【人教版】中职数学基础模块下册:6.4《数列的应用》ppt教学课件(3)

合集下载

中职数学(基础模块)下册第六章数列单元考试卷(含答案)

中职数学(基础模块)下册第六章数列单元考试卷(含答案)

中职数学(基础模块)下册第六章数列单元考试卷(含答案)中职数学(基础模块)下册第六章数列单元考试卷含答案一、选择题1.数列{an}的通项公式an=(-1)^3*(n+1)*9,因此a2=9,选B。

2.选A,因为2,6,10,14,18是公差为4的等差数列。

3.已知a1=-3,d=2,所以a5=-3+4*2=5,选B。

4.已知a5=9,d=2,所以a(n)=a5+(n-5)*d=9+(n-5)*2=2n-1,选D。

5.已知a1=-3,d=3,所以S8=(a1+a8)*4/2=(-3+a1+7d)*4/2=(-3+21)*4/2=36,选A。

6.已知a4+a7=16,又a4=a1+3d,a7=a1+6d,所以a1+9d=16,又S10=(a1+a10)*10/2=(a1+a1+9d)*10/2=5(a1+9d)=5*16=80,选B。

7.已知a1=2,q=-3,所以a3=a1*q^2=-18,选A。

8.已知a1=-8,a4=1,所以q=(a4/a1)^(1/3)=2,选A。

9.已知a1=2,q=-3,所以S5=(a1*(1-q^5))/(1-q)=(2*(1-(-3)^5))/(1-(-3))=122,选B。

10.已知2,a,8成等差数列,所以a=5,选C。

11.已知,a,8成等比数列,所以a=-2,选D。

12.“a+c=2b”是“a,b,c组成等差数列”的必要不充分条件,选B。

二、填空题13.公差d=5,an=-1+(n-1)*5=5n-6.14.通项公式an=n+1.15.设a2=x,所以a6=x^3,代入等比数列的通项公式an=a1*q^(n-1),得到a1*x^5=16,即a1=16/x^5.16.公差d=3.三、解答题17.(1)已知a1=-5,d=6,所以an=-5+(n-1)*6=6n-11.2)S5=(a1+a5)*5/2=(-5+19)*5/2=35.18.设三个数为a-d,a,a+d,根据题意得到以下两个方程:a-d+a+a+d=12,解得a=4;a-d)*a*(a+d)=28,代入a=4,解得d=2;因此三个数为2,4,6.19.题目:已知成等比数列的三个数和为13,积为27,求这三个数。

人教版中职数学(基础模块)下册6.3《等比数列》word教案(可编辑修改word版)

人教版中职数学(基础模块)下册6.3《等比数列》word教案(可编辑修改word版)

