30Role of Surface Interfacial Cu Sites in Nanocomposites

Role of Surface/Interfacial Cu2+Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites

Gonghu Li,?,§Nada M.Dimitrijevic,?Le Chen,?Tijana Rajh,?and Kimberly A.Gray*,?

Institute for Catalysis in Energy Processes,Department of Ci V il and En V ironmental Engineering,Northwestern

Uni V ersity,E V anston,Illinois60208,and Chemical Sciences and Engineering Di V ision,Center for Nanoscale

Materials,Argonne National Laboratory,Argonne,Illinois60439

Recei V ed:July31,2008;Re V ised Manuscript Recei V ed:September19,2008

Coupled CuO-TiO2nanocomposite photocatalysts were prepared by a deposition precipitation method and

were characterized with a variety of techniques.Electron paramagnetic resonance(EPR)spectroscopy was

employed to study the local structures of surface/interfacial Cu2+sites using Cu2+as a sensitive paramagnetic

probe.The addition of bulk CuO to TiO2led to decreased photocatalytic ef?ciency in the degradation of

methylene blue.However,doping with a very small amount of CuO(0.1wt%copper loading)signi?cantly

enhanced the photocatalytic activity of TiO2.EPR study of the TiO2surface revealed the presence of both

highly dispersed CuO clusters and substitutional Cu2+sites(Ti-O-Cu linkages)at0.1wt%copper loading.

The data suggest that the Ti-O-Cu linkages contributed to the improved photooxidative activity of the

0.1%CuO-TiO2nanocomposite.In contrast,at higher loadings the bulk form of CuO created charge

recombination centers lowering the photoactivity of the composites.

1.Introduction

The photoactivation of wide-band semiconductors has been

and continues to be extensively investigated due to their many

applications including environmental photocatalysis and solar

energy conversion.1-5Titania-based nanocomposites exhibit

enhanced photocatalytic properties that arise,in part,from the

interaction between different crystallites and/or electronic

coupling between TiO2and the other phase.6,7For example,

noble metals such as Pt deposited on TiO2surface can act as

the sink for photoexcited electrons,hindering the recombination

of charge carriers(electrons and holes).8Interparticle transfer

of charge carriers contributes to the enhanced photocatalytic

ef?ciency of coupled semiconductors when the energies of

valence and conduction bands are properly matched.9,10

In addition to the energetic consideration,the attachment

(interfacial morphology)between phases represents another

essential factor in?uencing the photocatalytic activities of TiO2-

based nanocomposites.6In general,certain interfacial morphol-

ogies and crystal faces are required for considerable synergistic

effects to occur between two components.11For instance,Gray

and co-workers demonstrated that the existence of a particular

nanostructured morphology of interwoven rutile and anatase

crystallites promotes spatial charge separation and accounts for the improved photocatalytic activity of mixed-phase TiO2 materials such as Degussa P25.12-14In this study,we explore the role of surface/interfacial Cu2+sites in the photocatalytic activity of coupled CuO-TiO2nanocomposites.Since the band edges of TiO2bracket those of CuO(Figure1,inset),photo-excited charge carriers in TiO2may transfer to and ultimately recombine in CuO.In the absence of sacri?cial agents as electron or hole scavengers,the addition of bulk CuO to TiO2would lead to decreased photocatalytic ef?ciency.This was observed in the photocatalytic degradation of methylene blue (MB)under UV irradiation(Figure1).However,we discovered that doping TiO2with a very small amount of CuO(0.1wt% copper loading)signi?cantly increased the photocatalytic ef-?ciency of TiO2.

There usually exist optimal loadings for coupled semiconduc-tors as photocatalysts.For example,Slamet and co-workers studied the photocatalytic reduction of CO2on CuO-TiO2 nanocomposites;a composite photocatalyst with3wt%copper demonstrated the highest activity for methanol production by CO2reduction.16A“shading effect”,in which colored CuO absorbs light and reduces the photoexciting capacity of TiO2, was invoked to explain the detrimental effect of Cu doping

*To whom correspondence should be addressed.Phone:(+1)847 4674252.Fax:(+1)8474914011.E-mail:k-gray@https://www.360docs.net/doc/8014420354.html,.

?Northwestern University.

?Argonne National Laboratory.

§Current address:Department of Chemistry,Yale University,New Haven,CT

06520.

Figure1.First-order rate constants(k in min-1)as measured by

methylene blue degradation under UV irradiation.Synthesized

CuO-TiO2nanocomposites with different copper loadings were used

as the photocatalysts.Inset:a schematic diagram showing the photo-

induced charge separation(e-in conduction band and h+in valence

band)in TiO2,charge transfer from TiO2to CuO and subsequent charge

recombination in CuO(dotted arrow).The difference between the

conduction band edges of TiO2and CuO is estimated to be0.75eV.15 J.Phys.Chem.C2008,112,19040–19044

19040

10.1021/jp8068392CCC:$40.75 2008American Chemical Society

Published on Web11/08/2008

beyond the optimum.16Tseng and co-workers demonstrated that 2wt %was the optimal loading for copper-doped TiO 2photocatalysts.17,18Since electron paramagnetic resonance (EPR)spectroscopy is a highly sensitive tool for studying paramagnetic transition metal ions,19in this study we investigate the local structures of surface/interfacial Cu 2+sites using EPR and explain the enhancement in the photocatalytic properties of the 0.1%CuO -TiO 2nanocomposite.This study also represents an example of our recent attempts to screen TiO 2-based nanocom-posites which have optimized interfacial morphologies and potential energy applications.2.Experimental Methods

Materials Synthesis.Rutile TiO 2nanocrystals were synthe-sized via a low-temperature hydrothermal method.20Prior to the hydrothermal process,10mL of titanium (IV)chloride (TiCl 4,Sigma-Aldrich,99.9%)were hydrolyzed in 100mL of Milli-Q water,forming a clear solution after stirring at room temperature for 90min.The clear solution was then transferred to a 250mL ?ask and was re?uxed at 373K for 22h.The obtained TiO 2nanocrystals were washed with water and mixed with a speci?c amount of Cu(NH 3)42+ions prepared from cupric sulfate (CuSO 4·5H 2O,Mallinckrodt Chemicals,98%)and ammonium hydroxide (NH 4OH,Fisher Scienti?c).The mixture was stirred at 293K for 30min prior to the addition of a solution of 2%hydrogen peroxide (H 2O 2,Mallinckrodt Chemicals).The resulting suspension was further stirred for 30min,leading to the deposition of Cu(0)on TiO 2nanocrystals according to the following reaction.21

Cu(NH 3)42++H 2O 2+2OH -f Cu +O 2+4NH 3+2H 2O

(1)

The synthesized TiO 2nanocrystals were separated from the

suspension by centrifugation,washed with water,and dried at 353K.Cu(0)deposited on TiO 2was further oxidized to Cu(II)by sintering at 773K in air for 4h (ramp rate 5K/min).The synthesized nanocomposites are denoted as x %CuO -TiO 2where x stands for the weight fraction of copper on TiO 2.The loading of copper (0.1,0.5,1,2,and 4wt %)was controlled by the amount of Cu(NH 3)42+ions used during the synthesis process.Following the same procedure,a pure TiO 2sample (Rutile TiO 2)was also prepared without the use of cupric sulfate.Materials Characterization.The BET surface areas of synthesized materials were measured with an Autosorb 1-MP from Quantachrom Instruments.The X-ray diffraction (XRD)patterns of powder samples were recorded on a Rigaku XDS 2000diffractometer using nickel-?ltered Cu K R radiation (λ)1.5418?)over the range of 20°<2θ<60°.A Hitachi S-4500SEM equipped with a cold ?eld emission electron gun was used to examine the synthesized nanocomposites.The optical spectra of the nanocomposites were recorded with a diffuse re?ectance

attachment on a Cary 1E UV -visible spectrophotometer.The chemical states of Ti and Cu were examined using an X-ray photoelectron spectrometer on an Omicron ESCA Probe.EPR spectra were collected on a Bruker Elexys E580spectrometer equipped with a helium cryostat.In EPR studies,samples dispersed in Milli-Q water were purged with argon,cooled to 4.5K,and illuminated within the cavity at that temperature while spectra were acquired.A 300W xenon lamp (ILC Inc.)was used as the light source for EPR studies.For visible light experiments,the lamp was ?ltered by a Schott 400nm long-pass ?lter.The g tensor values were calibrated for homogeneity and accuracy by comparing to a coal standard (g )2.00285(0.00005).

