串级控制系统设计及其仿真

串级控制系统设计及其仿真
串级控制系统设计及其仿真

东北大学

计算机控制理论与设计

作业

串级控制系统设计与仿真

控制理论与控制工程

樊悦:1101155

2011年12月17日

目录

摘要 (1)

1引言 (1)

2PID控制 (1)

3串级控制 (2)

4S IMULINK仿真 (3)

5对串级控制的改进 (5)

6结论 (7)

附录 (8)

参考文献 (10)

摘要 串级控制系统是改善控制过程品质极为有效的方法,具有对进入副回路的扰

动客服能力强,提高了系统的工作频率,有一定自适应能力等特点。利用Simulink 结合串级PID 控制系统,与单回路PID 控制系统进行仿真对比,结果表明,串级PID 控制系统更具有优势。

关键词:串级控制系统,PID

1引言

单回路控制系统一般情况下都能满足正常生产的要求,但是当对象滞后较大,负荷和干扰变化比较剧烈而频繁,或是工艺对产品质量提出的要求很高(如有的产品纯度要求达到99.99%)时,采用单回路控制方法就不太有效,于是就出现了一种所谓串级控制系统。串级控制系统为双闭环或多闭环控制系统,控制系统内环为副控对象,外环为主控对象。内环的作用是将外部扰动的影响在内环进行处理,而尽可能不使其波动到外环,这就加快了系统的快速性并提高了系统的品质,因此串级控制系统中选择内环时应考虑其响应速度要比外环响应速度快得多。

2 PID 控制

PID 控制器表示比例-积分-微分控制规律,即控制器的输出与输入是比例-积分-微分的关系。PID 控制器产生于20世纪30年代末,从模拟控制器到数字控制器,经过广泛的理论研究和丰富的应用实践,取得了巨大的成功,是工业控制领域应用最广泛也最成功的一种控制器。PID 控制器成功的本质是因为这种控制器是这种控制器所蕴含的富有哲理的深刻意义—积分反映了输入信号的“历史”变化,比例反映了输入信号的“当前”状态,微分则表征输入信号“未来”的变化趋势。 1. 理想的模拟PID 控制的传递函数为

()

1()1()P D I U s D s K T s E s T s ??=

=++ ???

(1) 将上式离散化,得到不同的数字PID 控制器,如下

2. 全位置式PID 控制器

()111()1()1P I D u k K K K z e k z --??

=++-??-??

(2)

3. 增量式PID 控制器

()(

)()()

1

1

2

112

P I

D

u k K z K K z

z e k ---?

??=-+

+

-+?? (3) 4. 递推位置式PID 控制器

()1

12

()(1)(1)12()P

I D

u k u k K z K

K z

z e k ---??=-

+-++-

+?

?

(4)

3 串级控制

图1是串级控制系统的结构图。串级控制在结构上形成了两个闭环,一个闭环在里面,成为内环、副环或副控回路,其控制器称为副控制器,在控制中起“粗调”作用;一个闭环在外面,成为外环、主环或主控回路,其控制器称为主控制器,起“细调”作用,最终保证被控量满足控制要求。主控制器的输出作为副控制器的给定值,而副控制器的输出则去控制被控对象。这种由两个控制器串在一起控制一个执行机构的控制系统,称为串级控制系统。作用在外环的扰动()1V s 称为一次扰动,作用在内环的扰动()2V s 称为二次扰动。

图1

与单回路控制系统相比,串级控制在结构上增加量一个副控回路,正是由于副控回路的存在,使串级控制具有自己的特点。

1. 副控回路具有快速性,能够有效地克服进入副控回路的二次干扰。与单回路控制

系统相比,被控量受二次干扰的影响可以减至原来的1/100~1/10。

2. 由于副控回路起到了改善对象动态特性的作用,因此可以加大主控制器的增益,

提高系统的工作频率。

如果把整个副控回路看做一个等效对象,记作

()()()

2'

22Y s G s R s =

(5)