【课题】 6.3 等比数列【教学目标】知识目标:理解等比数列前项和公式.n 能力目标:通过学习等比数列前项和公式,培养学生处理数据的能力.n 【教学重点】等比数列的前项和的公式.n 【教学难点】等比数列前项和公式的推导.n 【教学设计】本节的主要内容是等比数列的前项和公式,等比数列应用举例.重点是等比数列的前n 项和公式;难点是前项和公式的推导、求等比数列的项数的问题及知识的简单实际n n n 应用.等比数列前项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解n 并学会应用.等比数列的通项公式与前项和公式中共涉及五个量:n ,只要知道其中的三个量,就可以求出另外的两个量.n n S a n q a 、、、、1教材中例6是已知求的例子.将等号两边化成同底数幂的形式,利n n S a a 、、1n q 、用指数相等来求解的方法是研究等比数列问题的常用方法.n 【教学备品】教学课件.【课时安排】3课时.(135分钟)【教学过程】教学 过程教师行为学生行为教学意图时间*揭示课题6.3 等比数列.*创设情境 兴趣导入【趣味数学问题】从趣过 程行为行为意图间传说国际象棋的发明人是印度的大臣西萨•班•达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏.国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子.并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒.计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺.这位大臣所要求的麦粒数究竟是多少呢?各个格的麦粒数组成首项为1,公比为2的等比数列,大臣西萨•班•达依尔所要的奖赏就是这个数列的前64项和.质疑引导分析思考参与分析味小故事出发使得学生自然的走向知识点10*动脑思考 探索新知下面来研究求等比数列前n 项和的方法.等比数列的前n 项和为{}n a (1).321n n a a a a S ++++= 由于故将(1)式的两边同时乘以q ,得1,n n a q a +⋅= (2) 2341+=+++++ n n n qS a a a a a .用(1)式的两边分别减去(2)式的两边,得 (3)()()1111111+-=-=-⋅=-n n n n q S a a a a q a q .当时,由(3)式得等到数列的前项和公式1≠q {}n a n 总结归纳仔细分析讲解关键词语思考归纳理解记忆带领学生总结问题得到等比数列通项公式过程行为行为意图间 (6.7)1111-=≠-nn a q S q q()().知道了等比数列中的、n 和,利用公式{}n a 1a ),1(≠q q (6.7)可以直接计算.n S 由于,11q a a q a n n n ==+因此公式(6.7)还可以写成(6.8)111-=≠-n n a a q S q q ().当时,等比数列的各项都相等,此时它的前项和1=q n 为.(6.9) 1na S n =【想一想】在等比数列中,知道了、q 、n 、、五个量{}n a 1a n a n S 中的三个量,就可以求出其余的两个量.针对不同情况,应该分别采用什么样的计算方法?【注意】在求等比数列的前n 项和时,一定要判断公比q 是否为1.引导分析参与分析引导启发学生思考求解35*巩固知识 典型例题例5 写出等比数列,27,9,3,1--的前n 项和公式并求出数列的前8项的和.解 因为,所以等比数列的前n 项313,11-=-==q a 说明强调引领观察思考通过例题进一过程行为行为意图间和公式为,1[1(3)]1(3)1(3)4n nn S ⨯----==--故 .881(3)16404S --==-*例6 一个等比数列的首项为,末项为,各项的和4994为,求数列的公比并判断数列是由几项组成.36211解 设该数列由n 项组成,其公比为q ,则,194a =,.49n a =21136n S =于是 9421149361q q-⋅=-,即,⎪⎭⎫ ⎝⎛-=-q q 944936)1(211解得 .23q =所以数列的通项公式为 192,43n n a -⎛⎫=⋅ ⎪⎝⎭于是 ,1492943n -⎛⎫= ⎪⎝⎭即,323241⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-n 解得 .5n =故数列的公比为,该数列共有5项.23【注意】讲解说明引领分析强调含义主动求解观察思考求解领会步领会注意观察学生是否理解知识点45过 程行为行为意图间例6中求项数n 时,将等号两边化成同底数幂的形式,利用指数相等来求解.这种方法是研究等比数列问题的常用方法.现在我们看一看本节趣味数学内容中,国王为什么不能兑现他对大臣的奖赏承诺?国王承诺奖赏的麦粒数为,646419641(12)21 1.841012S -==-≈⨯-据测量,一般麦子的千粒重约为40g ,则这些麦子的总质量约为7.36×g ,约合7360多亿吨.我国2000年小麦1710的全国产量才约为1.14亿吨,国王怎么能兑现他对大臣的奖赏承诺呢!说明思考反复强调50*运用知识 强化练习练习6.3.31.求等比数列,,,,…的前10项的和.919294982.已知等比数列{}的公比为2,=1,求.n a 4S 8S 启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳60*巩固知识 典型例题【趣味问题】设报纸的厚度为0.07毫米,你将一张报纸对折5次后的厚度是多少?能否对折50次,为什么?【小知识】复利计息法:将前一期的本金与利息的和(简称本利和)作为后一期的本金来计算利息的方法.俗称“利滚利”.例7 银行贷款一般都采用“复利计息法”计算利息.小王从银行贷款20万元,贷款期限为5年,年利率为5.76%, 说明强调引领讲解说明观察思考主动求解通过例题进一步领会注意观察学生是否过 程行为行为意图间如果5年后一次性还款,那么小王应偿还银行多少钱?(精确到0.000001万元)解 货款第一年后的本利和为2020 5.76%20(10.0576) 1.057620,+⨯=+=⨯第二年后的本利和为21.057620 1.057620 5.76% 1.057620,⨯+⨯⨯=⨯依次下去,从第一年后起,每年后的本利和组成的数列为等比数列…231.057620,1.057620,1.057620,⨯⨯⨯其通项公式为11.057620 1.0576 1.057620-=⨯⨯=⨯n n n a 故.55 1.05762026.462886=⨯=a 答 小王应偿还银行26.462886万元.引领分析强调含义说明观察思考求解领会思考求解理解知识点反复强调4550*运用知识 强化练习张明计划贷款购买一部家用汽车,贷款15万元,贷款期为5年,年利率为5.76%,5年后应偿还银行多少钱?质疑求解强化60*理论升华 整体建构思考并回答下面的问题:等比数列的前n 项和公式是什么?结论:).1(1)1(1≠--=q qq a S n n 质疑归纳回答理解及时了解学生知识掌握情况70过程行为行为意图间).1(11≠--=q qq a a S n n 强调强化*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?引导回忆*自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.已知等比数列{}中,求n a 13226==a S ,,3q a 与.2.等比数列{}的首项是6,第6项是,这个数列n a 316-的前多少项之和是?25564提问巡视指导反思动手求解检验学生学习效果培养学生总结反思学习过程的能力80*继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题6.3A 组(必做);教材习题6.3B 组(选做)(3)实践调查:运用等比数列求和公式解决现实生活中的实际问题.说明记录分层次要求90【教师教学后记】项目反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克服;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;−辈子时光在匆忙中流逝,谁都无法挽留。

人教版中职数学(基础模块)知识点汇总

人教版中职数学(基础模块)知识点汇总

人教版中职数学(基础模块)知识点汇总第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集)4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑φ是否满足题意) (2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合(2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。