Photocatalytic Testing.The photodegradation of methylene blue (MB)was carried out in a batch reactor,in which 30mg of photocatalyst were mixed with a 100mL solution of 5mg/L MB (Merck,USP).The slurry was stirred in the dark for 10min and then subject to UV irradiation provided by a 100W mercury spot lamp (UVP Inc.),which has a strong emission peak at 366nm.The photon ?ux at the solution surface was measured to be 150μM/m 2·s.For visible light experiments,the slurry was covered with a long-pass ?lter (Edmund Industrial Optics,Absorbance is 0.96at 398nm);an ordinary incandescent lamp was used as the visible light source,providing irradiance with an intensity of 75W m 2and a peak wavelength around 520nm.22Every 5min the reaction solution was sampled and separated from the photocatalyst using a GHP Acrodisc 13mm syringe ?lter (Pall).The absorbance of MB at 660nm was monitored using a Hitachi U-2000UV -visible spectrophotom-eter.According to Beer’s law,the concentration of MB is proportional to its absorbance at 660nm.First-order rate constants (k )were obtained by ?tting the data obtained in MB degradation to the following equation,

ln(C t /C 0))-kt

(2)

where C 0and C t represent the concentrations of MB in the beginning of photodegradation and at reaction time t ,respectively.3.Results and Discussion

Characterization of CuO -TiO 2Nanocomposites.During the hydrolysis of TiCl 4as the titanium precursor,a large amount of hydrochloric acid was generated in the solution.Subsequent hydrothermal synthesis under the acidic condition resulted in the formation of pure-phase rutile nanocrystals,as determined by XRD.20In this study,the synthesis of rutile nanocrystals did not involve the use of any organic solvent.The deposition of copper did not affect the primary morphology or aggregation state of synthesized TiO 2nanocrystals to any appreciable extent,nor did the crystal phase of TiO 2nanocrystals change with loading copper by the deposition precipitation method.Figure 2shows the typical SEM images of 4%CuO -TiO 2.

Upon

Figure 2.Electron micrographs of 4%CuO -TiO 2at different magni?cation.Scale bars are (a)2μm,(b)500nm,and (c)200nm.

Surface/Interfacial Cu 2+Sites in CuO -TiO 2Nanocomposites J.Phys.Chem.C,Vol.112,No.48,200819041

drying at 353K and sintering at 773K,most of the rutile nanocrystals formed spherical,micron-sized aggregates.These aggregates are composed of mostly rodlike,individual rutile nanocrystals.

Doping with CuO increased the surface areas of synthesized TiO 2nanoparticles.The speci?c surface areas were 22.6,23.7,25.9,and 33.8m 2/g for 0%(pure TiO 2),0.1%,0.5%,and 4%CuO -TiO 2,respectively.However,the formation of CuO could not be detected,even at the highest copper loading (4wt %),with XRD or SEM.Rather,the existence and identity of copper species in the synthesized nanocomposites was investigated with more sensitive techniques,including UV -visible,XPS,and EPR spectroscopies.Doping with transition metal ions usually extends the optical absorptions of TiO 2materials into the visible light region.23Figure 3shows the optical spectra of synthesized TiO 2nanocomposites.It can be inferred from the spectra that the Rutile TiO 2has a bandgap (E bg )around 3.1eV.The copper-loaded TiO 2nanocomposites have photoresponses between 2.2and 3.1eV,which grows as the copper loading increases from 0.1to 4wt %.The optical spectra shown in Figure 3indicate the existence of CuO (E bg )1.7eV)or Cu 2O (E bg )2.2eV)in the synthesized nanocomposites.15

XPS of CuO -TiO 2Nanocomposites.XPS was utilized to analyze the chemical states of Cu and Ti in the synthesized nanocomposites.The core level XPS peaks of Cu 2p and Ti 2p are shown in Figure 4.The Cu 2p 3/2transition with a binding energy around 933.8eV is seen for the nanocomposites with copper loadings greater than 0.5%(Figure 4).This and the

shakeup satellite peak around 942.3eV clearly indicate the existence of fully oxidized CuO.24-27

The peak intensity of the Cu 2p 3/2transition becomes greater as the copper loading increases from 0.5to 4wt %(Figure 4).This is consistent with the presence of copper species that accounts for the signi?cant photoresponse of CuO -TiO 2nanocomposites below 3.1eV (Figure 3).It should be noted that this Cu 2p 3/2transition shifts to lower binding energies as the copper loading decreases.This indicates that the Cu 2+ions exist in a more dispersed state at lower copper loadings since highly dispersed Cu 2+species have lower binding energies than bulk Cu 2+in CuO.26,27

Although a discernible Cu 2p 3/2peak is absent from the XPS spectrum of 0.1%CuO -TiO 2,the existence of copper species in the nanocomposite can be derived from its Ti 2p XPS spectrum.As shown in Figure 4,the Ti 2p 3/2transition with a binding energy at 458.8eV for 0.1%CuO -TiO 2is much broader than that for the Rutile TiO 2.The peak broadening,which is due to the existence of multiple Ti species and strong electronic interaction between Cu and Ti in the nanocompos-ites,28is more signi?cant at higher copper loadings.The broad shoulder with binding energies lower than 458.8eV indicates the existence of Ti in oxidation states lower than 4+.29-31

EPR Spectroscopy of CuO -TiO 2Nanocomposites.The EPR spectra of CuO -TiO 2nanocomposites are presented in Figure 5.In the spectra corresponding to lower concentrations of a CuO (e 0.5%)hyper?ne structure due to I )3/2of Cu 2+ion can be seen.As the CuO concentration increases,the long-range dipolar interactions between Cu 2+ions in CuO clusters cause broadening of spectral lines which results in diminished appearance of the anisotropic hyper?ne structure.32-35From the spectrum of 0.1%CuO -TiO 2it is evident that there are at least two Cu 2+species with the values for parallel components of g |)2.33and g |)2.24,both having A |≈100G

hyper?ne

Figure 3.Optical spectra of CuO -TiO 2nanocomposites with different copper loadings (from right to left:Rutile,0.1%,0.5%,1%,2%,and 4%CuO -TiO 2,respectively).The y axis is expressed in Kubelka -Munk unit (R ,

re?ectance).

Figure 4.Cu 2p and Ti 2p XPS spectra of CuO -TiO 2nanocomposites with different copper loadings (Sat.,shakeup satellite

peak).

Figure 5.Normalized X-band EPR spectra of CuO -TiO 2nanocom-posites with different copper loadings.The spectra were recorded in dark at 4.5K (modulation amplitude 10G,power 0.003mW).In the spectrum of 0.1%CuO -TiO 2,a sharp resonance (g )2.005)is denoted with asterisk and is assigned to oxygen vacancies.

