耐火材料制备原理及工艺设计

耐火材料制备原理及工艺设计
耐火材料制备原理及工艺设计

攀枝花学院

学生课程设计(论文)

题目:耐火材料制备原理及工艺设计

学生姓名:李茂学号: 201111101027 所在院(系):材料工程学院

专业: 2011材料科学与工程

班级: 2011级材料科学与工程一班指导教师:李亮职称:副教授

2013年12 月16 日

攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书

1.绪论

耐火度高于1580℃的无机非金属材料称为耐火材料,耐火度指耐火材料锥形体试样在没有荷重情况下,抵抗高温作用而不软化熔倒的摄氏温度。耐火材料主要是指无机非金属材料构成的材料和制品,是用作高温窑炉等热工设备的结构材料,以及工业用高温窑和部件的材料,并能承受相应的物理化学变化和机械作用。关于耐火材料的工艺20世纪50年代以前都是采用单一耐火原料制造的,50年代以后都采用了复合工艺。耐火材料种类繁多,通常按耐火度高低分为普通耐火材料(1580~1770℃)、高级耐火材料(1770~2000℃)和特级耐火材料(2000℃以上);按化学特性分为酸性耐火材料、中性耐火材料和碱性耐火材料。此外,还有用于特殊场合的耐火材料。现在对于耐火材料的定义,已经不仅仅取决于耐火度是否在1580℃以上了。目前耐火材料泛指应用于冶金、石化、水泥、陶瓷等生产设备内衬的无机非金属材料。经常使用的耐火材料有AZS砖、刚玉砖、直接结合镁铬砖、碳化硅砖、氮化硅结合碳化硅砖,氮化物、硅化物、硫化物、硼化物、碳化物等非氧化物耐火材料;氧化钙、氧化铬、氧化铝、氧化镁、氧化铍等耐火材料。经常使用的隔热耐火材料有硅藻土制品、石棉制品、绝热板等。经常使用的不定形耐火材料有补炉料、耐火捣打料、耐火浇注料、耐火可塑料、耐火泥、耐火喷补料、耐火投射料、耐火涂料、轻质耐火浇注料、炮泥等。

近几十年来,高温技术迅速发展,由于熔炼难熔金属和特种合金和超纯金属的需要,发展了特种耐火材料,耐火材料的应用领域不断扩大,占有重要地位。目前,我国每年消耗耐火材料约800万吨。镁铬质耐火材料是以氧化镁(MgO)和三氧化二铬(Cr2O3)为主要成分,以方镁石和尖晶石为主要矿物组分的耐火材料制品。镁铬耐火砖的耐火度高,高温强度大,抗碱性渣侵蚀性强,热稳定性优良,对酸性渣也有一定的适应性。但是今后镁铬材料产量将会下降,因为在高温条件下制备和使用时,它会产生有害的六价铬的化合物造成环境污染。制造镁铬砖的主要原料是烧结镁砂和铬铁矿。镁砂原料的纯度要尽可能高,铬铁矿化学成分的要求为:Cr2O3 30~45%,CaO不大于1.0~1.5%。烧制镁铬砖的生产工艺与镁质砖大体相仿。为了消除砖在烧成过程中由于MgO和Cr2O3、Al2O3或铁的氧化物反应生成尖晶石时的膨胀而引起的松散效应,也可采用合成的共同烧结料制成镁铬砖。此外,还有不烧镁铬砖,例如,用无机镁盐溶液结合的不烧镁铬砖。不烧镁铬砖生产工艺简单,成本低,热稳定性也好,但高温强度远不及烧成砖。50年代末,发展出一种所谓“直接结合”镁铬砖。这种砖的特点是原料纯,烧成温度高,方镁石、尖晶石等高温相之间直接结合,硅酸盐等低熔相为孤岛状分布,因此,显著地提高了砖的高温强度和抗渣性。镁铬砖主要用于冶金工业,如构

筑平炉炉顶、电炉炉顶、炉外精炼炉以及各种有色金属冶炼炉。超高功率电炉炉壁的高温部位采用熔铸镁铬砖,炉外精炼炉高侵蚀区采用合成料制成的镁铬砖,有色金属闪速熔炼炉高侵蚀区采用熔铸镁铬砖、合成料制成的镁铬砖。基本的钢铁炉用的是耐火等级相当高的镁铬耐火材料,此外,镁铬砖还用在水泥回转窑烧成带和玻璃窑的蓄热室等部位。关于废砖的利用,回收过程中在碱性耐火材料生产当中不仅会使它能够把废物利用,同时也可以解决环境污染和储存的问题。耐火材料的发展在国民工业生产的应其成产流程大多如图1所示。