(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。

注:B C A C B A C U U U =)( B C A C B A C U U U =)( 6. 逻辑联结词: 且(∧)、或(∨)非(⌝)如果……那么……(⇒) 量词:存在(∃) 任意(∀) 真值表:q p ∧:其中一个为假则为假,全部为真才为真; q p ∨:其中一个为真则为真,全部为假才为假; p ⌝:与p 的真假相反。

(同为真时“且”为真,同为假时“或”为假,真的“非”为假,假的“非”为真;真“推”假为假,假“推”真假均为真。

) 7. 充分必要条件∆p 是q 的……条件 p 是条件,q 是结论p q ==⇒<=≠=充分不必要→ 的充分不必要条件是q p (充分条件) p q =≠⇒<===不充分必要→ 的必要不充分条件是q p (必要条件) p q ==⇒⇐==充分必要→ 的充分必要条件是q p (充要条件) p q =≠⇒⇐≠=不充分不必要→ 件的既不充分也不必要条是q p 第二章 不等式1. 不等式的基本性质: 注:(1)比较两个实数的大小一般用比较差的方法(2)不等式两边同时乘以负数要变号!! (3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。

中职数学数列的基本知识ppt课件

中职数学数列的基本知识ppt课件

中职数学数列的基本知识ppt课件目录•数列基本概念与性质•数列求和与通项公式•数列递推关系与性质•数列极限与收敛性判断•数列在实际问题中应用举例PART01数列基本概念与性质数列定义数列表示方法数列的项通常用带下标的字母来表示数列,如{an}。

数列中的每一个数都叫做数列的项。

0302 01数列定义及表示方法按照一定顺序排列的一列数。

等差数列性质任意两项之差为常数。

从第一项开始,依次成等差数列的若干个数的和等于项数乘以中间项。

中间项等于首尾两项和的一半。

等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

等比数列定义:从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。

等比数列性质任意两项之比为常数。

中间项的平方等于首尾两项的乘积。

从第一项开始,依次成等比数列的若干个数的积等于首项乘以末项再乘以公比的次幂。

算术数列几何数列调和数列混合数列常见数列类型及特点01020304每一项与前一项的差为常数,如1, 3, 5, 7,...每一项与前一项的比为常数,如2, 4, 8, 16,...每一项的倒数成等差数列,如1, 1/2, 1/3, 1/4,...不具有明显规律的数列,需要通过其他方法进行分析和处理。

PART02数列求和与通项公式等差数列求和公式推导通过倒序相加法或错位相减法推导等差数列求和公式。

等差数列求和公式应用利用等差数列求和公式解决与等差数列相关的问题,如计算前n项和、求某一项的值等。

等比数列求和公式推导通过错位相减法或等比数列的性质推导等比数列求和公式。

等比数列求和公式应用利用等比数列求和公式解决与等比数列相关的问题,如计算前n 项和、求某一项的值等。

通过观察数列的前几项,找出数列的通项公式。

观察法根据已知的递推关系式,逐步推导出数列的通项公式。

递推法通过设定未知数,建立方程组,求解得到数列的通项公式。

待定系数法通项公式求解方法典型例题解析已知等差数列的前n项和为Sn,且S10=100,S20=300,求S30。

人教版中职数学教材-基础模块下册全册教案B()

人教版中职数学教材-基础模块下册全册教案B()

人教版中职数学教材-基础模块下册全册教案B(可编辑)第一章:函数的性质1.1 函数的单调性【教学目标】1. 理解函数单调性的概念;2. 学会判断函数的单调性;3. 能够运用函数单调性解决实际问题。

【教学内容】1. 函数单调性的定义;2. 函数单调性的判断方法;3. 函数单调性在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入函数单调性的概念;2. 新课:讲解函数单调性的定义和判断方法;3. 练习:让学生通过练习题巩固函数单调性的理解和判断;4. 应用:结合实际问题,让学生运用函数单调性解决问题。

1.2 函数的奇偶性【教学目标】1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 能够运用函数奇偶性解决实际问题。

【教学内容】1. 函数奇偶性的定义;2. 函数奇偶性的判断方法;3. 函数奇偶性在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入函数奇偶性的概念;2. 新课:讲解函数奇偶性的定义和判断方法;3. 练习:让学生通过练习题巩固函数奇偶性的理解和判断;4. 应用:结合实际问题,让学生运用函数奇偶性解决问题。

第二章:三角函数2.1 三角函数的定义和性质【教学目标】1. 理解三角函数的定义;2. 学会判断三角函数的性质;3. 能够运用三角函数解决实际问题。

【教学内容】1. 三角函数的定义;2. 三角函数的性质;3. 三角函数在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入三角函数的定义;2. 新课:讲解三角函数的定义和性质;3. 练习:让学生通过练习题巩固三角函数的理解和判断;4. 应用:结合实际问题,让学生运用三角函数解决问题。