19042J.Phys.Chem.C,Vol.112,No.48,2008Li et al.

splitting.The value for the normal component of g-tensor is found to be g⊥)2.07and cannot be resolved for the two Cu2+ ions present in the nanocomposite.In both cases the values of g|and g⊥satisfy the relation g|>g⊥>g e) 2.0023(g e represents the g-factor for a free electron)indicating that the Cu2+ions are coordinated by six ligand atoms in an axially distorted octahedron.

The component having resonance parameters g|)2.33and g⊥)2.07can be assigned to Cu2+ions at substitutional cation sites of TiO2.The g values of this copper species suggest the existence of Cu2+occupying sites vacated by lattice Ti4+ ions.36,37We propose that due to the thermal treatment at773 K in our synthesis procedure some of the Cu2+ions replaced surface Ti4+sites.In the matrix of TiO2network,the substitution of one tetravalent Ti site with one divalent copper ion causes a charge imbalance.For charge compensation to occur,the formation of oxygen defects should accompany this substitution.

A sharp resonance signal(denoted with asterisk in Figure5) with g)2.005is associated with oxygen vacancies.The same signals due to the formation of oxygen vacancies and/or O2-sited on surface oxygen vacancies are observed upon heat

treatment of copper complexes in the matrix of silicate glasses or on the surfaces of SnO2.38,39

The second component with resonance parameters g|)2.24 and g⊥)2.07corresponds to the Cu2+ions in CuO clusters.32 As the CuO content rises,the number of isolated clusters and/ or the size of CuO clusters increases,resulting in more poorly de?ned hyper?ne resolution.At the same time,the effect of dipolar interaction increases,as well as the ligand?eld?uctu-ates,both contributing to the broadening of individual lines. The illumination of CuO-TiO2nanocomposites with either visible light only or UV/visible light led to the decrease of Cu2+ signal,as observed by EPR for all samples with various copper loadings.Since CuO is a p-type semiconductor(bandgap1.7 eV),15the decrease in intensity for the Cu2+signal upon illumination is due to the trapping of photoexcited electrons in Cu2+sites,forming EPR silent Cu+sites.It is noteworthy that the synthesized CuO-TiO2nanocomposites did not demonstrate appreciable photocatalytic activity in MB degradation under visible light irradiation,although photoinitiated charge formation and separation was observed for CuO,a narrow band semicon-ductor.This indicates that the CuO phase in the synthesized nanocomposites was not photocatalytically active in the deg-radation of MB.

Furthermore,the conduction band edge for CuO is more positive than that of TiO2(Figure1,inset);photoexcited electrons in TiO2upon UV excitation may transfer to CuO resulting in the reduction of Cu2+to Cu+and subsequently the decrease of Cu2+EPR resonance signal.After turning off the illumination,the Cu2+EPR signal quickly recovered in dark, indicating fast charge recombination in CuO.However,il-lumination of the0.1%CuO-TiO2nanocomposite results in, at least partial,trapping of electrons in TiO2lattice,as observed by EPR spectroscopy.Figure6presents typical spectra of0.1% CuO-TiO2.The resonance peak with g)1.975corresponds to the photogenerated electrons localized at Ti sites in the bulk of a rutile lattice,(Ti3+)latt.40,41The accompanying decrease in a signal with g) 2.005suggests localization of holes at interfacial TiO2-CuO sites.At higher copper loadings(g0.5 wt%in this study),no photogenerated electrons were observed at rutile lattice trapping sites.One may explain this by the “shading effect”,in which colored CuO absorbs light and reduces the photoexcitation capacity of TiO2.16In our opinion, effective electron transfer from the conduction band of TiO2to CuO led to the absence of Ti3+(trapped electrons)in CuO-TiO2 at high CuO loadings.Such interfacial electron transfer is plausible considering the strong electronic interaction between CuO and TiO2in close proximity,as demonstrated by the XPS results shown in Figure4.At a very low copper loading(0.1 wt%in this study),the quantity of CuO is insuf?cient for the complete scavenge of photoexcited electrons in TiO2to occur. In addition,CuO species exist as highly dispersed clusters in 0.1%CuO-TiO2.Charge transfer kinetics between TiO2and such highly dispersed CuO clusters may differ signi?cantly from those between TiO2and bulk CuO nanocrystallites. Interfacial Sites in CuO-TiO2Nanocomposites.Single-site photocatalytic solids with well-de?ned,spatially separated active centers have shown great promise for applications including environmental abatement and solar fuel generation.42 Open-structure solids such as mesoporous silica and zeolites are the most common supports for active photocatalysts.For example,tetrahedrally coordinated Ti sites,which demonstrated excellent photocatalytic activity for NO decomposition and CO2 reduction,42were usually prepared in con?ned environments such as zeolite pores or dispersed onto silica substrates. Interfacial Ti-O-Si linkages have been shown to play an important role in altering the catalytic properties of TiO2-SiO2binary oxides.43-46In the pioneering work by Frei and co-workers,binuclear metal-to-metal charge transfer moieties such as Ti-O-Cu and Zr-O-Cu were assembled in meso-porous silicate sieve as active sites for solar fuel applications.47,48 Hashimoto and co-workers assembled Ti-O-Ce bimetallic moieties in mesoporous silica which operated as photocatalysts under visible light illumination.49Recently,the same group designed and fabricated visible light photocatalysts by grafting Cu(II)on the surfaces of TiO2and WO3particles.50

It is hypothesized that the solid-solid interface is a key structural feature that facilitates charge separation and enhances photocatalytic ef?ciency,and may be the locus of photocatalytic “hot spots”.6Previously,we have demonstrated that highly photoactive,tetrahedrally coordinated Ti sites can be prepared in the interfacial region between anatase and rutile in mixed-phase TiO2nanocomposites.14As highly active centers,the interfacial Ti sites in mixed-phase TiO2provided additional adsorption sites which induced the formation of charge-transfer complexes.51,52In this present study,we show that interfacial Ti-O-Cu linkages exist in a CuO-TiO2nanocomposite

with Figure6.EPR spectra of0.1%CuO-TiO2acquired in dark(gray line)and under continuous UV/visible light illumination(blue line). Inset:EPR signatures of electron trapping sites(g)1.975)in Rutile TiO2,0.1%CuO-TiO2,and0.5%CuO-TiO2.The EPR signatures of electron trapping sites were obtained by subtracting the EPR spectra in dark from the corresponding spectra under continuous UV/visible light illumination.