图1 耐火材料的生产流程

耐火材料的分类如图2所示。

高铝制品

烧成耐火制品硅质制品

镁质制品

其它烧成制品

不烧高铝质砖

不烧耐火制品不烧硅质砖

镁碳砖

耐火材料刚玉制品

氧化铬制品

氧化铝制品

特种耐火材料氧化镁制品

氧化铍制品

复吹转炉(电炉)用底吹供气元件

精炼钢包底吹用透气塞

功能耐火材料连铸用滑板

连铸用整体塞棒、长口水、浸入式水口

熔融石英质水口

耐火泥浆料

不定形耐火材料捣打料

可塑料

浇注料

图2 耐火材料分类

2.工艺概述

镁铬砖是由铬铁矿和镁砂组成的碱性耐火材料,制造这种砖所发生的物理化学变化与烧制铬质制品基本相同。此外还得考虑以下几点:

(1)铬矿和镁砂配比对镁质耐火材料性质的影响。

当铬矿与镁砂配比为50:50时,制品具有最高的热震稳定性,随着铬矿或镁砂比例的增大或减小,热震稳定性都降低。当铬矿含量过高时,制品在1650o C

下抵抗铁氧化物作用的能力会显著降低。铬矿须粒能与Fe

3O

4

。形成固溶体,引

起体积的急剧膨胀,致使制品产生爆胀现象。配料中铬矿的含量越高,爆胀现象越严重。配料中镁砂含量的提高,能增强制品的抗渣能力,目前镁铬质平炉顶的发展趋势是提高配料中的镁砂含量。

(2)基质矿物组成对制品性能的影响。

铬镁质(或镁铬质)制品的主要矿物组成是方镁石和尖晶石。墓质部分系由硅酸盐组成。

(3)气氛性质的影响。

在还原气氛下缎烧镁铬质耐火材料时,细粉镁砂中的MgO置换粗颗粒铬矿中尖晶石的FeO的固相反应在650o C开始,体积收缩约为24.3%。这样大的体积收

缩必然产生烧成裂纹。在氧化气氛下铬矿中的FeO于500℃开始即被氧化成Fe

2O

3,

形成(Fe,Cr)

2O

3

固溶体。体积收缩1.5%,而且在氧化气氛中由MgO置换出来的

FeO氧化成Fe

2O

,随即与MgO结合成铁酸镁,这两个反应的总体积膨胀只有6.6%

据此铬镁质耐火材料应该在弱氧化气氛下烧成。

2.1镁铬砖的生产

镁铬砖的生产镁铬砖是以烧结镁砂和铬矿为原料制成的。在配料中控制MeO

含量占60-70% ,Cr

2O

3

含量在8-12%,这种制品的稳定性良好,耐火度大于2000o C,

是偏碱性的高级耐火材料。

2.1.1热稳定性镁铬砖的生产

热震稳定性镁铬砖的生产工艺特点是增大临界颗粒尺寸,减少铬矿颖粒中的细粉含金,以提高制品的热震稳定性。

2.1.2 直接结合镁铬砖

耐火材料直接结合砖的生产起源于镁铬或铬镁耐火材料。当时直接结合碱性砖是指在这些砖中方镁石一尖晶石和方镁石一方镁石的直接结合,在一定程度上取代了被硅酸盐膜包围铬矿颖粒和方镁石晶粒的典型结构,从而使砖具有较高的高温强度,抗渣性以及在1800℃下的体积稳定性等特点。虽然我国耐火材料工

作者经过多年潜心研究,并多次进行使用试验,但是国产直接结合镁铬砖与进口同类产品的质量及使用效果尚有一定差距。

(1)直接结合砖的显微结构

直接结合砖和传统砖的显微结构不同,这与烧成温度有关。在1550o C以下烧成的普通镁铬砖和铬镁砖,其铬矿颗粒被近似于镁橄榄石组成的硅酸盐所包围,而方镁石晶体,特别是构成砖体的晶体也为硅酸盐膜包围。烧成到1550℃的镁格砖的显微结构显示出铬矿颗粒和方镁石晶粒形成边界,出现了直接结合的雏形。当加热温度升到1700o C以上时,围绕铬矿颗粒的方镁石镶边已成为显微结构的主要特征。显微结构的新特征是次生尖晶石(棱角状)晶体的出现。在高的烧成温度下,出现方镁石与方镁石的直接结合,而硅酸盐却被限制在方镁石品粒之间的孔隙里。

(2)直接结合砖的热机械性质

烧成温度也决定着砖的力学性质。当烧成温度从1500o C增加列1600o C时,使原先在1300o C下保温1小时时出现的扭转蠕变迅速减小。随着烧成温度的进一步提高,蠕变降低速度变慢。另外,它显示出在热态抗折试验中,烧成温度对断裂时间有显著的影响。在任何试验温度下,烧成温度越高,断裂所需的时间就越长。当砖烧成后冷却时,由铬矿和镁砂配料的砖里,因为有不同的热收缩,会有应力产生。在有液相存在的情况下(高于1350o C),这些应力会迅速地为“蠕动”所缓冲甚至消除。在低于液相线温度,因蠕动速度太低而不能完全消除应力。因而内应力的存在趋向于降低断裂模数。因此,当温度由室温上升时,作为单纯应力减小或消除的结果,可以估计断裂模数会上升到一峰值,该值就出现在内应力等于零的温度。

