FC、BGA、CSP三种封装技术。

FC、BGA、CSP三种封装技术。
FC、BGA、CSP三种封装技术。

最早的表面安装技术——倒装芯片封装技术(FC)形成于20世纪60年代,同时也是最早的球栅阵列封装技术(BGA)和最早的芯片规模封装技术(CSP)。

倒装芯片封装技术为1960年IBM公司所开发,为了降低成本,提高速度,提高组件可靠性,FC使用在第1层芯片与载板接合封装,封装方式为芯片正面朝下向基板,无需引线键合,形成最短电路,降低电阻;采用金属球连接,缩小了封装尺寸,改善电性表现,解决了BGA为增加引脚数而需扩大体积的困扰。再者,FC通常应用在时脉较高的CPU或高频RF上,以获得更好的效能,与传统速度较慢的引线键合技术相比,FC更适合应用在高脚数、小型化、多功能、高速度趋势IC的产品中。

随着电子封装越来越趋于向更快、更小、更便宜的方向发展,要求缩小尺寸、增加性能的同时,必须降低成本。这使封装业承受巨大的压力,面临的挑战就是传统SMD封装技术具有的优势以致向我们证实一场封装技术的革命。

2 IBM的FC

IBM公司首次成功地实施直接芯片粘接技术(DCA),把铜球焊接到IC焊盘上,就像当今的BGA 封装结构。图1示出了早期固态芯片倒装片示意图。IBM公司继续采用铜球技术并寻求更高生产率的方法,最终选择的方案为锡-铅焊料的真空淀积。为了形成被回流焊进入球凸点的柱状物,应通过掩模使焊料淀积。由于淀积是在圆片级状况下完成的,因而此过程获得了良好的生产率。这种凸点倒装芯片被称为C4技术(可控塌陷芯片连接)一直在IBM公司和别的生产厂家使用几十年,并保持着高的可靠性记录。

虽然C4在更快和更小方面显得格外突出,但是呈现出更节省成本方面的不足。与C4相关的两个重要的经济问题是:形成凸点的成本和昂贵的陶瓷电路的各项要求。然而,正确的形成凸点技术及连接技术能够提供更进一步探求较低成本的因素。

3 形成凸点技术

凸点形成技术分为几个简单的类型,即淀积金属、机械焊接、基于聚合物的胶粘剂以及别的组合物。最初的C4高铅含量焊料凸点,熔点在300℃以上,被低共熔焊料和胶粘剂代替,从而使压焊温度下降到易于有机PCB承受的范围。然而,如果低共熔焊膏作为接合材料使用,那么C4仍可用于FR-4上。

3.1 机械形成凸点技术

十多年前,IBM公司和K&S公司开发了球凸点形成工艺技术,称为柱式凸点形成技术。此工艺过程首先涉及到对铝芯片载体的球压焊技术,接着把焊丝拉到断裂点,最后形成有短尾部的凸点。为了在球附近形成光滑的断裂口,可使用含有1%铂的金丝。焊料和别的金属也是起作用的。很多改变是明显的,包括平面性方面的凸点精压技术和更高、更复杂的金属化的双凸点形成技术。柱式凸点形成技术,长期使用于试制形式。由于通过引线键合机获得了惊人的速度,已移入生产模式。金和金凸点及焊料凸点均被实施。Delco公司和K&S公司联合生产柱式凸点的倒装芯片产品,别的公司在不远的将来预计生产凸点芯片。

3.2 金属电镀技术

电镀技术要求首先形成总线接头,选择电镀掩模,并用于TAB的金凸点芯片技术。虽然通过在晶圆片上方汽相淀积金属,在典型状况下形成总线,但是总线必须能被清除。再者,必须提供光成像电镀保护膜,在电镀之前成像并显影。很多步骤和精确的电镀掩模工艺的要求增加了成本和不便因素。