2.2 三角函数的图像和性质【教学目标】1. 理解三角函数图像的特点;2. 学会判断三角函数图像的性质;3. 能够运用三角函数图像解决实际问题。

【教学内容】1. 三角函数图像的特点;2. 三角函数图像的性质;3. 三角函数图像在实际问题中的应用。

2024版中职数学全套PPT课件完整版

2024版中职数学全套PPT课件完整版
数学归纳法应用
数学归纳法在数列求和、不等式证明、组合数学等领域 有广泛应用。例如,可以利用数学归纳法证明等差数列 和等比数列的求和公式。
04
平面解析几何初步
直线方程求解技巧
熟练掌握直线方程的基本 形式:一般式、点斜式、 斜截式等,理解各参数的 含义。
掌握直线方程的求解方法: 如两点式、截距式等,能 根据已知条件选择合适的 求解方法。
根据数据分析结果,对实际问题作出解释和判断,为决策提供依据。
THANKS
感谢观看
多面体的性质
了解多面体的性质,如欧拉公式等,能够运用性质解决相关问题。
空间向量基本概念运算
空间向量的定义与表示 理解空间向量的定义和表示方法,能够正确表示空间向量。
空间向量的线性运算 掌握空间向量的加法、减法、数乘等线性运算规则,能够 运用规则进行运算。
空间向量的坐标运算 理解空间向量的坐标概念,能够运用坐标进行向量的运算。
应的弧长为单位。两者之间可以通过公式进行相互转换。
角度制与弧度制下的三角函数值
02
在不同的角度制或弧度制下,三角函数的值也会有所不同,需
要注意转换。
实际应用中的转换问题
03
在实际应用中,如物理、工程等领域,经常需要进行角度制与
弧度制的转换,需要熟练掌握转换方法。
三角函数基本概念及性质
1 2
三角函数定义及符号 正弦、余弦、正切等三角函数的定义及符号,以 及各象限内三角函数的正负性。
数列。
求和公式推导
利用错位相减法或无穷递缩等比 数列法,可推导出等比数列的求
和公式。
求和公式应用
利用求和公式,可以快速求解等 比数列的前n项和。
数学归纳法原理及应用
数学归纳法原理

2024年度中职数学基础模块下册

2024年度中职数学基础模块下册
2024/2/2
实数的运算
包括实数的四则运算(加 、减、乘、除)、实数的 乘方和开方运算,以及运 算的优先级和运算法则。
近似数与有效数字
了解近似数的概念、有效 数字的定义和运算规则, 以及在实际问题中的应用 。
4
代数式与方程
代数式的基本概念
了解代数式的定义、代数 式的分类(整式、分式等 )以及代数式的值。
了解圆的基本概念、性质及判定方法 ,掌握圆的周长、面积计算公式,熟 悉与圆有关的比例线段、弦切角等概 念。
2024/2/2
8
立体几何初步
2024/2/2
空间几何体的结构特征
01
了解多面体、旋转体的基本概念和结构特征,能够识别常见的
空间几何体。
空间几何体的表面积与体积
02
掌握常见空间几何体的表面积和体积计算公式,能够运用公式
统计图表与数据分析
2024/2/2
统计图表
包括条形图、折线图、饼图、直 方图等,用于直观展示数据分布 和规律。
数据分析
通过计算平均数、中位数、众数 、方差等统计量,对数据进行描 述和分析,以揭示数据的内在规 律和联系。
12
概率基础
随机事件
在随机试验中,可能出现也可能 不出现,而在大量重复试验中具 有某种规律性的事件称为随机事
中职数学基础模块下册
2024/2/2
1
目录
2024/2/2
• 数与代数 • 几何与图形 • 概率与统计 • 三角函数与解三角形 • 数列与数学归纳法 • 向量与复数
2
01
数与代数
Chapter
2024/2/2
3
实数及其运算
01
02
03
实数的概念与性质