(3)直接结合砖的其它性质

直接结合砖还可提高抗渣性,尤其是增强对铁氧化物的抗渗透作用。在某种程度上这是由于直接结合砖的气孔率较低的缘故,也可以认为是由于固一固结合的存在而产生的这种结合不受来自热面的液体扩散所影响。直接结合砖与硅酸盐结合砖有不同的高温体积稳定性和吸收铁氧化物的爆胀稳定性。从组成方面提高

直接结合强度,除了控制杂质量(CaO, SiO

2量)及GaO/SiO

2

比值外,Cr

2

O

3

能增加

直接结合程度,因而提高砖的高温强度。而Fe

20

3

,Al

2

O

3

,和TiO

2

则相反,将降

低其直接结合。可以说,在高温烧成的碱性砖里加入铬矿所产生的有益作用,部

分原因是由于Cr

2O

3

降低了方镁石晶粒被硅酸盐加湿的结果。

2.2镁铬砖碱性耐火材料生产工艺

碱性耐火材料主要是指以氧化镁、氧化钙为主要成分的耐火材料,对碱性渣有较强的抗侵蚀能力,主要用于平炉、吹氧转炉、电炉、有色金属冶炼设备以及

一些高温设备上。其生产的主要工艺如图3所示。

电熔镁铬砂镁铝尖晶石

SO2

定型产品

图3 镁铬砖碱性耐火材料生产工艺流程

(1)破碎:首先将大颗粒原料经颚式破碎机破碎成小颗粒,再经对辊破碎机

或圆锥破碎机进一步破碎成更小的颗粒。该工序产生破碎机噪声(N

2-1

)和原料

粉尘(G

2-1

)产生。

(2)筛分:将加工完成的颗粒料经斗氏提升机提升至筛分机进行筛分,筛分后符合规格的原料进入各自料仓,不符合规格的原料继续进行破碎。该工序产生

筛分机噪声(N

2-2)和原料粉尘(G

2-2

)产生。

(3)粉碎:部分产品还需要经过雷蒙磨粉机磨成200~300目以下的粉料,然

后再进入各自料仓。该工序产生雷蒙机噪声(N

2-3)和原料粉尘(G

2-3

)产生。

(4)配料:将高位料仓中的粉料分别经自动配料系统按照一定的比例准确称

量后,通过给料机送入混炼机中,同时,将经称量后的结合剂(主要为纸浆、糊精和水)也加入到混炼机中。高位料仓中的粉料40%是破碎生产的粉料,60%为外购的规格料。该阶段振动给料机会产生一定噪声(N

2-4

),同时在给料过程中也

会产生粉尘(G

2-4

)。

(5)磁选:利用矿物颗粒磁性不同,在不均匀磁场中进行选别,去除铁、钛等杂质。粉料中若存在铁等杂质,在耐火砖的烧成过程中,铁会被氧化,从而使

耐火砖表面出现斑点,影响耐火砖的外观。该工序会产生一定的粉尘(G

2-5

)和

固体废物(S

2-1

)。

(6)混炼:在强制混炼机中,将不同组分和粒度的物料同适量的结合剂经混合和挤压作用达到分布均匀和充分润湿,然后以泥料的形式进入到泥料罐中。在

混炼过程中会产生一定的噪声(N

2-5)和粉尘(G

2-6

)。

(7)成型:将泥料罐中混合好的泥料用手动平板车送到压制成型厂房中,在有摩擦压力机压制成砖坯,压制的动力由空压站提供。部分对于产形状和性能有特殊要求的产品通过振动成型机振动成型。该工序会产生摩擦压力机噪声和振动成型噪声(N

2-6

)。

(8)干燥:将压制成型的砖坯码放在窑车上,按照产品性能需求不同,分别在电干燥窑和余热干燥窑中进行干燥,其中余热干燥窑利用隧道窑内的热烟气对砖坯进行干燥。利用余热锅炉进行干燥时,由于是利用隧道窑的热烟气进行加

热,所以会产生SO

2、NOx和粉尘等大气污染物(G

2-7

)。

干燥过程可分为四个阶段。第一阶段为加热阶段。一般加热阶段时间很短,胚体温度上升到湿球温度。第二阶段为等速干燥阶段。这一阶段排除大量的水分,水分蒸发发生在胚体表面,蒸发速率相等。第三阶段为降速干燥阶段,随着干燥时间的延长,或胚体含水量的减少,胚体表面的有效蒸发面积逐渐减少,干燥速度逐渐降低。第四阶段为低速及平衡干燥阶段。干燥速度逐渐接近零,最终胚体水分不再减少。

(9)烧成:干燥后的砖坯再经由电拖车、液压推车推入高温窑内烧成,按照产品性能需求不同,分别在隧道窑和梭式窑内进行烧成。其中隧道窑以筑路油为燃料,锅炉产生热蒸汽使其雾化,再通过设在窑体中部的喷嘴喷入隧道窑内,与空气充分混合燃烧,窑内烧成温度约为1800℃。在隧道窑中烧成时,蒸汽锅炉