并且假设副控回路中各环节传递函数为 ()2221

p p K G s T s =

+ ()22c D s K = (6)

则副控回路的等效传递函数为

()()()

()()()()

'

2222'2

'2222

11

p p K Y s D s G s G

s R s D s G s T s =

=

=

++ (7)

其中

22'

2

22

1c p p c p K K K K K =+ (8)

2

'2

22

1p p c p T T

K K =

+ (9)

分别为等效对象的增益和时间常数。

比较()2G s 和()'2G s ,由于2211c p K K +>这个不等式恒成立,因此有

'22p p T T < (10) 上式表明,由于副控回路的存在,起到改善动态特性的作用,等效对象的时间常数缩小了()221c p K K +倍,且随副控制器比例增益的增大而减小。通常情况下,副控制器的比例增益可以取得较大,这样等效时间常数就可以减小到很小的数值,从而加快了副控回路的响应速度,提高了系统的工作频率。

3. 由于副控回路的存在,使串级系统的自适应能力增强。

4 Simulink 仿真

设被控对象的传递函数为

()()()()

1

1251G s s s s =

+++ (11)

主,副被控对象分别为 ()()

11

51G s s =

+ (12)

()()()

21

12G s s s =

++ (13)

输入信号为单位阶跃信号;一次扰动为单位阶跃信号;二次扰动为随机扰动信号。外环采样时间11T s =;内环采样时间20.3T s =。利用Simulink 仿真,仿真图见附录图(8),得到二次扰动信号图(2)及输出结果图(3)如下

图(2)

图(3)

由仿真结果可见由于副控回路的存在,加入的二次扰动虽然对输出产生了一定的影响,但是整个输出过程,输出值还是较为平稳的被控制在目标值附近。说明采用串级控制能够有效的克服进入副控回路的干扰。

控制器参数不变且对象参数发生改变时,副被控对象变为

()()()

21

215G s s s =

++ (14)

进入副控回路的二次干扰信号为单位阶跃信号。

对系统进行仿真,仿真图见附录图(9),得到输出结果图(4)如下

图(4)

由于对象参数发生改变,且为极点发生变化,有一个极点s=-0.5,相比变化之前的s=-1更加靠近虚轴,所以超调量变大,但是总体输出效果还是很好的。由仿真结果可见,

串级控制由于副控回路的存在,使得系统具有一定的自适应性。

5对串级控制的改进

当主要扰动无法用串级控制包围在副控回路时,采用前馈-串级控制可以得到较好的控制效果。前馈-串级控制系统的结构图如下

图(5)

()v G s 为扰动通道的传递函数,()

f D s 为前馈控制器。

由图(5)得到

()()()()()()()()

{

}()()

()()

()22112

21v f D s G s Y s G s V s R s Y s D s D s V s G s D

s G s =+-+????+ (15)

对于串级副控回路,有

()()()()

222211D s G s D s G s ≈+ (16)

所以在假设()0R s =的情况下,有

()()

()()()()()

1111v f G s D s G s Y s V s D s G s +=

+ (17)

当前馈控制器完全补偿时,有()0Y s =,所以

()()()10v f G s D s G s += (18)

于是得到前馈-串级控制的前馈控制器模型

()()()

1v f G s D s G s =-

(19)

设被控对象的传递函数如(11)式所示,主副被控对象传递函数如(12)式,(13)式所示。 扰动通道传递函数为

()11

v G s s =

+ (20)

根据(19)式得到前馈控制器传递函数为

()511

f s D s s +=-

+ (21)

当只采用串级控制时,得到的仿真结果如下图所示,仿真图见附录图(10)

图(6)

可见系统的超调量较大,现采用前馈-串级控制,得到仿真结果如下图,仿真图见附录图(11)

图(7)

采用前馈-串级控制,输出超调明显减小,而且过渡时间也减少了。当主要扰动无法被副控回路包围时,引入前馈控制,可以得到较理想的控制效果。

根据以上的Simulink仿真的结果可以得到以下结论:

1.本设计采用了串级控制系统,加入了副控制回路,与单回路控制系统相比,使控

制系统的稳态误差更小,能够适应更高的控制精度要求,从而适应能力增强;2.本设计中,副控制器的增益选的比较大,从而使副控回路具有较快的响应速度,

能够快速有效地克服进入副控制回路的二次干扰。因此,可以把蒸汽压力的干扰包含在副回路中;

3.由于副控制器的增益选的比较大,因此,副控回路起到了改善对象动态特性的作

用,也可以通过加大主控制器的增益,提高系统的工作频率;

4.当进入系统的主要干扰不能被串级控制系统的副控回路包围时,采用前馈-串级控

制能得到更为理想的控制效果。

图(8)

图(9)

图(10)

图(11)

参考文献

[1] 关守平. 计算机控制理论与设计. 沈阳:东北大学出版社,2011

[2] 刘建昌,关守平,周玮. 计算机控制系统. 北京:科学出版社,2009

[3] 陈夕松,汪木兰. 过程控制系统. 北京:科学出版社,2005

[4] 边立秀. 热工控制系统. 北京:中国电力出版社,2002

[5] 薛定宇. 控制系统计算机辅助设计(第2版). 北京:清华大学出版社,2006

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

控制系统仿真与设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:刘峰 7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验内容 1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

记录实际测取的峰值大小、峰值时间、过渡时间,并与理论计算值值比较 实际值理论值 峰值 1.3473 1.2975

峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352 +%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示:

串级控制系统研究 仿真

本科学生毕业论文 2011年5月20日 论文题目: 串级控制系统研究学院: 电子工程学院年级: 2007级专业: 自动化姓名: 陈曦学号: 20075199指导教师: 赵建华

摘要 随着现代工业生产过程向着大型、连续和强化方向发展,对控制系统的控制品质提出了日益增长的要求。在这种情况下,简单的单回路控制已经难以满足一些复杂的控制要求。串级控制系统是过程控制中的一种多回路控制系统,是为了提高单回路控制系统的控制效果而提出来的一种控制方案。串级控制系统把两个单回路控制系统以一定的结构形式串联在一起,它不仅具有单回路控制系统的全部功能,而且还具有许多单回路控制系统所没有的优点。串级控制系统采用了两个调节器,因此它的调节器的参数整定更复杂一些。 本论文论述了一个液位——流量串级控制系统的设计方法和步骤,介绍了它的参数整定方法。在此过程中,介绍了对液位和流量进行检测和转换的常用元件,应用阶跃响应曲线推导了广义对象的传递函数,简单地论述了串级控制系统的优点,讨论了它对控制效果的改善作用,并使用仿真软件对该系统进行了仿真。 关键词 串级控制系统;液位;流量;仿真

Abstract Along with the modern industry production process to large-scale,continuously is developing with the strengthened direction,proposed to the control system control quality day by day grows request.In this kind of situation,the simple single return route control already with difficulty satisfied some complex control requests.The cascade control system is in the process control more than one kind of return routes control system,is for enhance one kind of control plan which the single return route control system the control effect proposes.The cascade control system two single return routes control system by the certain structural style connects in together,it not only has the single return route control system the complete function,moreover also has many single return routes control system no merit.The cascade control system has used two regulators,therefore it is more complex to set its regulator parameter. The present paper elaborated a fluid position—current capacity cascade control system design method and the step,introduced its parameter set method.In this process,introduced carries on the examination and the transformation commonly used part to the fluid position and the current capacity,has inferred the generalized object transfer function using the step leap response curve,simply elaborated the cascade control system merit,discussed it to control the effect the improvement function,and use simulation software has carried on the simulation to this system. Key words Cascade control system;fluid position;current capacity;simulation