数列在日常生活中的应用PPT课件

数列在日常生活中的应用PPT课件

• [例1] 某人有七位朋友.第一位朋友每天 晚上都去他家看他,第二位朋友每隔一个 晚上到他家去,第三位朋友每隔两个晚上 去他家串门,第四位朋友每隔三个晚上去 他家做客,依次类推,直至第七位朋友每 隔六个晚上在他家出现.这七位朋友昨晚 在主人家中碰面,他们还会同一个晚上在 主人家中碰面吗?
• 解析:第一位朋友每天晚上在主人家;第 二位朋友以后在主人家的天数为第: 2,4,6,8,„,这些数构成以2为首项,公差 为2的等差数列,通项公式为:an=2n;第 三位朋友以后在主人家的天数为第:3,6,9 ,„,这些数构成以3为首项,公差为3的 等差数列,通项公式为:an=3n;第四、 五、六、七位朋友晚上在主人家的天数构 成以4、5、6、7为首项,公差为4、5、6 、7的等差数列,通项公式分别为an=4n, an=5n,an=6n,an=7n;他们要在同一 晚上出现,这个数应为这七个数列的公共
• (1)等差数列的实际应用 • 在数列应用题中,若an+1与an的关系满足 an+1-an=d(d为常数)时,则可以应用等差 数列模型解决. • 说明:要通过对题意的分析,说明数列为 等差数列,然后设出有关符号,如an,d等 的意义,这样才能使阅卷者迅速了解你的 解答思路.
(2)等比数列的实际应用 在数列应用题中,通过阅读题目题意,发现 an+1 与 an an+1 之间的关系满足 =q(q 为常数,且 q≠0),则数列{an} an 为等比数列.故这一类题目可用等比数列的模型解决. 说明:解题时,可通过不完全归纳法,先列出一些简 单的具体的情况,然后再写出一般关系式!
• 5.模型法 • 模型法就是在实际问题中,构造数列模型 或其他模型,再进而构造数学模型,通过 构造模型使问题顺利得到解决. • 运用模型法来解决问题时,应广泛搜集信 息,抓住关键词,准确理解题意,要善于 抓主要矛盾,类比联想,从而建立相应模 型. • (1)解决数列的应用问题必须准确探索问题 所涉及的数列的模型(如等差数列、等比数 列、或与等差、等比数列有关的数列),或

【人教版】中职数学(基础模块)下册:6.3《等比数列》教案(Word版).pdf

【人教版】中职数学(基础模块)下册:6.3《等比数列》教案(Word版).pdf

【课题】 6.3 等比数列
【教学目标】
知识目标:
理解等比数列前n 项和公式. 能力目标:
通过学习等比数列前n 项和公式,培养学生处理数据的能力.
【教学重点】
等比数列的前n 项和的公式.
【教学难点】
等比数列前n 项和公式的推导.
【教学设计】
本节的主要内容是等比数列的前n 项和公式,等比数列应用举例.重点是等比数列的前
n 项和公式;难点是前n 项和公式的推导、求等比数列的项数n 的问题及知识的简单实际
应用.
等比数列前n 项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解并学会应用.等比数列的通项公式与前n 项和公式中共涉及五个量:n n S a n q a 、、、、1,只要知道其中的三个量,就可以求出另外的两个量.
教材中例6是已知n n S a a 、、1求n q 、的例子.将等号两边化成同底数幂的形式,利用指数相等来求解n 的方法是研究等比数列问题的常用方法.
【教学备品】
教学课件.
【课时安排】
3课时.(135分钟)
【教学过程】
式的两边分别减去(2)式的两边,得
【教师教学后记】
−。

【人教版】中职数学(基础模块)下册:6.2《等差数列》教案(Word版)

【人教版】中职数学(基础模块)下册:6.2《等差数列》教案(Word版)

【课题】 6.2 等差数列
【教学目标】
知识目标:
理解等差数列通项公式及前n 项和公式. 能力目标:
(1)应用等差数列的前n 项公式,解决数列的相关计算,培养学生的计算技能; (2)应用等差数列知识,解决生活中实际问题,培养学生处理数据技能和分析解决问题的能力.
情感目标:
(1)经历数列的前n 项和公式的探索,增强学生的创新思维.
(2)赞赏高斯等数学史上流传的故事,形成对数学的兴趣,感受数学文化.
【教学重点】
等差数列的前n 项和的公式.
【教学难点】
等差数列前n 项和公式的推导.
【教学设计】
本节的主要内容是等差数列的前n 项和公式,等差数列应用举例.重点是等差数列的前
n 项和公式;难点是前n 项和公式的推导以及知识的简单实际应用.
等差数列前n 项和公式的推导方法很重要,所用方法叫逆序相加法,应该让学生理解并学会应用.等差数列中的五个量1a 、d 、n 、n a 、n S 中,知道其中三个,可以求出其余两个,例5和例6是针对不同情况,分别介绍相应算法.
例7将末项看作是首项的思想是非常重要的,以这类习题作为载体,对培养学生的创新精神是十分重要的.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
=
a+
a
1000+111.15=12111.15
【教师教学后记】。

中职数学基础模块下册等差数列说课稿PPT课件

中职数学基础模块下册等差数列说课稿PPT课件
第19页/共24页
(六)课后作业 运用巩固
必做题:课本p11习题6-2第3,5题。 选做题:已知等差数列{an}的首相a1=-2,第10 项是第一个大于1的项。求公差d的取值范围。
教学设想:通过分层作业,提高同学们的求知
欲和满足不同层次的需求
第20页/共24页
§5.2等差数列 1、定义 2、数学表达式 3、等差数列的 式
第11页/共24页
①、 ② •引导学生观察:数列
有何规律?引导学生得出“从第二项起,每一
项与前一项的差都是同一个常数”,我们把这样的数列叫做等差数列
教学设想:通过粉笔叠加每层粉笔数量 不同的例子引出一个具体的等差数列, 创设问题情境,引起学生的兴趣,启发 他们的求知欲培养学生由特殊到一般的 认知能力
②从函数、方程的观点看通 项公式。
第5页/共24页
二、教法分析
教法分析
教学设计理念
车学刀情分析
教学方法
第6页/共24页
教学 设计 理念
语言 知识 目标
以学生为主体 以教师为主导 以训练为主线
教学的最终目的是使学 生获得知识,提高综合 职业能力,学生是教学 的主体。
第7页/共24页
学情分析
知识层面:对数列的知识有了初步的接触和 认识,对方程、函数,学生掌握的也较理想。 技能层面:对数学公式的运用已具备一定 的技能,解方程(组)较为熟练。
说课课题眉山工程技师学院尹成豪说课程序?一教材分析?二教法分析?三教学流程?四板书设计?五效果预测教材分析教材的地位和作用一教材分析教学目标教学的重点和难点教材分析一教材的地位和作用本节课等差数列是中职数学第六章第二节的内容是在学生学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的基础上对数列的知识进一步学习