燃煤会产生烟尘、SO

2和NOx(G

2-8

)和煤渣固废(S

2-2

);同时隧道窑燃烧筑路油

也会产生烟尘、SO

2和NOx(G

2-9

)。梭式窑加热使用清洁能源天然气,部分产品需

要在氮气保护下进行烧成。在梭式窑中烧成时,会产生少量的烟尘、SO

2

和NOx

(G

2-10

)。

3.设计参数及计算

3.1工艺计算

3.1.1物料平衡计算的目的

计算各种原料,燃料,材料的需要量以及从原料进工厂至成品出工厂各工序所需加工处理的物料量。物料平衡计算结果作为确定工厂原料的需要量,运输量,工艺设备选型,计算个仓库的容量和物料平衡系数的依据。

物料平衡计算的根据生产工艺参数和各车间工作制度。生产工艺参数指的是产品产量和品种,工艺流程,制品的配合比和泥料水分,燃料的种类,发热值和消耗量等。车间工作制度包括生产年制度,生产班制度。

物料平衡计算的基准是烧成车间成品的烧后重量。

3.1.2硅砖物料平衡计算

(1)总成品量30000吨

(2)总烧成量=31578.9吨

F

1

—烧成废品综合率,5%

其中:烧成废品量31578.9-30000=1578.9吨

(3)总干燥量=33240.9吨

F

2

—干燥综合废品率,5%

其中:干燥废品率33240.9-31578.9=1662吨

(4)总成型量

(5)总混合量=36934.3吨

=36943.3吨

F

3

—泥料的混炼量,10%

K—配比系数

P—加入铬矿的比率,30%

(6)总配料量36934.3*(1-10%)=33240.9吨

其中:孰料配料量33240.9*(1-30%)=23268.6

铬矿配料量33240.9*30%=9972.3

P—外加废硅砖的比率,30%

外加纸浆废液33240.95%=1662吨

q

—外加纸浆废液百分数,5%

1

(7)总破粉碎量=33919.3吨

其中:孰料破粉碎量=23743.5吨

铬矿破粉碎量=10175.8吨

—原料加工运输量损失,2%

L

3

(8)总磨碎量33919.318%=6105.5吨

(9)铬矿干燥量===10175.8吨

(10)原料仓库存放量

19533+3078.9+10711.4=33324.2吨

其中:烧结镁砂孰料存放量=3078.9=19533.9吨

废镁铬砖存放量=95%1578.9+95%1662=3078.9吨

T—干燥、烧成,废品回收率,95%

—配比系数

K

1

铬矿量==10711.4吨

(11)纸浆废液总存放量=1695.9吨

镁铬砖制砖部分各工序物料平衡系数表如表1所示。

表1 镁铬砖制砖部分各工序物料平衡系数表

镁铬砖制砖部分物料平衡计算结果如表2所示。

表2 镁铬砖制砖部分物料平衡计算结果

泥料水分计算结果如表3所示。

表3 泥料水分计算结果

4.机械设备选型

4.1主机平衡

4.1.1破粉碎工序

耐火材料工业中,所用的原料大都是固体的,需要进行破碎。为了满足耐火材料制品对不同粒度的要求,根据实际生产任务和各种设备的工作性能选择设备完成破粉碎作业。

(1)颚式破碎机

表4 颚式破碎机设计指标

颚式破碎机是目前工程施工中应用最为普遍的碎石机械之一,具有破碎比大、产品料度均匀、结构简单、工作可靠、维修简便、运营费用经济等特点。因此,在耐火材料工业及其他工业部门中广泛应用它来粗碎和中碎难碎性及中等可碎性物料。废砖的处理也都用它来破碎。表4为颚式破碎机设计指标。

结合以上资料及实际生产任务,可以选用,作业率80%,生产能力13t/h。

破碎工序物料加工量==6.9吨

其中:K1,K2,K3分别是年工作日数306天,日工作班数2班,班工作时数8小时;

G r为物料平衡的物料量

主机需要的加工量=10.4吨

其中:K为生产不均衡系数,一般取1.2;

为主机作业率,为80% 理论主机台数=0.8台

为预防设备损坏选取1台,再取一台备用,共两台。 设备利用率=80% (2)圆锥破碎机

圆锥破碎机可用来中碎和细碎各种不同硬度的物料,是一种连续作业效率较高的破碎设备。耐火材料一般硬度很高,如莫来石莫氏硬度为7~8级,刚玉、高铝矾土莫氏硬度达到9级,抗压强度达3。5 MPa ,因而用传统的破碎设备破碎耐火材料难度极大,耐火材料工业大都选用短头弹簧圆锥破碎机,因为他的破碎腔有较长的平行带,物料在平行带内受到不止一次的挤压,破碎的物料粒度均匀,且多呈棱角状,有助于提高制品的体积密度。物料粒度影响如表5所示。

表5 物料粒度影响

结合以上资料及实际生产任务,可以选用900短头圆锥破碎机,生产能力4.3 t/h ,作业率取70%。

中碎工序物料加工量==6.9吨 主机需要的加工量=11.8吨

其中:K 为生产不均衡系数,一般取1.2; 为主机作业率,为70%

理论主机台数=2.7台 为预防设备损坏选取3台 设备利用率=90% (3)管磨机

在生产耐火制品时,为了获得致密的砖坯和改善砖坯的烧结性能,砖料中应加适当比例的粉料。对粉料的粒度要求,一般小于0.088mm 的粒度应占90%以上。设计指标如表6所示。