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

控制系统设计与仿真实验报告

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 控制系统设计与仿真上机实验报告 学院:自动化学院 班级:自动化 姓名: 学号: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 一、第一次上机任务 1、熟悉matlab软件的运行环境,包括命令窗体,workspace等,熟悉绘图命令。 2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激

下响应的数值解。 2?,??n10?0.5,??(s)G n22?????2ss nn3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。 2?,,??5T?n100.5,???Gs)( n22???1)?s(?2s)(Ts?nn4、自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。 程序代码如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

;曲线如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 二、第二次上机任务 试用simulink方法解微分方程,并封装模块,输出为。得到各、1x i 状态变量的时间序列,以及相平面上的吸引子。 ?x?x??xx?3121? ??xx?x???322 ??xx?xx??x??32321参数入口为的值以及的初值。(其中,以及??????x28?10,?8/,,3,?i1模块输入是输出量的微分。)初值分别为提示:0.001xxx?0,?0,?312s:Simulink

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB 仿真与设计课后答 案

第二章 1>>x=[15 22 33 94 85 77 60] >>x(6) >>x([1 3 5]) >>x(4:end) >>x(find(x>70)) 2>>T=[1 -2 3 -4 2 -3] ; >>n=length(T); >>TT=T'; >>for k=n-1:-1:0 >>B(:,n-k)=TT.^k; >>end >>B >>test=vander(T) 3>>A=zeros(2,5); >>A(:)=-4:5 >>L=abs(A)>3 >>islogical(L) >>X=A(L) 4>>A=[4,15,-45,10,6;56,0,17,-45,0] >>find(A>=10&A<=20) 5>>p1=conv([1,0,2],conv([1,4],[1,1]));

>>p2=[1 0 1 1]; >>[q,r]=deconv(p1,p2); >>cq='商多项式为 '; cr='余多项式为 '; >>disp([cq,poly2str(q,'s')]),disp([cr,poly2str(r,'s')]) 6>>A=[11 12 13;14 15 16;17 18 19]; >>PA=poly(A) >>PPA=poly2str(PA,'s') 第三章 1>>n=(-10:10)'; >>y=abs(n); >>plot(n,y,'r.','MarkerSize',20) >>axis equal >>grid on >>xlabel('n') 2>>x=0:pi/100:2*pi; >>y=2*exp(-0.5*x).*sin(2*pi*x); >>plot(x,y),grid on; 3>>t=0:pi/50:2*pi; >>x=8*cos(t); >>y=4*sqrt(2)*sin(t); >>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p');

matlab控制系统仿真.

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称龙蟠学院 专业自动化 班级M10自动化 学生姓名 学号 课程设计地点 C208 课程设计学时一周 指导教师应明峰 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统PID控制器取参数分别为:50 2 5 有积分作用单回路控制系统PID控制器取参数分别为:50 0 5

大比例作用单回路控制系统PID控制器取参数分别为:50 0 0 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

什么叫串级控制系统

1.什么叫串级控制系统?画出一般串级控制系统的典型方块图。 答:串级控制系统是由其结构上的特征而得名的。它是由主、副两个控制器串接工作的。 主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。 2.串级控制系统有哪些特点?主要使用在哪些场合? 答串级控制系统的主要特点为: (1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统; (2)系统的目的在于通过设置副变量来提高对主变量的控制质量} (3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响; (4)系统对负荷改变时有一定的自适应能力。 串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。 3.串级控制系统中主、剧变量应如何选择? 答主变量的选择原则与简单控制系统中被控变量的选择原则是一样的。 副变量的选择原则是:. (1)主、副变量间应有一定的内在联系,副变量的变化应在很大程度上能影响主变量的变化; (2)通过对副变量的选择,使所构成的副回路能包含系统的主要干扰; (3)在可能的情况下,应使副回路包含更多的主要干扰,但副变量又不能离主变量太近; (4)副变量的选择应考虑到主、副对象时间常数的匹配,以防“共振”的发生 4.为什么说串级控制系统中的主回路是定值控制系统,而副回路是随动控制系统? 答串级控制系统的目的是为了更好地稳定主变量,使之等于给定值,而主变量就是主回路的输出,所以说主回路是定值控制系统。副回路的输出是副变量,副回路的给定值是主控制器的输出,所以在串级控制系统中,副变量不是要求不变的,而是要求随主控制器的输出变化而变化,因此是一个随动控制系统。 5.怎样选择串级控制系统中主、副控制器的控制规律?