人教版中职数学教材-基础模块下册全册教案B()

人教版中职数学教材-基础模块下册全册教案B()

教案:人教版中职数学教材-基础模块下册第一章:函数1.1 函数的概念教学目标:1. 理解函数的概念及其表示方法。

2. 掌握函数的性质,包括单调性、奇偶性、周期性等。

教学内容:1. 函数的定义及表示方法。

2. 函数的性质及其应用。

教学步骤:1. 引入函数的概念,引导学生理解函数的定义。

2. 介绍函数的表示方法,如解析式、表格、图像等。

3. 讲解函数的单调性、奇偶性、周期性等性质。

4. 应用函数的性质解决实际问题。

1.2 函数的图像教学目标:1. 理解函数图像的性质及其绘制方法。

2. 学会绘制常见函数的图像。

教学内容:1. 函数图像的概念及其性质。

2. 函数图像的绘制方法。

教学步骤:1. 引入函数图像的概念,引导学生理解函数图像的性质。

2. 介绍函数图像的绘制方法,如描点法、直线法等。

3. 绘制常见函数的图像,如正弦函数、余弦函数、指数函数等。

4. 分析函数图像的性质,如单调性、奇偶性、周期性等。

第二章:三角函数2.1 三角函数的概念教学目标:1. 理解三角函数的概念及其表示方法。

2. 掌握特殊角的三角函数值。

教学内容:1. 三角函数的定义及其表示方法。

2. 特殊角的三角函数值。

教学步骤:1. 引入三角函数的概念,引导学生理解三角函数的定义。

2. 介绍三角函数的表示方法,如正弦、余弦、正切等。

3. 讲解特殊角的三角函数值,如0°、30°、45°、60°等。

4. 应用三角函数解决实际问题。

2.2 三角函数的图像教学目标:1. 理解三角函数图像的性质及其绘制方法。

2. 学会绘制常见三角函数的图像。

教学内容:2. 三角函数图像的绘制方法。

教学步骤:1. 引入三角函数图像的概念,引导学生理解三角函数图像的性质。

2. 介绍三角函数图像的绘制方法,如描点法、直线法等。

3. 绘制常见三角函数的图像,如正弦函数、余弦函数、正切函数等。

4. 分析三角函数图像的性质,如周期性、对称性等。

《数列复习课中职》课件

《数列复习课中职》课件

02
等差数列知识点梳理
等差数列定义及通项公式
等差数列定义
一个数列,从第二项起,每一项与 它的前一项的差等于同一个常数, 这个数列就叫做等差数列。
等差数列通项公式
an=a1+(n-1)d,其中an为第n项, a1为首项,d为公差,n为项数。
等差中项与等差数列关系
等差中项定义
在三个数中,如果第一个数与第三个数的和等于第二个数的两倍,那么这三个数就 构成等差数列,其中第二个数叫做等差中项。
案例分析
举例说明分期付款问题的求解 过程,帮助学生理解并掌握解
题方法。
储蓄问题建模与求解
储蓄问题描述
阐述储蓄问题的基本概念,如本 金、利率、存款期限等。
数学模型建立
通过等比数列求和公式,建立储 蓄问题的数学模型。
求解方法与步骤
介绍如何利用数学模型求解储蓄 问题,包括计算到期本金与利息 总额、每期存入金额等。
等差中项与等差数列关系
如果三个数a、G、b依次组成等差数列,则G叫做的等差中项,且2G=a+b(等差中 项的二倍等于前项与后项之和)。
等差数列求Leabharlann 公式及应用等差数列求和公式
Sn=n/2*(a1+an),其中Sn为前n项和,a1为首项,an为第n项,n为项数。
等差数列求和公式的应用
利用等差数列求和公式可以方便地求出等差数列的前n项和,进而解决一些实际问题,如计算存款利息、计算工 程总量等。
典型例题解析与思路拓展
典型例题解析
通过解析典型例题,帮助学生掌握等差数列的通项公式、求和公式以及等差中项的应用。
思路拓展
在解析典型例题的基础上,引导学生拓展思路,探索更多的解题方法和技巧,提高学生的思维能力和创新 能力。例如,可以通过构造新数列、利用数学归纳法等方法来求解一些复杂的等差数列问题。