Surface/Interfacial Cu2+Sites in CuO-TiO2Nanocomposites J.Phys.Chem.C,Vol.112,No.48,200819043

a very low copper loading which demonstrated enhanced photocatalytic activity.Substitutional Cu2+sites,which exist as interfacial Ti-O-Cu linkages and are characterized by the resonances at g|)2.33and g⊥)2.07in the EPR spectrum shown in Figure5,may be the active sites responsible for the improved photoactivity of0.1%CuO-TiO2relative to pure TiO2nanoparticles.One possible mechanism for the improved photocatalytic activity,in our opinion,is that the surface/ interfacial Cu2+sites in the0.1%CuO-TiO2nanocomposite function as unique adsorption sites for MB and facilitate the subsequent photocatalytic degradation.The degree of electronic interactions between semiconductor surface and the reactant molecules is considered as a critical factor in a“Direct-Indirect”model to explain the kinetics of photocatalytic processes.53

4.Conclusions

A series of photoactive CuO-TiO2nanocomposites were prepared via a deposition precipitation method as coupled semiconductors bearing strong electronic interaction between the two phases.Since the band edges of TiO2bracket those of CuO,coupling between CuO and TiO2led to decreased photocatalytic ef?ciency due to the charge transfer from TiO2 to CuO and subsequent charge recombination.Surprisingly,a CuO-TiO2nanocomposite with a very low copper loading(0.1 wt%)demonstrated improved photoactivity relative to pure TiO2.Studies by EPR spectroscopy revealed the presence of highly dispersed CuO clusters and substitutional Cu2+sites in the0.1%CuO-TiO2.The existence of such sites is believed to account for the enhanced photoactivity of this nanocomposite. The experimental results highlight the importance of interfacial morphology in the photocatalytic properties of TiO2-based nanocomposites.In addition,this study illustrates a new approach to improve the photoactivity of TiO2by controlled surface modi?cation using a narrower-band semiconductor, which in bulk form serves as a recombination center. Acknowledgment.The authors thank the U.S.Department of Energy(DE-FG02-03ER15457/A003and DE-AC02-06CH11357)for funding the research described in this paper, and Professor Joseph T.Hupp and Karen Mulfort of Chemistry Department at Northwestern University for their help on surface area measurements.Materials characterization was performed in MRSEC,NUANCE,and ASL at Northwestern University. References and Notes

(1)Chen,X.;Mao,S.S.Chem.Re V.2007,107,2891.

(2)Thompson,T.L.;Yates,J.T.,Jr.Chem.Re V.2006,106,4428.

(3)Carp,O.;Huisman,C.L.;Reller,A.Prog.Solid State Chem.2004, 32,33.

(4)Anpo,M.;Takeuchi,M.J.Catal.2003,216,505.

(5)Diebold,U.Surf.Sci.Rep.2003,48,53.

(6)Li,G.;Gray,K.A.Chem.Phys.2007,339,173.

(7)Rajeshwar,K.;de Tacconi,N.R.;Chenthamarakshan,C.R.Chem. Mater.2001,13,2765.

(8)Kamat,P.V.Pure Appl.Chem.2002,74,1693.

(9)Pichat,P.;Borgarello,E.;Disdier,J.;Herrmann,J.M.;Pelizzetti,

E.;Serpone,N.J.Chem.Soc.,Faraday Trans.11988,84,261.

(10)Serpone,N.;Maruthamuthu,P.;Pichat,P.;Pelizzetti,E.;Hidaka,

H.J.Photochem.Photobiol.A1995,85,247.

(11)Shimodaira,Y.;Kudo,A.;Kobayashi,H.Chem.Lett.2007,36, 170.

(12)Hurum,D.C.;Agrios,A.G.;Gray,K.A.;Rajh,T.;Thurnauer, M.C.J.Phys.Chem.B2003,107,4545.

(13)Hurum,D.C.;Agrios,A.G.;Crist,S.E.;Gray,K.A.;Rajh,T.; Thurnauer,M.C.J.Electron Spectrosc.Relat.Phenom.2006,150,155.

(14)Li,G.;Dimitrijevic,N.;Chen,L.;Nichols,J.;Rajh,T.;Gray,K.A. J.Am.Chem.Soc.2008,130,5402.

(15)Xu,Y.;Schoonen,M.A.A.Am.Mineral.2000,85,543.

(16)Slamet;Nasution,H.W.;Purnama,E.;Kosela,S.;Gunlazuardi,J. https://www.360docs.net/doc/8014420354.html,mun.2005,6,313.

(17)Tseng,I.H.;Chang,W.C.;Wu,J.C.S.Appl.Catal.B2002,37, 37.

(18)Tseng,I.H.;Wu,J.C.S.Catal.Today2004,97,113.

(19)Saponjic,Z.V.;Dimitrijevic,N.M.;Poluektov,O.G.;Chen,L.; Wasinger,E.;Welp,U.;Tiede,D.M.;Zuo,X.;Rajh,T.J.Phys.Chem.B 2006,110,25441.

(20)Li,G.;Gray,K.A.Chem.Mater.2007,19,1143.

(21)You,X.;Chen,F.;Zhang,J.;Anpo,M.Catal.Lett.2005,102, 247.

(22)Li,G.;Chen,L.;Dimitrijevic,N.;Gray,K.A.Chem.Phys.Lett. 2008,451,75.

(23)Kudo,A.;Niishiro,R.;Iwase,A.;Kato,H.Chem.Phys.2007,339, 104.

(24)Zhang,W.;Li,Y.;Zhu,S.;Wang,F.Catal.Today2004,93-95, 589.

(25)Xu,B.;Dong,L.;Chen,Y.J.Chem.Soc.,Faraday Trans.1998, 94,1905.

(26)Chary,K.V.R.;Sagar,G.V.;Srikanth,C.S.;Rao,V.V.J.Phys. Chem.B2007,111,543.

(27)Chary,K.V.R.;Sagar,G.V.;Naresh,D.;Seela,K.K.;Sridhar,

B.J.Phys.Chem.B2005,109,9437.

(28)Reddy,B.M.;Sreekanth,P.M.;Yamada,Y.;Xu,Q.;Kobayashi, T.Appl.Catal.A2002,228,269.

(29)Sykes,E.C.H.;Tikhov,M.S.;Lambert,R.M.J.Phys.Chem.B 2002,106,7290.

(30)Abad,J.;Rogero,C.;Mendez,J.;Lopez,M.F.;Martin-Gago,J.A.; Roman,E.Surf.Sci.2006,600,2696.

(31)Xia,J.;Masaki,N.;Jiang,K.;Yanagida,S.J.Phys.Chem.B2006, 110,25222.

(32)Ardelean,I.;Peteanu,M.;Ciceo-Lucacel,R.;Bratu,I.J.Mater. Sci.:Mater.Electron.2000,11,11.

(33)Sreenivasu,D.;Chandramouli,V.Bull.Mater.Sci.2000,23,281.

(34)Ciorcas,F.;Mendiratta,S.K.;Ardelean,I.;Valente,M.A.Eur. Phys.J.2001,20,235.

(35)Martinez-Arias,A.;Fernandez-Garcia,M.;Soria,J.;Conesa,J.C. J.Catal.1999,182,367.

(36)Gerritsen,H.J.;Sabisky,E.S.Phys.Re V.1962,125,1853.

(37)Amorelli,A.;Evans,J.C.;Rowlands,C.C.J.Chem.Soc.,Faraday Trans.11989,85,4111.

(38)Darab,J.G.;MacCrone,R.K.Phys.Chem.Glasses1991,32,91.

(39)Harrison,P.G.;Bailey,C.;Daniell,W.;Zhao,D.D.;Ball,I.K.; Goldfarb,D.;Lloyd,N.C.;Azelee,W.Chem.Mater.1999,11,3643.

(40)Hurum,D.C.;Gray,K.A.;Rajh,T.;Thurnauer,M.C.J.Phys. Chem.B2004,108,16483.

(41)Hurum,D.C.;Gray,K.A.;Rajh,T.;Thurnauer,M.C.J.Phys. Chem.B2005,109,977.

(42)Anpo,M.;Thomas John,https://www.360docs.net/doc/8014420354.html,mun.2006,3273.

(43)Arai,Y.;Tanaka,K.;Khlaifat,A.L.J.Mol.Catal.A2006,243, 85.

(44)Notari,B.;Willey,R.J.;Panizza,M.;Busca,G.Catal.Today2006, 116,99.