表6 设计指标

结合以上资料及实际生产任务,可以选用1500mm ×5700mm 管磨机进行磨碎。生产能力取2.8t/h,作业率75%。 磨碎工序物料加工量=1.2吨 主机需要的加工量=1.92吨

其中:K 为生产不均衡系数,一般取1.2; 主机作业率,为75% 理论主机台数=0.69台

为预防设备损坏选取1台 共取2

台,其中一台备用。 设备利用率=69%

4.1.2混合设备

混合的目的是将不同粒度按一定比例配好的物料及其结合剂等混拌均匀,为耐火材料制品提供颗粒密实且具有一定可塑习性的泥料。耐火材料工业通常采用间歇混合作用的湿碾机进行混合。为了避免泥料的混杂,不同性质的物料一般不使用同一台湿碾机。表7为湿碾机设计指标。

160016001600×1600×结合以上资料及生产任务,可以选用1600×450湿碾机进行混合作业。混合能力取4.5t/h,作业率取75%。

混合工序物料加工量=7.5吨 主机需要的加工量=12

其中:K 为生产不均衡系数,一般取1.2; 主机作业率,为75%;

理论主机台数=2.7台

为预防设备损坏选取3台

设备利用率=90%

4.1.3成型工序

成型设备应能满足砖坯组织致密和均匀,外形光洁整齐,无夹层及裂纹等,砖坯质量优劣,出于颗粒配合及泥料的塑性等因素有关外,还取决于成型压力和制砖工艺等因素。表8为镁铬砖成型设计指标。

结合以上资料及实际生产任务,可以选择300吨摩擦压砖机进行成型作业。

成型工序物料加工量=6.8吨

主机需要的加工量=12.6吨

其中:K为生产不均衡系数,一般取1.2;

主机作业率,为65%

理论主机台数=12.6台

为预防设备损坏选取13台

设备利用率=97%

主机平衡表如表9所示。

1600×450湿碾机

晶体材料制备原理与技术

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 晶体材料制备原理与技术是综合应用物理、化学、物理化学、晶体化学、材料测试与表征等先修课程所学知识的应用型专业课程,主要讲授晶体材料制备过程的基本原理和典型的晶体材料制备技术,为学生从事晶体材料制备工作提供理论基础和技术基础。 2.设计思路: 晶体材料是高新技术不可或缺的重要材料,晶体材料制备是材料科学与工程专业相关的重要生产领域。作为一门以拓展学生知识面为目的的选修课程,本课程分为三大部分:首先介绍典型的晶体材料制备方法和技术,通过课下查阅资料和课堂讨论加深学生对常见方法和技术的理解。此部分教师讲解和学生课堂讨论并重。然后介绍晶体材料制备过程中的一般原理,此部分主要由教师进行课堂讲授。最后,由学生自主查阅晶体材料制备最新文献,了解晶体材料制备技术最新进展,通过课下研读、课上汇报、讨论、教师点评等教学活动,加深学生对本课程中所学知识的理解及相关知识的综合运用。 - 3 -

3. 课程与其他课程的关系: 晶体材料制备原理与技术是综合应用物理、化学、物理化学、晶体化学、材料测试与表征等先修课程所学知识的应用型专业课程,是材料制备与合成工艺课程相关内容的细化和深入。 二、课程目标 本课程的目标是拓宽材料科学与工程专业学生的知识面,掌握晶体材料制备一般原理,了解晶体材料制备常见技术,加深对物理、化学、晶体化学以及材料表征等先修课程知识的理解,加强文献检索能力,学会分析晶体材料制备中遇到的问题,提高解决生产问题的能力,为毕业后从事晶体材料制备等生产和研究工作打下基础。 三、学习要求 晶体材料制备原理与技术是一门综合了物理、化学、物理化学、晶体化学、材料测试与表征等多学科知识的综合性课程。为达到良好的学习效果,要求学生:及时复习先修课程相关内容,按时上课,上课认真听讲,积极查阅资料,积极参与课堂讨论。本课程将包含较多的资料查阅、汇报、讨论等课堂活动。 四、教学进度 - 3 -