中职数学数列的基本知识ppt课件

中职数学数列的基本知识ppt课件

如果两个数列的极限存在 且相等,那么这两个数列 之间的任意数列的极限也 存在且等于这两个数列的 极限。
如果数列单调增加(或减 少)且有上(下)界,那 么该数列的极限存在。
利用无穷小与无穷大的性 质求解数列的极限,如无 穷小与有界函数的乘积仍 为无穷小等。
THANKS
感谢观看
递推数列周期性判断
周期性的定义
递推数列中,如果存在某个正整 数p,使得数列中任意一项与它 前面第p项相等,则称该数列具 有周期性,p为该数列的周期。
周期性判断方法
通过观察、分析数列中各项之间 的变化规律,找出可能存在的周 期p,再验证数列中任意一项是
否与它前面第p项相等。
周期性应用
利用数列的周期性,可以简化数 列的求解过程,如求数列中某项
数列表示方法
数列可以用通项公式或递推公式表示,其中通项公式表示数列中任意一项与项 数n的关系,而递推公式表示数列中相邻项之间的关系。
数列分类及特点
有穷数列和无穷数列
根据项数是否有限,数列可分为有穷 数列和无穷数列。有穷数列项数有限, 无穷数列项数无限。
单调数列和摆动数列
根据数列的增减性,数列可分为单调 数列和摆动数列。单调数列单调递增 或递减,摆动数列则不具备单调性。
性质
等比数列中,任意两项的比值相等,且等于公比;等比数列的 每一项都不为零;等比数列的公比可以是正数、负数或零(除 数列首项外)。
等比数列通项公式推导
公式形式
an=a1×qn-1,其中an表示第n项, a1表示首项,q表示公比,n表示 项数。
推导过程
根据等比数列的定义,可以得到 an/a(n-1)=q,通过递推关系,可 以得到an=a1×q×q×...×q(n-1个 q)=a1×qn-1。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案一、教案内容:第1章集合1.1 集合的概念教学目标:了解集合的概念,掌握集合的表示方法。