(45)Gartner,M.;Dremov,V.;Muller,P.;Kisch,H.ChemPhysChem 2005,6,714.

(46)Puzenat,E.;Pichat,P.J.Photochem.Photobiol.A2003,160,127–133.

(47)Lin,W.;Frei,H.J.Am.Chem.Soc.2005,127,1610.

(48)Lin,W.;Frei,H.J.Phys.Chem.B2005,109,4929.

(49)Nakamura,R.;Okamoto,A.;Osawa,H.;Irie,H.;Hashimoto,K. J.Am.Chem.Soc.2007,129,9596.

(50)Irie,H.;Miura,S.;Kamiya,K.;Hashimoto,K.Chem.Phys.Lett. 2008,457,202.

(51)Agrios,A.G.;Gray,K.A.;Weitz,https://www.360docs.net/doc/8014420354.html,ngmuir2003,19,1402.

(52)Agrios,A.G.;Gray,K.A.;Weitz,https://www.360docs.net/doc/8014420354.html,ngmuir2004,20,5911.

(53)Monllor-Satoca,D.;Gomez,R.;Gonzalez-Hidalgo,M.;Salvador, P.Catal.Today2007,129,247.

JP8068392

19044J.Phys.Chem.C,Vol.112,No.48,2008Li et al.

【操作系统】Windows XP sp3 VOL 微软官方原版XP镜像

操作系统】Windows XP sp3 VOL 微软官方原版XP镜像◆ 相关介绍: 这是微软官方发布的,正版Windows XP sp3系统。 VOL是Volume Licensing for Organizations 的简称,中文即“团体批量许可证”。根据这个许可,当企业或者政府需要大量购买微软操作系统时可以获得优惠。这种产品的光盘卷标带有"VOL"字样,就取 "Volume"前3个字母,以表明是批量。这种版本根据购买数量等又细分为“开放式许可证”(Open License)、“选择式许可证(Select License)”、“企业协议(Enterprise Agreement)”、“学术教育许可证(Academic Volume Licensing)”等5种版本。根据VOL计划规定, VOL产品是不需要激活的。 ◆ 特点: 1. 无须任何破解即可自行激活,100% 通过微软正版验证。 2. 微软官方原版XP镜像,系统更稳定可靠。 ◆ 与Ghost XP的不同: 1. Ghost XP是利用Ghost程序,系统还原安装的XP操作系统。 2. 该正版系统,安装难度比较大。建议对系统安装比较了解的人使用。 3. 因为是官方原版,因此系统无优化、精简和任何第三方软件。 4. 因为是官方原版,因此系统不附带主板芯片主、显卡、声卡等任何硬件驱动程序,需要用户自行安装。 5. 因为是官方原版,因此系统不附带微软后续发布的任何XP系统补丁文件,需要用户自行安装。 6. 安装过程需要有人看守,进行实时操作,无法像Ghost XP一样实现一键安装。 7. 原版系统的“我的文档”是在C盘根目录下。安装前请注意数据备份。 8. 系统安装结束后,相比于Ghost XP系统,开机时间可能稍慢。 9. 安装大约需要20分钟左右的时间。 10. 如果你喜欢Ghost XP系统的安装方式,那么不建议您安装该系统。 11. 请刻盘安装,该镜像用虚拟光驱安装可能出现失败。 12. 安装前,请先记录下安装密钥,以便安装过程中要求输入时措手不及,造成安装中断。 ◆ 系统信息:

Windows7 SP1官方原版下载

Windows7 SP1官方原版 以下所有版本都为Windows7 SP1官方原版,请大家放心下载! 32位与64位操作系统的选择:https://www.360docs.net/doc/8014420354.html,/Win7News/6394.html 最简单的硬盘安装方法:https://www.360docs.net/doc/8014420354.html,/thread-25503-1-1.html 推荐大家下载旗舰版,下载后将sources/ei.cfg删除即可安装所有版本,比如旗舰,专业,家庭版。 ============================================ Windows 7 SP1旗舰版中文版32位: 文件cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso SHA1:B92119F5B732ECE1C0850EDA30134536E18CCCE7 ISO/CRC:76101970 cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso.torrent(99.63 KB, 下载次数: 326189) Windows 7 SP1旗舰版中文版64位: 文件cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso SHA1: 2CE0B2DB34D76ED3F697CE148CB7594432405E23 ISO/CRC: 69F54CA4 cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso.torrent(128.17 KB, 下载次数: 197053)

Microsoft 微软官方原版(正版)系统大全

Microsoft 微软官方原版(正版)系统大全 微软原版Windows 98 Second Edition 简体中文版 https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16446&page=1&extra=#pid125031 微软原版Windows Me 简体中文版 https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16448&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows 2000 Professional 简体中文版 https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16447&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Professional SP3 简体中文版 https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16449&page=1&extra=#pid125073微软原版Windows XP Media Center Edition 2005 简体中文版 https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16451&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Tablet PC Edition 2005 简体中文版 https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16450&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(32位) https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16452&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(64位) https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16453&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(32位) https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16454&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(64位) https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16455&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows7 SP1 各版本下载地址: https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=12387&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(32位) https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16457&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(64位) https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16458&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 R2 S E D and Web 简体中文版(64位) https://www.360docs.net/doc/8014420354.html,/viewthread.php?tid=16459&highlight=%CE%A2%C8%ED%D4%AD %B0%E6

windows正版系统+正版密钥

精心整理正版Windows系统下载+正版密钥 2010-05-3011:49 喜欢正版Windows系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工 具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows98第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q WindowsMillenniumEdition(WindowME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows2000PROSP4(简体中文) SerialNumber:XPwithsp3VOL微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小:字节 MD5:D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32:FFFFFFFF 邮寄日期(UTC):5/2/200812:05:18XPprowithsp3VOL微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版)

windows系统官网原版下载

微软MSDN官方(简体)中文操作系统全下载 这不知是哪位大侠收集的,太全了,从DOS到Windows,从小型系统到大型系统,从桌面系统到专用服务器系统,从最初的Windows3.1到目前的Windows8,以及Windows2008,从16位到32位,再到64位系统,应有尽有。全部提供微软官方的校验文件,这些文件都可以在微软官方MSDN订阅中得到验证,完全正确! 下载链接电驴下载,可以使用用迅雷下载,建议还是使用电驴下载。你可以根据需要在下载链接那里找到你需要的文件进行下载!太强大了!!! 产品名称: Windows 3.1 (16-bit) 名称: Windows 3.1 (Simplified Chinese) 文件名: SC_Windows31.exe 文件大小: 8,472,384 SHA1: 65BC761CEFFD6280DA3F7677D6F3DDA2BAEC1E19 邮寄日期(UTC): 2001-03-06 19:19:00 ed2k://|file|SC_Windows31.exe|8472384|84037137FFF3932707F286EC852F2ABC|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.12 (Simplified Chinese) 文件名: SC_Windows32_12.exe 文件大小: 12,832,984 SHA1: 1D91AC9EB3CBC1F9C409CF891415BB71E8F594F7 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_12.exe|12832984|A76EB68E35CD62F8B40ECD3E6F5E213F|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.144 (Simplified Chinese) 文件名: SC_Windows32_144.exe 文件大小: 12,835,440 SHA1: 363C2A9B8CAA2CC6798DAA80CC9217EF237FDD10 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_144.exe|12835440|782F5AF8A1405D518C181F057FCC4287|/ 产品名称: Windows 98 名称: Windows 98 Second Edition (Simplified Chinese) 文件名: SC_WIN98SE.exe 文件大小: 278,540,368 SHA1: 9014AC7B67FC7697DEA597846F980DB9B3C43CD4 邮寄日期(UTC): 1999-11-04 00:45:00 ed2k://|file|SC_WIN98SE.exe|278540368|939909E688963174901F822123E55F7E|/ 产品名称: Windows Me 名称: Windows? Millennium Edition (Simplified Chinese) 文件名: SC_WINME.exe