定型耐火材料的生产工艺流程图

定型耐火材料工艺流程 定型耐火材料的生产工艺流程图 活化煅烧 死烧

检验包装 一.原料的煅烧 原料的煅烧具有极为重要的必要性,原料的煅烧分为活化煅烧和死烧,活化煅烧是使原料全部或部分组分得到活化,变为活性状态的煅烧,通过加入添加剂得以实现,死烧则是使原料全部达到完全烧结,无论哪种煅烧都能够使生料变成熟料,熟料配料的好处如下: (1)熟料配料能够保证制品烧成后的尺寸准确性,以及制品的体积稳定性。 (2)熟料配料有利于改善制品的矿物组成及显微组织结构,从而保证制品具有良好的使用性能; (3)熟料配料有利于缩短制品的烧成周期,提高生产效率和烧成合格率。二.原料的挑选分级 原料的挑选分级能够保证优质品的质量,避免劣质原料被用来生产优质品;此外,这道工序还能保证优质原料被有价值的利用,避免优质原料被用来生产低等级的制品。 一般挑选分级的对象有耐火黏土、高铝矾土、菱镁矿等,根据熟料的外观颜色、有无显而易见的杂质、比重、致密度等情况进行人工拣选。 三.原料的破粉碎 破粉碎在耐火材料的生产流程中是一道极为重要的生产工序,它决定了产品质量的好坏,因此它有着极为重要的意义: (1)各种原料只有破粉碎到一定细度才能充分均匀混合,从而保证制品组织结构的均匀性; (2)通过破粉碎将各种原料的加工成适当粒度,以保证制品的成型密度; (3)只有将原料粉碎到一定细度,才能提高原料的反应活性,促进高温下的固相反应,形成预期的矿物组成和显微组织结构,以及降低烧成温 度。 根据破碎的不同要求,可以选择不同类型的破碎机,常用的破碎机有颚式破碎机和圆锥破碎机。

配料不仅仅是调配化学组成的过程,还是调配颗粒组成的过程,因此在配料过程中颗粒级配的设计师极为重要的,合理的颗粒级配可以达到最紧密堆积,保证坯体的成型密度,减小坯体的烧成收缩,从而保证制品的质量和性能。 以取得最紧密堆积为目的,耐火材料的颗粒组成,一般采用下述公式: y i =[a +(1?a )(d i D )n ]?100 y i ——粒径为d i 的颗粒应配入的数量(%); a ——系数,取决于物料性质及细粉含量等因素,一般情况下,a=0-0.4; n ——指数,与颗粒分布特性及细粉的比例有关,一般地n=0.5-0.9; D ——最大(临界)颗粒尺寸(mm )。 理想的堆积是粗颗粒构成骨架,中颗粒填充于大颗粒构成的空隙中,细粉则填充于中间颗粒构成的空隙中,在实际生产中,通常采取三组分颗粒配料,有时候也会采取四组分颗粒配料,不同的产品因为成型和烧成的不同,会选取不同的配比。 五. 混练 混练是使各种物料分布均匀化,并促进颗粒接触和塑化的操作过程,耐火材料的混练过程,由于颗粒粒度相差较大及成型的需要,实际上不是一个单纯的混合过程,而是伴有一定程度的碾压、排气过程。混练的最终目的是使混合料的任意单位体积内具有相同的化学组成和颗粒组成。 达到较好混练质量所需要的混练时 间,主要与物料的流动性、外加剂的种 类、混练机的结构性能等因素有关,对 应于某一种坯料及混练设备,都有一个 最佳的混练时间,超过该时间就会造成 “过混合”,如右图所示,而且最佳混练 时间有时相差较大,例如黏土砖需要 4-10min ,而镁砖需要20-25min 。

碳纤维国内技术和生产现状简介

碳纤维国内技术和生产 现状简介 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维

碳纤维制备工艺简介讲解

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

耐火材料及型壳制备.

课题名称耐火材料及型壳制备课次授课日期 授课班级 授课地点 教学目的与 要求学习目标: 1.了解不同型壳的特点。 2.掌握涂料的制备方法。 3.掌握制壳工艺各步骤的要领。 能力目标:能根据铸件特点正确型壳种类,配制符合要求的涂料,能根据特点制定型壳工艺。 素质目标:培养学生团队合作能力,具体问题具体分析的能力。 重点难点及解决方法重点: 1.制壳工艺 2.水玻璃粘结剂难点: 1. 型壳的焙烧 教学设计(方法、教具、手段、内容)方法:讲授 教具:模料样品模组 手段:多媒体 内容: 一、型壳的选择 1.常用熔模铸造型壳 2.型壳选择依据 二、耐火涂料的配制 1.耐火涂料的工艺性能与控制 2. 水玻璃粘结剂 三、制壳工艺 1. 准备工作 2.工序 3.涂挂涂料 4.撒砂 5.干燥 6.硬化 7.脱模8.型壳的焙烧 课外作业阅读相关章节,浏览精品课程网站

授课内容耐火材料及型壳制备 一、型壳的选择 1. 常用熔模铸造型壳 2.型壳选择依据 二、耐火涂料的配制 1.耐火涂料的工艺性能与控制 2.水玻璃粘结剂 三、制壳工艺 1. 准备工作 2. 工序 3.涂挂涂料 4.撒砂 5.干燥 6.硬化 7.脱模 8.型壳的焙烧10min 5min 10min 10min 10min 5min 10min 10min 10min 10min 5min 5min