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

自动控制原理及系统仿真课程设计

自动控制原理及系统仿 真课程设计 学号:1030620227 姓名:李斌 指导老师:胡开明 学院:机械与电子工程学院

2013年11月

目录 一、设计要求 (1) 二、设计报告的要求 (1) 三、题目及要求 (1) (一)自动控制仿真训练 (1) (二)控制方法训练 (19) (三)控制系统的设计 (23) 四、心得体会 (27) 五、参考文献 (28)

自动控制原理及系统仿真课程设计 一:设计要求: 1、 完成给定题目中,要求完成题目的仿真调试,给出仿真程序和图形。 2、 自觉按规定时间进入实验室,做到不迟到,不早退,因事要请假。严格遵守实验室各项规章制度,实验期间保持实验室安静,不得大声喧哗,不得围坐在一起谈与课程设计无关的空话,若违规,则酌情扣分。 3、 课程设计是考查动手能力的基本平台,要求独立设计操作,指导老师只检查运行结果,原则上不对中途故障进行排查。 4、 加大考查力度,每个时间段均进行考勤,计入考勤分数,按照运行的要求给出操作分数。每个人均要全程参与设计,若有1/3时间不到或没有任何运行结果,视为不合格。 二:设计报告的要求: 1.理论分析与设计 2.题目的仿真调试,包括源程序和仿真图形。 3.设计中的心得体会及建议。 三:题目及要求 一)自动控制仿真训练 1.已知两个传递函数分别为:s s x G s x G +=+= 22132)(,131)(

①在MATLAB中分别用传递函数、零极点、和状态空间法表示; MATLAB代码: num=[1] den=[3 1] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) num=[2] den=[3 1 0] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) 仿真结果: num =2 den =3 1 0 Transfer function: 2 --------- 3 s^2 + s

串级调速系统的仿真与设计(可编辑修改word版)

湖南科技大学 信息与电气工程学院 《课程设计报告》 题目:串级调速系统的仿真与设计 专业:电气工程及其自动化 班级:电气三班 姓名: 学号: 指导教师:吴新开

一、串级调速原理 绕线转子异步电动机用转子串接电阻、分段切换可进行调速,此法调速性能与节能性能都很差。采用转子回路引入附加电动势,从而实现电动机调速的方法称为串级调速。晶闸管串级调速是异步电动机节能控制广泛采用的一项技术,目前国内外许多著名电气公司均生产串级调速系列产品。串级调速的工作原理是利用三相整流将电动机转子电动势变换为直流,经滤波通过有源逆变电路再变换为三相工频交流返送回电网。 为引入转子电路的反电动势,串级调速主电路如图 1-1 所示,逆变电压 U β 是转子整流后改变逆变角β即可以改变反电动势大小,达到改变转速的目的。U d 的直流电压,其值为。当电动机转速稳定,忽略直流回路电阻时,与逆变电压 Uβ大小相等方向相反。当逆变变压器 T1 二次线电压则整流电压 U d 时,则 为U 2l 所以 上式说明,改变逆变角β的大小即可以改变电动机的转差率,实现调速。 通常电动机转速越低返回电网的能量越大,节能越显著,但调速范围过大将使装置的功率因数变差,逆变变压器和交流装置的容量增大,一次投资增高,过串级调速比宜定在 2:1 以下。 图1-1 串级调速主电路