教学重点:集合的概念,集合的表示方法。

教学难点:理解集合的相等性和包含性。

教学准备:教材、黑板、粉笔。

教学过程:引入集合的概念,讲解集合的表示方法,举例说明。

1.2 集合的关系教学目标:了解集合之间的关系,掌握集合的并、交、补运算。

教学重点:集合之间的关系,集合的并、交、补运算。

教学难点:理解集合的运算法则。

教学准备:教材、黑板、粉笔。

教学过程:讲解集合之间的关系,举例说明并、交、补运算。

二、教案内容:第2章函数2.1 函数的概念教学目标:了解函数的概念,掌握函数的表示方法。

教学重点:函数的概念,函数的表示方法。

教学难点:理解函数的定义域和值域。

教学准备:教材、黑板、粉笔。

教学过程:引入函数的概念,讲解函数的表示方法,举例说明。

2.2 函数的性质教学目标:了解函数的性质,掌握函数的单调性、奇偶性、周期性。

教学重点:函数的性质,函数的单调性、奇偶性、周期性。

教学难点:理解函数的性质。

教学准备:教材、黑板、粉笔。

教学过程:讲解函数的性质,举例说明单调性、奇偶性、周期性。

三、教案内容:第3章实数与不等式3.1 实数的概念教学目标:了解实数的概念,掌握实数的分类。

教学重点:实数的概念,实数的分类。

教学难点:理解实数的性质。

教学准备:教材、黑板、粉笔。

教学过程:引入实数的概念,讲解实数的分类,举例说明。

3.2 不等式的解法教学目标:了解不等式的解法,掌握不等式的解法技巧。

教学重点:不等式的解法,不等式的解法技巧。

教学难点:理解不等式的解法。

教学准备:教材、黑板、粉笔。

教学过程:讲解不等式的解法,举例说明解法技巧。

四、教案内容:第4章平面几何4.1 点、线、面的关系教学目标:了解点、线、面的关系,掌握直线、平面的方程。

教学重点:点、线、面的关系,直线、平面的方程。

教学难点:理解点、线、面的关系。

人教版中职数学(基础模块)下册6.4《数列的应用》ppt课件3

人教版中职数学(基础模块)下册6.4《数列的应用》ppt课件3
公差的等差数列 an ,直到 an =0 为止。
由 an= 750+(n-1)(-6.25)=0 , 得 n =121
利息总和为
S121
121
750
121
(121 1) 2
(6.25)
45375
现把利息平均加到每月还款额上,所以每月还款额为
1250 45375 1628元 1012
解答数列应用题的基本步骤: 1. 建立变量关系,将实际问题转化为数列模型
解: 汽车总价为 20 万元,首付 5 万,贷款 15万元 110年内每月应付欠款 150000 1250元
1012
第一月利息为 1500000.5% 750元
第二个月利息为 (1500001250)0.5% 743.75元
第三 个月利息为 (150000 21250)0.5% 737.5元 可知 ,10 年中每月所付利息是以750为首项,-6.25为
课堂练习: P25
五、作业:P25
a4 1200 (1 20%)3
a5 1200 (1 20%)4
因此 an 是公比为 q=1.2 ,首项为 a1=1200 的等比数列
故 五年的总产值为
S5
a1 a1q5 1 q
1200 (11.25) 1 1.2
8929.92
所以 五年的总产值是 8929.92 万元。
例4 某人购买一辆20万元的车,首付5万元,其余车款按 月分期付款,10年付清,如果欠款按月利率为0.5%计算, 并把利息平均加到每月还款额上,那么此人每月应付款多 少元?(精确到1元)
6.4 数列的实际应用
课题பைடு நூலகம்
1 学习目标 2 回顾旧知 3 新授 4 小结 5 作业
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂练习: P25
五、作业:P25
二、回顾旧知
定义
等差数列
通项公式
求和公式
等比数列
三、新授:生活中的存款贷款、资产折旧、分期付款等
实际问题,都可以用等差数列和等比数列的知识解决
例1 某细菌在培养过程中,每20分钟分裂一次(由一个分 成两个),经过3小时后,这种细菌由一个可繁殖成多 少个?
分析:由一个细菌开始培养,第n次分裂繁殖所得细菌数记
解: 汽车总价为 20 万元,首付 5 万,贷款 15万元 110年内每月应付欠款 150000 1250元
1012
第一月利息为 1500000.5% 750元
第二个月利息为 (1500001250)0.5% 743.75元
第三 个月利Biblioteka 为 (150000 21250)0.5% 737.5元 可知 ,10 年中每月所付利息是以750为首项,-6.25为
公差的等差数列 an ,直到 an =0 为止。
由 an= 750+(n-1)(-6.25)=0 , 得 n =121
利息总和为
S121
121
750
121
(121 1) 2
(6.25)
45375
现把利息平均加到每月还款额上,所以每月还款额为
1250 45375 1628元 1012
解答数列应用题的基本步骤: 1.建立变量关系,将实际问题转化为数列模型
为 an, 则 an 是一个首项 a1=2 ,公比 q =2 的等比数列
解:设第n次分裂繁殖所得细菌数记为 an ,
则 an 是一个首项 a1=2 ,公比 q =2 的等比数列。
每20分钟分裂一次,3小时共分裂9次

a9 29 512
所以可繁殖成 512 个。
例2 某人从1月1日起,每月1日将1000元存入银行,银行 年利率为6%(按月计息),利息税为20%,连存了1年后, 到第二年的1月1日,把存款连同利息一起取出。问:此人 可从银行取回多少钱? 解:由年利率为6%,得月利率为
a4 1200 (1 20%)3
a5 1200 (1 20%)4
因此 an 是公比为 q=1.2 ,首项为 a1=1200 的等比数列
故 五年的总产值为
S5
a1 a1q5 1 q
1200 (11.25) 1 1.2
8929.92
所以 五年的总产值是 8929.92 万元。
例4 某人购买一辆20万元的车,首付5万元,其余车款按 月分期付款,10年付清,如果欠款按月利率为0.5%计算, 并把利息平均加到每月还款额上,那么此人每月应付款多 少元?(精确到1元)
2.分析题意,判断数列是等差还是等比,是求 a还n 是 sn
3.利用有关公式列出方程,求值
四、小结
数列应用题常见模型:
1.等差模型:如果增加(或减少)的量是一个固定 量时,该数列是等差数列,增加(或减少)的量 就是公差
2. 等比模型:如果后一个量与前一个量的比是一个 固定的数时,该数列是等比数列,这个固定的 数就是公比
第一月存入的1000元,到期利息为
第二月存入的1000元,到期利息为 …….
第十二月存入的1000元,到期利息为
这些利息构成了首项为
,末项为
的等差数列
总利息为它们的和,
而利息税为20%,则税后的利息为 故本利和为 因此到第二年1月1日此人可从银行连本带利取回12312元。
解答数列应用题的基本步骤: 1.建立变量关系,将实际问题转化为数列模型
6.4 数列的实际应用
课题
1 学习目标 2 回顾旧知 3 新授 4 小结 5 作业
一、学习目标
1、知识目标:让学生经历数学建模的过程,培养学 生应用数学的能力。
2、能力目标:通过建立数列模型并应用数列模型解 决生活中的实际问题,提高学生科学地提出、分析、 解决问题的能力,培养学生应用数学的意识。
2.分析题意,判断数列是等差还是等比,是求 a还n 是 sn
3.利用有关公式列出方程,求值
例3 某工厂制订了五年发展规划。若第一年的产值是 1200万元,计划每年递增 20% 。 问:五年的总产值是多少万元?
解:设第n 年的产值用 an 表示,每年递增率为20%,
则 a1 1200 a2 1200(1 20%) a3 1200 (1 20%) 2
相关文档
最新文档