授课内容备注 一、型壳的选择 1. 常用熔模铸造型壳 A 水玻璃型壳 价格低廉、型壳耐火度低,表面不够光洁,尺寸精度低,脱蜡 时容易酥烂,硬化时污染环境 B 硅溶胶型壳 硅溶胶价格适中,型壳服役性能好,制壳时不放出有害物质, 处理和配制工艺简单,造型时间长。 C 硅酸乙酯型壳 耐火度高,强度大,铸件尺寸精度和表面粗糙度都好,但价格 昂贵,配好后保质期短。 D 复合型壳 面层和背层用两种涂料,可以兼顾两者的优点。 2.型壳选择依据 主要根据产品的精度和工艺要求来选择,在能够满足工艺要求 的前提下,尽量选择成本低的型壳,选择是应注意粘结剂和耐火材 料的配比。 二、耐火涂料的配制 1.耐火涂料的工艺性能与控制 耐火涂料是用粉状耐火材料和粘结剂按比例组成的悬浮液。型 壳的耐火度、高温化学稳定性、热膨胀性、强度、型腔表面的质量 主要取决于耐火材料和粘结剂本身的性能,以及耐火涂料的工艺性 能。 耐火涂料的工艺性能主要有粘度、涂挂性、分散性和稳定性等。 耐火涂料的粘度大小决定了流动性好坏、涂料层厚度及涂覆层

材料制备方法

高活性氧化镁的制备与应用 The preparation and application of highly active magnesium oxide Zhao xian tang (College of Science and Metallurgical Engineering,Wuhan University of Science and Technology,Hubei,, Wuhan,,430081) 摘要:本文论述了高活性氧化镁的特性、制备方法、活性测定及活性影响因素,主要就制备方法进行探讨,了解熟悉高活性氧化镁的生产过程,思考寻求制备更好的高活性氧化镁。 关键词:高活性氧化镁制备 Abstract:This paper discusses the characteristics of the high-activity magnesium oxide, preparation methods, determination of activity and active factors affecting, which mainly discusses the preparation methods, in order to familiar with the production process of highly active magnesium oxide and think for the preparation of highly active magnesium oxide. Keywords: high-activity magnesium oxide preparation method 引言 活性氧化镁的比外表积较大,是制备高功用精密无机材料、电子元件、油墨、有害气体吸附剂的重要质料。这种氧化镁因为其颗粒微细化,外表原子与体相原子数的份额较大而具有极高的化学活性和物理吸附才能。因为具有杰出的烧结功能,

国内外碳纤维生产现状及发展趋势

国内外碳纤维生产现状及发展趋势 碳纤维, 国内外, 趋势, 生产, 发展 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量 生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热 传导性高、热膨胀系数低、X光穿透性高,非磁体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各 个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典 型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 我国自20世纪60年代开始碳纤维研究开发至今已有近40年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模 工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济社会发展进程极不相 称。所以,研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是当前我国碳纤维工业发展的迫切任务。 1生产方法 目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。从粘胶纤维制取高力学性能的碳纤维必 须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,成本较高,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高, 但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,而且产品的力学性能优良,用 途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为当今碳纤维工业生产 的主流。 聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。 原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕 等工序。

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

耐火材料的生产工艺

2010级化学班孟享洁2010061415 耐火材料的制备 耐火材料是一种耐火度不低于1580℃,有较好的抗热冲击和化学侵蚀的能力、导热系数低和膨胀系数低的无机非金属材料。其主要是以铝矾土、硅石、菱镁矿、白云石等天然矿石为原料经加工后制造而成的。其应用是用作高温窑、炉等热工设备的结构材料,以及工业用高温容器和部件的材料,并能承受相应的物理化学变化及机械作用。主要是广泛用于冶金、化工、石油、机械制造、硅酸盐、动力等工业领域,在冶金工业中用量最大,占总产量的50%~60%。耐火材料的发展在国民工业生产的应用中有着举足轻重的地位。中国耐火材料的发展历史悠久,具有了较为完整的生产工艺,其当代的发展已经是能独立研发各种性能较为优越的耐火材料,但依然存在各种缺点和不足。其制备流程图如下所示: 耐火材料制备原理: 1.耐火原料的加工 原料的加工主要包括原料的精选提纯.均化或合成;原料的干燥和煅烧;原料的破粉碎和分级。 原料的精选提纯和均化为了提高原料的纯度,一般需经拣选或冲洗,剔除杂质,有的还需要采用适当选矿方法进行精选提纯。有的原料中成分不均,需要均化。 原料的煅烧:为了保证原料的高温体积稳定性。化学稳定性和高强度,多数天然原料和合成原料,需经高温煅烧制成熟料或熔融成熔块。烧结温度T约为其熔点的0.7~0.9倍。 原料的破粉碎和分级:原料的破粉碎的目的是按照配料要求制成不同粒级的颗粒及细粉,进行级配,使多组分间混合均匀,以便相互反应,并尽可能获得