化学镀是无掩模和无总线的方法,看上去是一种较好的方法。该技术已广泛地应用于印刷电路行业,但是化学形成凸点的技术仅仅是近年来才应用于倒装芯片的。化学镀镍,也许由于其非常精确的化学性质,已呈现为首要的且普遍的化学倒装片凸点技术工艺。如果铝没有直接与镍一起电镀,就可使用中间浸液电镀锌技术。图2示出了最普遍的镍凸点技术顺序。注意到在典型状况下,镍受到薄的、易于产生浸液的金涂层保护。形成的金毛刺适于焊接及胶粘剂压焊。

化学镀镍凸点技术工艺简单,成本低,是主要的倒装芯片凸点工艺。可利用很多方法,包括把焊料应用于凸点及液体喷注。对倒装片而言,开发化学焊料电镀技术是可行的。

3.3 聚合物凸点技术

两种各向同性的导电胶粘剂,在所有的轴上导电是均一的。各向异性的(Z轴)胶粘剂,具有间接的导电性,可应用于形成凸点芯片及压焊。因为各种胶粘剂还不能直接用在铝上,所以通常把它们应用于金焊盘。采用聚合物倒装芯片方法,在晶圆片级状况下可把导电胶用模板印刷。

4 测试技术

IBM公司通过对测试电路有限区域焊接,测试C4产品,并用机械的方法断开临时接线。虽然由于变形,对共晶焊料凸点芯片测试和老化仍然是个问题。新的接口技术预计允许共晶凸点的测试和老化。

5 压焊技术

共晶焊料构成的凸点,包含压焊和连接材料。用免清洗焊剂涂覆凸点,并置于板上像普通的SMD 元件一样进行焊料回流。几种拾-放机可提供焊剂,使用的是“焊剂熔解轮”。仅对凸点提供焊剂是较难的,特别是当使用下填充物时,此熔解轮将被用来给凸点和导电胶提供焊膏。

不熔的芯型凸点,诸如镍凸点,要求增加连接材料作为组装工艺过程的一部分。可把焊料进行丝网印刷、模板印刷或针式分配到电路载体上,接着放置芯片并进行焊料回流。把SMD和倒装片一起装配到陶瓷上是可行的,此方法可应用于汽车电子行业。

使用印刷或分配方法可把导电胶提供给电路载体或凸点,一种令人感兴趣的方法,即聚合物浸涂芯片法(PDC)。使用装满粘附膏的“焊剂熔解轮”,在旋转盘或别的储层的外面涂覆胶粘剂,厚度略小于凸点高度。把芯片放入膏中并用粘着凸点的胶粘剂抽出,把倒装芯片置于电路上并进行胶粘剂固化。

6 下填充技术

假定描述的低成本凸点形成技术和压焊方法能够获得低成本、小尺寸和高速率,那么可靠性状况怎样呢?硅(<3×10-6/℃)和有机基板(18~50×10-6/℃)之间的热机失配状况如何?此类问题的解决方法是令人高兴的,既简单又节省成本。填入下填充物材料聚合物(如图3),下填充物是简单的被填在PCB和已压焊芯片之间的一种填充的矿物胶粘剂合成物。组装和测试之后,通过毛细作用在芯片间隙之下把液态材料进行塑流。下填充物被分配到芯片的一面或两面,产品能够在几秒钟内在典型的250密耳芯片下塑流。通过在发生初始配料处的芯片的对侧面,提供更多的下填充物,可有选择地形成凸焊缝。接着,把下填充物硬化成为加强验收等级的热循环性能结构。

把硅器件直接压焊到有机电路上将产生危险的热机应力和热机疲劳。在每个热循环阶段,PCB 将比硅以更高的速率扩展并收缩。当在热循环期间发生变形时,焊接材料诸如倒装片上的焊料凸点将经历加工硬化和加工蜕化过程。通过集中应力,极低的凸点高度(1~4密耳)加重了这一问题。