二、调速过程 1. 起动 接通 KM1、KM2,利用频敏变电阻器起动电动机。当电动机起动后,断开 KM2 接通 KM3,电动机转入串级调速。 2. 调速 电动机稳定运行在某转速此时 U d = U β ,如β角增大则 U β 减少,使转子电流 瞬时增大,致使电动机转矩增大转速提高、使转差率 s 减少,当 U d 减少到 U β 相等 时,电动机稳定运行在较高的转速上;反之减少β的值则电动机的转速下降。3. 停车 先断开 KM1,延时断开 KM3,电动机停车。 三、参数计算 1. 电机选择 本设计选取三相异步电动机,调速范围为D= 20。三相异步电动机主要技术数据如下: 额定输出功率7.5KW;定子绕组额定线电压380V; 定子绕组额定相电流12A; 定子绕组每相电阻0.5 欧姆; 定子绕组接线形式Y;转子额定转速980rpm; 转子形式:鼠笼式;转子每相折算电阻:3 欧姆; 转子折算后额定电流30A;额定功率因数:0.75; 电机机电时间常数2S; 电枢允许过载系数1.5; 电网额定电压:380/220V; 电网电压波动10%; 环境温度:-40~+40 摄氏度;环境相对湿度:10~90%. 转差率:3%;调速范围:D=20; 电流超调量小于等 5%;空载起动到额定转速时的转速超调量小于等于 30%; 稳速精度:0.03.

控制系统建模、分析、设计和仿真

北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级:自动化四班 学号: 学生姓名: 指导教师: 2012年 6 月 9 日

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第2学期 学生姓名:专业班级: 指导教师:范杰工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为09xxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容 最少拍有波纹控制系统

[8号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取0.02秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 1、求被控对象传递函数G(s)的MATLAB 描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳定的要求。 (8分) 6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。(3分) 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。(8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际闭环系统稳 定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。(8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) ) 7)(5)(2()6)(1(879)(2+++++= s s s s s s s G

串级控制系统仿真

串级控制系统仿真 解题步骤: (1)串级控制系统的方框图: (2)单回路控制系统图: 图(2)为采用单回路控制时的Simulink图,其中,PID C1为单回路PID控制器,d1为一次扰动,取阶跃信号;d2为二次扰动,取阶跃信号;G o2为副对象,G o1为主对象;r为系统输入,取阶跃信号,它连接到示波器上,可以方便地观测输出。 在PID参数设置中,经过不断的试验,当输入比例系数为260,积分系数为0,微分系数为140时,系统阶跃响应达到比较满意的效果,系统阶跃响应如下图:

采用这套PID参数时,二次扰动作用下,置输入为0,系统框图如下。 系统的输出响应如下图:

采用这套PID参数时,一次扰动作用下,置输入为0,系统框图如下: 系统的输出响应如下

从综合以上各图可以看出,采用单回路控制,系统的阶跃响应达到要求时,系统对一次扰动,二次扰动的抑制效果不是很好。 图(1)是采用串级控制时的情况,d1为一次扰动,取阶跃信号;d2为二次扰动,取阶跃信号;PID C1为主控制器,采用PD控制,PID C2为副控制器,采用PID控制;Go2为副对象,Go1为主对象;r为系统输入,取阶跃信号;scope为系统输出,它连接到示波器上,可以方便地观测输出。 经过不断试验,当PID C1为主控制器输入比例系数为550,积分系数为0,微分系数为80时;当PID C2为主控制器输入比例系数为3,积分系数为0,微分系数为0时;系统阶跃响应达到比较满意的效果,系统阶跃响应如下图所示: 采用这套PID参数时,二次扰动作用下,置输入为0,系统的框图如下: 系统的输出响应如下图:

温度控制系统的设计与仿真..

远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: 2013 年 2 月 28 日

摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB

目录 1单片机在炉温控制系统中的运用 (3) 1、1系统的基本工作原理 (3) 2温控系统控制算法设计 (3) 2.1温度控制算法的比较 (3) 2.2数字PID算法 (6) 3 结论................................................ 错误!未定义书签。致谢 (17) 参考文献 (18)

相关文档
最新文档