3.1 样品准备 选取满足 GB 8903-2005 要求的试验钢丝绳一段,长约4.6 米左右。要求外观应光洁,无损伤、锈蚀、扭结等缺陷。在两端10到25mm 处钢丝绳分别用胶带扎紧,扎紧长度不应小于钢丝绳直径。在样品上挂标签,标签上包括:钢丝绳型号、结构、制造商、样品编号、日期和运行次数的表格。 3.2 测试仪器和工具准备 4 钢丝绳弯曲疲劳的测试过程 4.1 钢丝绳在设备上的安装(设备是指钢丝绳疲劳试验机,以下相同) (1) 根据钢丝绳的规格,调整配重箱的重量,使其符合表 1 的要求; (2) 顶起配重箱,使中间轮和配重轮间的间隙为 6 ~ 12 ㎜; (3) 松开夹头螺帽,穿过钢丝绳并将钢丝绳夹紧; (4) 将钢丝绳的一端穿过配重轮,绕到摆臂下下端的套管; (5) 在固定端用钢丝绳夹夹紧钢丝绳,并在固定端与标记处间隔 100~150 ㎜处系上标志或用其他相应的方法,以利于监测试验期间钢丝绳的滑移。此处标记为 A ; 注:应尽可能使夹具保持靠近套管,夹具间应尽可能靠拢。

相关文档
最新文档