在倒装片和PCB之间加入下填充物可靠性提高了一个数量级或更多。最简单的解释为,经过硬化的下填充物把板移动定位在硅芯片的移动上。低膨胀、极高模量无机硅至少在表面上成为限制有机PCB膨胀的约束力。下填充物必须是相对坚硬的、高模量的和能够把硅及PCB固定在一起的材料。下填充物的热膨胀系数应该接近于焊接材料的热膨胀系数,对焊料而言为25×10-6/℃。如果下填充物的热膨胀系数(CTE)太高或太低,都将产生垂直应力,并且焊接将失效。可通过给聚合物系统增加矿物填充剂,调整CTE。

7 结语

倒装片如今在各类产品中已开始生产——构建于FR-4及光盘驱动挠曲电路上。全球很多家公司正在研究并开发倒装片技术。半导体制造商正在研究销售凸点芯片,设备制造商保证他们能够应对倒装片技术。虽然倒装片和别的CSPs对PCB行业提出了严格的要求,但是底部结构将很快

填补,最后赢得简易化。

倒装片是现在最常见的一种高连接密度芯片尺寸封装CSP。在FC中,芯片倒扣在封装衬底上,互连凸点阵列分布于硅片表面,取代了金属丝压焊连接,属于一种面阵列封装。与常规的引线键合相比,FC最主要的优点为:①拥有最高密度的I/O 数;②由于采用了凸点结构,互连长度大大缩短,互连线电阻、电感更小,封装的电性能得到极大地改善;③芯片中产生的热量可通过焊料凸点直接传输到封装衬底,通常在芯片衬底都装有散热器,故芯片温度会更低。

芯片凸点与衬底焊盘的精密对位是FC封装技术的关键技术。FC连接方式主要有:可控塌陷芯片连接(C4)、直接芯片连接(DCA)、倒装片胶连接(FCAA)等。形成的凸点按材料不同可分为焊料球状凸点(SBB)、金凸点(ASB)、聚合物凸点(PB)。其中应用最广泛的是焊料凸点技术。焊料凸点的制造技术有电镀、印刷和金属注射等。

倒装片封装技术广泛地应用于消费类IC中,如MCU、DSP、ASSP和ASIC等。

倒装封装介绍

倒装封装介绍 什么是LED倒装芯片?近年来,在芯片领域,倒装芯片技术正异军突起,特别是在大功率、户外照明的应用市场上更受欢迎。但由于发展较晚,很多人不知道什么叫LED倒装芯片,LED倒装芯片的优点是什么?今天慧聪LED屏网编辑就为你做一个简单的说明。先从LED正装芯片为您讲解LED倒装芯片,以及LED倒装芯片的优势和普及难点。 要了解LED倒装芯片,先要了解什么是LED正装芯片 LED正装芯片是最早出现的芯片结构,也是小功率芯片中普遍使用的芯片结构。该结构,电极在上方,从上至下材料为:P-GaN,发光层,N-GaN,衬底。所以,相对倒装来说就是正装。 LED倒装芯片和症状芯片图解 为了避免正装芯片中因电极挤占发光面积从而影响发光效率,芯片研发人员设计了倒装结构,即把正装芯片倒置,使发光层激发出的光直接从电极的另一面发出(衬底最终被剥去,芯片材料是透明的),同时,针对倒装设计出方便LED封装厂焊线的结构,从而,整个芯片称为倒装芯片(Flip Chip),该结构在大功率芯片较多用到。 正装、倒装、垂直LED芯片结构三大流派