Windows7官方个版本正版镜像下载地址

Windows7官方个版本正版镜像下载地址 简体中文旗舰版: 32位:下载地址:ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7A45E81B 76199DDCCDDC4B509|/ SHA1:B589336602E3B7E134E222ED47FC94938B04354F 64位:下载地址:ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA757CE6D2D B78B6901F81A6907A|/ SHA1:4A98A2F1ED794425674D04A37B70B9763522B0D4 简体中文专业版: 32位:下载地址:ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|e812fbe758f 05b485c5a858c22060785|h=S5RNBL5JL5NRC3YMLDWIO75YY3UP4ET5|/ SHA1:EBD595C3099CCF57C6FF53810F73339835CFBB9D 64位:下载地址:ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|3474800521d 169fbf3f5e527cd835156|h=TIYH37L3PBVMNCLT2EX5CSSEGXY6M47W|/ SHA1:5669A51195CD79D73CD18161D51E7E8D43DF53D1 简体中文家庭高级版: 32位:下载地址:ed2k://|file|cn_windows_7_home_premium_x86_dvd_x15-65717.iso|2604238848|98e1eb474f9 2343b06737f227665df1c|h=GZ7FZE7XURI5HNO2L7H45AGWNOLRLRUR|/ SHA1:CBA410DB30FA1561F874E1CC155E575F4A836B37 64位:下载地址:ed2k://|file|cn_windows_7_home_premium_x64_dvd_x15-65718.iso|3341268992|9f976045631 a6a2162abe32fc77c8acc|h=QQZ3UEERJOWWUEXOFTTLWD4JNL4YDLC6|/ SHA1:5566AB6F40B0689702F02DE15804BEB32832D6A6 简体中文企业版: 32位:下载地址:ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA74E5735 3B2F35BC33E56BD5202|/ SHA1:50F2900D293C8DF63A9D23125AFEEA7662FF9E54 64位:下载地址:ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF115C2EE 28D74B178BE1A84AB3B|/ SHA1:EE20DAF2CDEDD71C374E241340DEB651728A69C4

如何在windows下安装原版mac系统

windows下安装苹果教程。最详细,最全面,最值得看的教程! 最详细,最适合新手的教程:如何原版安装mac 从windows到mac os(安装黑苹果目前最详细教程) 最近网上有不少如何安装苹果系统的教程,个人感觉都不错,但是有些地方还是不够详细,所以我决定写一个比较详细的教程。鉴于网上有不少类似的教程,所以我的这个安装方法中有不少是借鉴和总结他们的,在此不一一提出,但是对这些作者表示感谢和崇高的敬意。本教程较长,不要因此以为苹果的安装比较复杂,其实我只是让每一步叙述的更加详细,提供更多的方法处理安装,还有就是加入了大量的图片。由于本教程过于详细,所以比较适合新手阅读。 安装之前要做好失败的心理准备,新手建议先备份重要数据到别的机器,预防数据丢失。要有足够的耐心和毅力,敢于不断尝试,不自己实践过永远不知道自己电脑是不是能够成功安装,安装成功后的成就感只有自己知道,另外完成安装过程也是学习电脑知识的过程,祝各位能安装顺利。 以下是详细过程: 安装之前的准备: ################################################### ##################### 硬盘安装原版mac(以10.6.3零售版为例) 以下工具或软件下载地址在4楼和5楼,4楼提供10.6.3零售版115网盘下载,5楼提供帖子中所涉及的大部分软件的115网盘下载,126楼提供本教程的pdf格式的下载

所要准备的软件等: ①原版苹果镜像,推荐Mac.OS.X.10.6.3.Retail.dmg ②推荐bootthink2.4.6版本,另外也可以用变色龙,个人喜欢用bootthink 引导,感觉方便。 ③winPE或者windows原版安装光盘(设置C盘为活动分区用),推荐winPE,winPE的详细制作过程及制作需要的软件(附下载地址)下面有,另外一般的Ghost安装盘上都会有winPE的。 ④硬盘安装助手 ⑤XP必备DiskGenius:硬盘分区工具 (windows7可不用该工具,系统自带磁盘管理) ⑥Mac.OS.X.10.6.3.Retail的替换文件: 替换文件是让苹果系统可以安装在MBR分区上,即windows的分区,有想拿出整块硬盘安装mac的可以不用替换,如何替换看以下的安装过程。不替换的缺点:需要另外找硬盘备份自己硬盘上的所有数据资料,因为硬盘由MBR 分区转变为GPT时会损失所有数据。 ⑦HFS Explorer和Java VM(Java JRE虚拟机),,先安装Java VM (Java JRE虚拟机),才能正常使用HFS Explorer。 ⑧Macdrive或是TransMac,安装了Macdrive可以不用TransMac。 ⑨AMD,intel Atom和Pentium单核的CPU需要准备替换对应的内核 主板不能开启AHCI的还需要补丁i系列的处理器(i3,i5,i7)还需要替换10.3.1以上内核,因为2010年4月

Windows7_各个版本原版系统下载

Windows7 各个版本原版系统下载 + Win7旗舰精简版下载 + Win7激活工具 2010-07-16 23:03:24 标签:旗舰精简版原版工具系统 原创作品,允许转载,转载时请务必以超链接形式标明文章原始出处、作者信息和本声明。否则将追究法律责任。https://www.360docs.net/doc/8014420354.html,/382661/351083 以下是Windows系统的原版中文镜像(可用Oem7激活,激活根据再最底下) Windows7旗舰版32 位ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7 A45E81B76199DDCCDDC4B509|/ Windows7旗舰版64 位ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA75 7CE6D2DB78B6901F81A6907A|/ Windows7企业版32 位ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA7 4E57353B2F35BC33E56BD5202|/ Windows7企业版64 位ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF1 15C2EE28D74B178BE1A84AB3B|/ Windows7专业版32 位ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|E812FB E758F05B485C5A858C22060785|/ Windows7专业版64 位ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|347480 0521D169FBF3F5E527CD835156|/

最全的微软msdn原版windows系统镜像和office下载地址集锦

最全的微软msdn原版windows系统镜像和office下载地址集锦 随着windows的发展,越来越多的人都热衷于微软的原版系统下载了,相比之前的版本比如winxp版本,windows vista/win7/win8/win8.1/后来的版本在安装方面也比较简单了,所以ghost系统正在渐渐的消失市场,即便如此,很多同学还是找不到微软原版的系统和office下载,今天亦是美网络特意归结了一下微软msdn原版系统和原版office各个版本的下载,希望对正在苦苦找寻原版系统的同学有所帮助。 说在前面的话: 1、本文提供的windows和office版本均为微软MSDN原版! 2、挑选系统版本,一般来说专业版(vol)更适合我们! 密钥获取:最新win8/8.1、office2013 key 密钥实时更新或请点击此处订阅网站内容,确认订阅后,激活方式将自动发送到您的邮箱当中!!! 以下地址建议使用迅雷下载(点击此处下载迅雷极速版) windows 10 技术预览版简体中文: 32位系统下载:

https://www.360docs.net/doc/8014420354.html,/W9TPI/FD54DF81A4CCF4511BA1445C606DDBA2/Wi ndowsTechnicalPreview-x86-ZH-CN.iso 64位系统下载:https://www.360docs.net/doc/8014420354.html,/W9TPI/FD54DF81A4CCF4511BA1445C606DDBA2/Wi ndowsTechnicalPreview-x64-ZH-CN.iso windows 8.1 Pro 专业版(VOL版)简体中文: 32位系统下载:ed2k://|file|cn_windows_8.1_professional_vl_with_update_x86_dvd_4048630.iso|308 6659584|41CAAB5DAC5643F6E0048576D609C19A|/ 64位系统下载:ed2k://|file|cn_windows_8.1_professional_vl_with_update_x64_dvd_4050293.iso|413 6626176|4D2363F9E06BFD50A78B1E6464702959|/ windows 8.1 Ent 企业版(VOL版)简体中文: 32位系统下载:ed2k://|file|cn_windows_8.1_enterprise_with_update_x86_dvd_4050277.iso|308994 4576|EEA035116570CFB1F6B6318559ED4A05|/ 64位系统下载:ed2k://|file|cn_windows_8.1_enterprise_with_update_x64_dvd_4048578.iso|414078 1568|8A3E13590D8A6EDF259574CB797FC75E|/

Windows软件正版、原版和盗版的区别

Windows软件正版、原版和盗版的区别 我们先了解一下什么是激活模块和激活码 激活模块是软件生产商为了保护知识产权对软件产品进行锁定的模块,主要是锁定软件的功能或使用期限等。 激活码是验证解锁这一激活模块的钥匙,可实现使用该软件的全部功能、使用权和提供官方的技术支持等。 什么是正版? 根据微软官方的释义,正版 Windows 是由 Microsoft 授权和发布的 Windows 副本,经过授权,由 Microsoft 或受信任伙伴提供支持, 我的解释是可以通过微软正版Windows软件网络验证的,或者微软正式授权的都可以叫正版。 但是这个正版的范围比较大,比如你买了一张盗版精简Windows7的光盘或者上网下载了各种修改版的系统,只要使用激活码成功在正版Windows软件中心通过了认证,这也可以叫做正版。 正版有什么好处? 使用 Windows 的正版副本能帮助你避免数据遭受盗版软件带来的安全威胁,它允许访问 Microsoft 及其合作伙伴提供的支持以及访问更新和下载,从而可以在电脑中获得最大收益。 正版主要是可以得到微软的技术支持。 什么是原版? 原版只的是微软官方发售的零售版光盘复制的副本,并不一定可以通过微软正版Windows软件网络验证。 为什么说不一定可通过正版验证呢?因为如果你安装时使用的激活码未能通过微软软件正版授权许可,或者被微软查封,那么这个系统就是盗版。原版软件只包含了软件本身,并不代表此软件成功安装后就可通过验证,它和激活码是两个概念 原版有什么好处? 原版软件保证了软件本身的性能安全及稳定,并且包含了全部功能及组件,并不存在恶意插件、流氓软件、病毒和木马等。

windows正版系统+正版密钥

正版Windows 系统下载+正版密钥 2010-05-30 11:49 喜欢正版Windows 系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows 98 第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q Windows Millennium Edition (Window ME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows 2000 PRO SP4(简体中文) SerialNumber: BCJTW-2M9JH-M8HHT-KWWWM-3444Y MD5:599d35359320db8c58c7f55da11d3458 Windows XP with sp3 VOL 微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小: 630237184 字节

MD5: E74D72F3D90456003E9E02BA0FB7DA61 SHA1: D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32: FFFFFFFF 邮寄日期(UTC):5/2/2008 12:05:18 AM 下载地址:ed2k://|file|zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070%20(E https://www.360docs.net/doc/8014420354.html,).iso|630237184|EC51916C9D9B8B931195EE0D6EE9B40E| Windows XP pro with sp3 VOL 微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版) MFBF7-2CK8B-93MDB-8MR7T-4QRCQ(北京政府版) T72KM-6GWBP-GX7TD-CXFT2-7WT2B(上海政府版) DG8FV-B9TKY-FRT9J-6CRCC-XPQ4G(上海政府版) BCJTW-2M9JH-M8HHT-KWWWM-3444Y(英文版) CD87T-HFP4C-V7X7H-8VY68-W7D7M(英文版) RFYPJ-BKXH2-26FWP-WB6MT-CYH2Y(英文版) 7HPVP-8VHPV-G7CQ3-BTK2R-TDRF3(英文版) DRXKM-94K47-38QVX-F8K7R-2H7CD(日文版) FCKGW-RHQQ2-YXRKT-8TG6W-2B7Q8(韩文版) VMXC2-M9HKH-DRYGC-FHQ7H-BJY33(0408版) CM3HY-26VYW-6JRYC-X66GX-JVY2D(可用) DP7CM-PD6MC-6BKXT-M8JJ6-RPXGJ(可用) F4297-RCWJP-P482C-YY23Y-XH8W3(可用) HCQ9D-TVCWX-X9QRG-J4B2Y-GR2TT(可用) M6TF9-8XQ2M-YQK9F-7TBB2-XGG88(可用) HH7VV-6P3G9-82TWK-QKJJ3-MXR96(可用) TDWGX-DMF97-BJYDQ-X9DJV-CYHWQ(可用) T8FMX-Q4HQJ-3JW77-JGPDC-FY9DG(可用) G6X78-XG4KV-3MXT7-FT8YM-F3YW3(可用) OEM版: 华硕: 家庭版: KR63J-B34MB-CVP9K-T478G-8Y3XG 联想: 家庭版: PWBPT-6PGKF-TP6MY-299P4-CPXQG (XXXXX-119-0001544-XXXXX) 专业版: FCDGH-QW3DJ-VBC6C-9BYTX-4GKQJ (XXXXX-119-0001553-XXXXX) VF4HT-MPWB8-TWV6R-K6QM4-W6JCM

Windows系统原版镜像下载地址

Win8.1下载地址 Windows 8.1 Pro VL (x86) - DVD (Chinese-Simplified) Win8.1简体中文专业版 32位文件名 cn_windows_8_1_pro_vl_x86_dvd_2972620.iso 大小2.84GB 下载地址: ed2k://|file|cn_windows_8_1_pro_vl_x86_dvd_2972620.iso|3049981952|5B396C3A0BA99 617647D9AFE8403AFA5|/ Windows 8.1 Pro VL (x64) - DVD (Chinese-Simplified)Win8.1简体中文专业版 64位文件名cn_windows_8_1_pro_vl_x64_dvd_2971907.iso 大小3.76GB 下载地址 ed2k://|file|cn_windows_8_1_pro_vl_x64_dvd_2971907.iso|4032598016|1FDA520B3E888 0E2FB00B20439E0826E|/ Windows 8.1 Enterprise (x86) - DVD (Chinese-Simplified)Win8.1简体中文企业版 32位 文件名cn_windows_8_1_enterprise_x86_dvd_2972257.iso 文件大小2.84GB 下载地址 ed2k://|file|cn_windows_8_1_enterprise_x86_dvd_2972257.iso|3050842112|6B60ABF82 82F943FE92327463920FB67|/ Windows 8.1 Enterprise (x64) - DVD (Chinese-Simplified)Win8.1简体中文企业版 64位 文件名cn_windows_8_1_enterprise_x64_dvd_2971863.iso 文件大小3.76GB 下载地址 ed2k://|file|cn_windows_8_1_enterprise_x64_dvd_2971863.iso|4039327744|08BAF1832 0B8FFC58D4C35BCC7A32012|/ 安装密钥 核心版 334NH-RXG76-64THK-C7CKG-D3VPT 专业版 XHQ8N-C3MCJ-RQXB6-WCHYG-C9WKB win10下载地址 Win10正式版32位简体中文版(含家庭版、专业版) ed2k://|file|cn_windows_10_multiple_editions_x86_dvd_6846431.iso|3233482752|B5C706594 F5DC697B2A098420C801112|/