倒装技术并不是一个新的技术,其实很早之前就存在了。倒装技术不光用在LED行业,在其他半导体行业里也有用到。目前LED芯片封装技术已经形成几个流派,不同的技术对应不同的应用,都有其独特之处。 目前LED芯片结构主要有三种流派,最常见的是正装结构,还有垂直结构和倒装结构。正装结构由于p,n电极在LED同一侧,容易出现电流拥挤现象,而且热阻较高,而垂直结构则可以很好的解决这两个问题,可以达到很高的电流密度和均匀度。未来灯具成本的降低除了材料成本,功率做大减少LED颗数显得尤为重要,垂直结构能够很好的满足这样的需求。这也导致垂直结构通常用于大功率LED应用领域,而正装技术一般应用于中小功率LED。而倒装技术也可以细分为两类,一类是在蓝宝石芯片基础上倒装,蓝宝石衬底保留,利于散热,但是电流密度提升并不明显;另一类是倒装结构并剥离了衬底材料,可以大幅度提升电流密度。 LED倒装芯片的优点 一是没有通过蓝宝石散热,可通大电流使用;二是尺寸可以做到更小,光学更容易匹配;三是散热功能的提升,使芯片的寿命得到了提升;四是抗静电能力的提升;五是为后续封装工艺发展打下基础。 什么是LED倒装芯片 据了解,倒装芯片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装芯片”。 倒装LED芯片,通过MOCVD技术在蓝宝石衬底上生长GaN基LED结构层,由P/N结发光区发出的光透过上面的P型区射出。由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni- Au组成的金属电极层。P 区引线通过该层金属薄膜引出。为获得好的电流扩展,Ni-Au金属电极层就不能太薄。为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。但无论在什麼情况下,金属薄膜的存在,总会使透光性能变差。此外,引线焊点的存在也使器件的出光效率受到影响。采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。 在倒装芯片的技术基础上,有厂家发展出了LED倒装无金线芯片级封装。 什么是LED倒装无金线芯片级封装 倒装无金线芯片级封装,基于倒装焊技术,在传统LED芯片封装的基础上,减少了金线封装工艺,省掉导线架、打线,仅留下芯片搭配荧光粉与封装胶使用。作为新封装技术产品,倒装无金线芯片级光源完全没有因金线虚焊或接触不良引起的不亮、闪烁、

正装与倒装芯片的封装

倒装芯片的封装 倒装芯片通常是功率芯片主要用来封装大功率LED(>1W),正装芯片通常是用来进行传统的小功率φ3~φ10的封装。因此,功率不同导致二者在封装及应用的方式均有较大的差别,主要区别有如下几点: 1. 封装用原材料差别: 2.封装制程区别: (1).固晶:正装小芯片采取在直插式支架反射杯内点上绝缘导热胶来固定芯片,而倒装芯片多采用导热系数更高的银胶或共晶的工艺与支架基座相连,且本身支架基座通常为导热系数较高的铜材; (2).焊线:正装小芯片通常封装后驱动电流较小且发热量也相对较小,因此采用正负电极各自焊接一根φ0.8~φ0.9mil金线与支架正负极相连即可;而倒装功率芯片驱动电流一般在350mA以上,芯片尺寸较大,因此为了保证电流注入芯片过程中的均匀性及稳定性,通常在芯片正负级与支架正负极间各自焊接两根φ1.0~φ1.25mil的金线; (3).荧光粉选择:正装小芯片一般驱动电流在20mA左右,而倒装功率芯片一般在350mA左右,因此二者在使用过程中各自的发热量相差甚大,而现在市场通用的荧光粉主要为YAG, YAG自身耐高温为127℃左右,而芯片点亮后,结温(Tj)会远远高于此温度,因此在散热处理不好的情况下,荧光粉长时间老化衰减严重,因此在倒装芯片封装过程中建议使用耐高温性能更好的硅酸盐荧光粉; (4).胶体的选择:正装小芯片发热量较小,因此传统的环氧树脂就可以满足封装的需要;而倒装功率芯片发热量较大,需要采用硅胶来进行封装;硅胶的选择过程中为了匹配蓝宝石衬底的折射率,建议选择折射率较高的硅胶(>1.51),防止折射率较低导致全反射临界角增大而使大部分的光在封装胶体内部被全反射而损失掉;同时,硅胶弹性较大,与环氧树脂相比热应力比环氧树脂小很多,在使用过程中可以对芯片及金线起到良好的保护作用,有利于提高整个产品的可靠性; (5).点胶:正装小芯片的封装通常采用传统的点满整个反射杯覆盖芯片的方式来封装,而倒装功率芯片封装过程中,由于多采用平头支架,因此为了保证整个荧光粉涂敷的均匀性提高出光率而建议采用保型封装(Conformal-Coating)的工艺;示意图如下:

芯片倒装技术及芯片封装技术

芯片倒装技术及芯片封装技术 引言世纪90年代以来,移动电话、个人数字助手(PDA)、数码相机等消费类电子产品的体积越来越小,工作速度越来越快,智能化程度越来越高。这些日新月异的变化为电子封装与组装技术带来了很多挑战和机遇。材料、设备机能与工艺控制能力的改进使越来越多的EMS 公司可以跳过尺度的表面安装技术(SMT)直接进入提高前辈的组装技术领域,包括倒装芯片等。因为越来越多的产品设计需要不断减小体积,进步工作速度,增加功能,因此可以预计,倒装芯片技术的应用范围将不断扩大,终极会取代SMT当前的地位,成为一种尺度的封装技术。 多年以来,半导体封装公司与EMS公司一直在通力进行,在施展各自特长的同时又介入对方领域的技术业务,力争使自己的技术能力更加完善和全面。在半导体产业需求日益增加的环境下,越来越多的公司开始提供\\\"完整的解决方案\\\"。这种趋同性是人们所期望看到的,但同时双方都会面对一定的挑战。 例如,以倒装芯片BGA或系统封装模块为例,跟着采用提高前辈技术制造而成的产品的类型由板组装方式向元件组装方式的转变,以往好像不太重要的诸多因素都将施展至关重要的作用。互连应力不同了,材料的不兼容性增加了,工艺流程也不一样了。不论你的新产品类型是否需要倒装芯片技术,不论你是否以为采用倒装芯片的时间合适与否,理解倒装芯片技术所存在的诸多挑战都是十分重要的。 倒装芯片技术倒装芯片技术\\\",这一名词包括很多不同的方法。每一种方法都有很多不同之处,且应用也有所不同。例如,就电路板或基板类型的选择而言,不管它是有机材料、陶瓷材料仍是柔性材料,都决定着组装材料(凸点类型、焊剂、底部填充材料等)的选择,而且在一定程度上还决定着所需设备的选择。在目前的情况下,每个公司都必需决定采用哪一种技术,选购哪一类工艺部件,为知足未来产品的需要进行哪一些研究与开发,同时还需要考虑如何将资本投资和运作本钱降至最低额。 在SMT环境中最常用、最合适的方法是焊膏倒装芯片组装工艺。即使如斯,为了确保可制造性、可靠性并达到本钱目标也应考虑到该技术的很多变化。目前广泛采用的倒装芯片方法主要是根据互连结构而确定的。如,和婉凸点技术的实现要采用镀金的导电聚合物或聚合物/弹性体凸点。 焊柱凸点技术的实现要采用焊球键合(主要采用金线)或电镀技术,然后用导电的各向同性粘接剂完成组装。工艺中不能对集成电路(1C)键合点造成影响。在这种情况下就需要使用各向异性导电膜。焊膏凸点技术包括蒸发、电镀、化学镀、模版印刷、喷注等。因此,互连的选择就决定了所需的键合技术。通常,可选择的键合技术主要包括:再流键合、热超声键合、热压键合和瞬态液相键合等。 上述各种技术都有利也有弊,通常都受应用而驱动。但就尺度SMT工艺使用而言,焊膏倒装芯片组装工艺是最常见的,且已证实完全适合焊膏倒装芯片组装技术传统的焊膏倒装芯片组装工艺流程包括:涂焊剂、布芯片、焊膏再流与底部填充等。但为了桷保成功而可靠的倒装芯片组装还必需留意其它事项。通常,成功始于设计。 首要的设计考虑包括焊料凸点和下凸点结构,其目的是将互连和IC键合点上的应力降至最低。假如互连设计适当的话,已知的可靠性模型可猜测出焊膏上将要泛起的题目。对IC 键合点结构、钝化、聚酰亚胺启齿以及下凸点治金(UBM)结构进行公道的设计即可实现这一目的。钝化启齿的设计必需达到下列目的:降低电流密度;减小集中应力的面积;进步电迁移的寿命;最大限度地增大UBM和焊料凸点的断面面积。 凸点位置布局是另一项设计考虑,焊料凸点的位置尽可能的对称,识别定向特征(去掉一个边角凸点)是个例外。布局设计还必需考虑顺流切片操纵不会受到任何干扰。在IC的有