安装Windows7原版系统教程

安装Windows7原版系统教程 一、需要的硬件:u盘一个(需要格式化)。 二、需要的软件: 1、下载windows ISO格式镜像文件。该文件可以看做是Windows系统的安装文件。 下载地址: ed2k://|file|cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso|2653276160|7503E 4B9B8738DFCB95872445C72AEFB|/ 2、去自己的电脑品牌官网下载电脑对应的有线和无线网卡驱动做为备用,因为新装的系统 是没有网卡驱动的,如果不提前下载下来会导致装完系统没法上网。 下载以后放到除了C盘意外的盘符或者u盘中备用。 3、下载winrar解压软件。 下载地址: https://www.360docs.net/doc/8014420354.html,/plus/download.php?open=2&id=8196&uhash=673c01a1f23336e96 033e2b2 下载以后放到除了C盘意外的盘符或者u盘中备用。 4、下载UltraISO并安装。 下载地址: https://www.360docs.net/doc/8014420354.html,/alading/anquan_soft_down_ub/11522 注册码用户名:王涛注册码:7C81-1689-4046-626F 如果注册码失效,自行百度一个可用的。 三、装系统的步骤 1、制作启动盘 1)打开ultraISO,选择文件,选择打开,选择之前下载的window7 ISO格式的镜像。如图: 2)把准备的u盘插入电脑,点击ultraISO的启动,点击写入硬盘映像。

弹出对话框里,选择你的u盘,点击写入。(写入过程u盘会全盘格式化,备份好有用的文件) 写入完成以后,你的u盘就是一个系统启动盘了。

微软MSDN官方原版windows8简体中文正式版(3264位)下载

微软MSDN官方原版windows8简体中文正式版(32/64位)下载 北京时间8月16日凌晨,微软如约 向MSDN付费用户提供了windows8 的下载(点击查看)。MSDN版微软 操作系统,一直是公认为“微软原版”, Jeff从来都是建议安装微软原版 windows8。windows8时代就此开启! 下面就分享微软MSDN官方原版 windows8简体中文正式版下载并提供相关文件信息: Windows 8 (包含专业版和Core版)MSDN官方原版简体中文(建议下载) 32位(x86): 文件名:cn_windows_8_x86_dvd_915414.iso SHA1:0C4A168E37E38EFB59E8844353B2535017CBC587 下载地址: ed2k://|file|cn_windows_8_x86_dvd_915414.iso|2679801856|9AF10141BFD61BC66D9D64597 58D7749|/ 附:安装密匙 Core版:BN3D2-R7TKB-3YPBD-8DRP2-27GG4 FB4WR-32NVD-4RW79-XQFWH-CYQG3 专业版: NG4HW-VH26C-733KW-K6F98-J8CK4 XKY4K-2NRWR-8F6P2-448RF-CRYQH 64位(x64): 文件名:cn_windows_8_x64_dvd_915407.iso SHA1:A87C4AA85D55CD83BAE9160560D1CB3319DD675C 下载地址: ed2k://|file|cn_windows_8_x64_dvd_915407.iso|3652950016|5C7F8C212BD3A1827866563773 A431C2|/ Windows 8 企业版((Eterprise)MSDN官方原版简体中文 32位(x86): 文件名:cn_windows_8_enterprise_x86_dvd_917682.iso SHA1:951565D8579C5912FB4A407B3B9F715FBDB77EFE 下载地址: ed2k://|file|cn_windows_8_enterprise_x86_dvd_917682.iso|2597502976|7B6541942A16EB54 BC81E84558DF09DF|/ 64位(x64): 文件名:cn_windows_8_enterprise_x64_dvd_917570.iso SHA1:1280BC3A38A7001FDE981FA2E465DEB341478667 下载地址: ed2k://|file|cn_windows_8_enterprise_x64_dvd_917570.iso|3560837120|8CAE8064C4B8F9CD 84941B4FF4A34722|/ Windows 8 批量授权版本(Pro VL )MSDN官方原版简体中文 32位(x86): 文件名:cn_windows_8_pro_vl_x86_dvd_917720.iso SHA1:EEEF3C3F6F05115C7F7C9C1D19D6A6A6418B5059

windows xp官方原版

1)近日,照牛排在野猪尖分享了雨林木风最后4个系统的下载地址,以及深度系统全系列MD5值及下载地址,喜欢雨林木风及深度的朋友,可以选择下载。尽管雨林木风和深度的系统经过优化会有一些优势,但毕竟是修改过的,有这样或那样的问题。我还是喜欢微软原版的系统,稳定。本文将分享微软原版Windows XP Pro With SP3 VOL MSDN简体中文专业版的下载地址、MD5值及序列号。 2)2008年5月2日,微软推出Windows XP Pro With SP3 VOL MSDN简体中文专业版,这是最经典也是我最喜爱的操作系统之一。我在MSDN(微软开发者网络)的网站上查到,Windows XP Pro With SP3 VOL MSDN简体中文版的全名叫Windows XP Professional with Service Pack 3 (x86) - CD VL (Chinese-Simplified),更详细的信息如下: 文件名: zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-740 70.iso 文件大小:601 MB (630,237,184 字节) 发布日期 (UTC):5/2/2008 12:05:18 AM 上次更新日期 (UTC):2/19/2010 11:36:41 AM SHA1:D142469D0C3953D8E4A6A490A58052EF52837F0F MD5:E74D72F3D90456003E9E02BA0FB7DA61 3)微软官方原版Windows XP Pro With SP3 VOL MSDN简体中文专业版的迅雷下载地址为: thunder://QUFodHRwOi8vc29mdC51c2Fpa2EuY24vJUU2JTkzJThEJUU0JUJEJTlDJUU 3JUIzJUJCJUU3JUJCJTlGL3dpbmRvd3MvV2luZG93c1hQL1ZMLUltYWdlL01TRE4vemgt aGFuc193aW5kb3dzX3hwX3Byb2Zlc3Npb25hbF93aXRoX3NlcnZpY2VfcGFja18zX3g4N l9jZF92bF94MTQtNzQwNzAuaXNvWlo 电驴下载地址为: ed2k://|file|zh-hans_windows_xp_professional_with_service_pack_3_x86_ cd_vl_x14-74070%20(https://www.360docs.net/doc/8014420354.html,).iso|630237184|EC51916C9D9B8B931195EE0D 6EE9B40E| 只要复制上面任何一个下载地址,并启动迅雷新建任务即可开始下载。这是一个ISO镜像文件,下载后,请用校验工具(点此下载)验证一下MD5值。你可以把镜像刻录到光盘,也可以解压后从硬盘安装。 4)至于微软原版Windows XP Pro With SP3 VOL MSDN简体中文专业版的序列号(CD-KEY,即密钥,俗称SN),我在用工行版的正版序列号: MRX3F-47B9T-2487J-KWKMF-RPWBY。你也可以尝试以下VOL版XP序列号: QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) HCQ9D-TVCWX-X9QRG-J4B2Y-GR2TT(https://www.360docs.net/doc/8014420354.html,) DP7CM-PD6MC-6BKXT-M8JJ6-RPXGJ CM3HY-26VYW-6JRYC-X66GX-JVY2D

相关文档
最新文档