倒装芯片封装

Flip-chip LEDs倒装芯片封装指导 倒装芯片的封装 倒装芯片通常是功率芯片主要用来封装大功率LED(>1W),正装芯片通常是用来进行传统的小功率φ3~φ10的封装。因此,功率不同导致二者在封装及应用的方式均有较大的差别,主要区别有如下几点: 1. 封装用原材料差别: 2.封装制程区别: 1. 固晶:正装小芯片采取在直插式支架反射杯内点上绝缘导热胶来固定芯片,而倒装芯片多采用导热系数更高的银胶或共晶的工艺与支架基座相连,且本身支架基座通常为导热系数较高的铜材; 焊线:正装小芯片通常封装后驱动电流较小且发热量也相对较小,因此采用正负电极各自焊接一根φ0.8~2. φ0.9mil金线与支架正负极相连即可;而倒装功率芯片驱动电流一般在350mA以上,芯片尺寸较大,因此为了保证电流注入芯片过程中的均匀性及稳定性,通常在芯片正负级与支架正负极间各自焊接两根 φ1.0~φ1.25mil的金线; 3. 荧光粉选择:正装小芯片一般驱动电流在20mA左右,而倒装功率芯片一般在350mA左右,因此二者在使用过程中各自的发热量相差甚大,而现在市场通用的荧光粉主要为YAG, YAG自身耐高温为127℃左右,

而芯片点亮后,结温(Tj)会远远高于此温度,因此在散热处理不好的情况下,荧光粉长时间老化衰减严重,因此在倒装芯片封装过程中建议使用耐高温性能更好的硅酸盐荧光粉; 4. 胶体的选择:正装小芯片发热量较小,因此传统的环氧树脂就可以满足封装的需要;而倒装功率芯片发热量较大,需要采用硅胶来进行封装;硅胶的选择过程中为了匹配蓝宝石衬底的折射率,建议选择折射率较高的硅胶(>1.51),防止折射率较低导致全反射临界角增大而使大部分的光在封装胶体内部被全反射而损失掉;同时,硅胶弹性较大,与环氧树脂相比热应力比环氧树脂小很多,在使用过程中可以对芯片及金线起到良好的保护作用,有利于提高整个产品的可靠性; 5. 点胶:正装小芯片的封装通常采用传统的点满整个反射杯覆盖芯片的方式来封装,而倒装功率芯片封装过程中,由于多采用平头支架,因此为了保证整个荧光粉涂敷的均匀性提高出光率而建议采用保型封装(Conformal-Coating)的工艺;示意图如下: 6 灌胶成型:正装芯片通常采用在模粒中先灌满环氧树脂然后将支架插入高温固化的方式;而倒装功率芯片则需要采用从透镜其中一个进气孔中慢慢灌入硅胶的方式来填充,填充的过程中应提高操作避免烘烤后出

相关主题
相关文档
最新文档