致密的或具有一定粒状结构的制品胚体。 2耐火材料成型工艺 耐火材料借助于外力或模型,成为具有一定尺寸。形状和强度的胚体或制品的过程。压制或成型是耐火材料生产工艺过程中的重要环节。按胚料含水量的多少,分为半干法.可塑法.注浆法。 3耐火材料的干燥 干燥过程可分为三个阶段。在此之前有一个加热阶段。一般加热阶段时间很短,胚体温度上升到湿球温度。第二阶段是降速阶段,随着干燥时间的延长,或胚体含水量的减少,胚体表面的有效蒸发面积逐渐减少,干燥速度逐渐降低。第三阶段干燥速度逐渐接近零,最终胚体水分不再减少。 4耐火材料的烧成 烧成是耐火制品生产中最后一道工序。制品在烧成过程中发生一系列物理化学变化,随着这些变化的进行,气孔率降低,体积密度增大,使胚体变成具有一定尺寸.形状和结构强度的制品。 耐火材料的生产工艺 1原料的加工 原料的加工主要包括原料的精选提纯.均化或合成;原料的干燥和煅烧;原料的破粉碎和分级。 2配料与混练 配料组成:(1).化学组成:主成分,易熔杂质总量和有害杂质量的规定(2).颗粒配比(3).常温结合剂(4).原料中水分和灼减的换算。配料方法:重量:磅秤、自动称量称、称量车、电子称、光电数字显示称。容积:带式、板式、槽式、圆盘式、螺旋式、振动给料机。混练:使不同组分和粒度的物料同的物料同

耐火材料制备实用工艺,

耐火材料制备原理及工艺 摘要耐火材料是一种耐火度不低于1580℃,有较好的抗热冲击和化学侵蚀的能力、导热系数低和膨胀系数低的无机非金属材料。其主要是以铝矾土、硅石、菱镁矿、白云石等天然矿石为原料经加工后制造而成的。其应用是用作高温窑、炉等热工设备的结构材料,以及工业用高温容器和部件的材料,并能承受相应的物理化学变化及机械作用。主要是广泛用于冶金、化工、石油、机械制造、硅酸盐、动力等工业领域,在冶金工业中用量最大,占总产量的50%~60%。耐火材料的发展在国民工业生产的应用中有着举足轻重的地位。中国耐火材料的发展历史悠久,具有了较为完整的生产工艺,其当代的发展已经是能独立研发各种性能较为优越的耐火材料,但依然存在各种缺点和不足。 关键词耐火材料分类,原理工艺,前景 前言耐火材料是耐火度不低于1580℃的材料。一般是指主要由无机非金属材料构成的材料和制品,耐火度是指材料在高温作用下达到特定软化程度时的温度,它标志材料抵抗高温作用的性能,是高温技术的基础材料。没有耐火材料就没有办法接受燃料或发热体散发的大量热,没有耐火材料制成的容器也没有办法使高温状态的物质保持一定时间。随着现代工业技术的发展,不但对耐火材料质量要求越来越高,对耐火材料有特殊要求的品种越来越多,形状越来越复杂。其成产流程大多如图1-1。 图1-1耐火材料的生产流程[1] 1耐火材料的分类和性能要求 1.1分类 1.1.1按组成来分 耐火材料可分为硅质制品、硅酸铝质制品、镁质制品、白云石制品、铬质制品、锆质制品、纯氧化制品及非纯氧化物制品等。 1.1.2按工艺方法来划分

可分为泥浆浇注制品、可塑成形制品、半干压成形的制品、由粉末非可塑料捣固成形制品、由熔融料浇注的制品、经喷吹或拉丝成形的制品及由岩石锯成的天然制品等。 1.1.3根据耐火度来分 可分为普通耐火材料制品,其耐火度为1580℃~1770℃;高级耐火材料制品,其耐火度为1770℃~2000℃;特级耐火材料制品。其耐火度为2000℃℃以上。1.1.4根据耐火材料制品的外形来分 可分为定形耐火材料制品,如烧成砖。电熔砖。耐火隔热砖以及实验和工业用坩埚。器皿等特殊制品;不定形耐火材料制品,简称散装料,在使用地点才制成所需要的形状和进行热处理,如浇注料、捣打料、投射料、耐火泥等;耐火纤维,如铝纤维、硅酸铝纤维等,使用时一般经过加工成毯、毡、板、绳。组合键和纤维块制品。 1.2基本性能要求 耐火材料的性能表现在诸多方面,其中它的物理性能包括结构性能、热学性能、力学性能、使用性能和作业性能。结构性能包括气孔率、体积密度、吸水率、透气度、气孔孔径分布等。热学性能包括热导率、热膨胀系数、比热、热容、导温系数、热发射率等。力学性能包括耐压强度、抗拉强度、抗折强度、抗扭强度、剪切强度、冲击强度、耐磨性、蠕变性、粘结强度、弹性模量等。使用性能包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗渣性、抗酸性、抗碱性、抗水化性、抗CO侵蚀性、导电性、抗氧化性等。作业性包括稠度、塌落度、流动度、可塑性、粘结性、回弹性、凝结性、硬化性等。其中耐火度是耐火材料的最主要的性能技术指标,耐火度越高,其质量也好[2]。 耐火材料的重要性体现在:影响炉子生产率,影响产品质量,影响炉子寿命,以及影响产品成本。 2传统耐火材料的生产工艺 2.1原料的加工

材料制备与合成

《材料制备与合成[料]》课程简介 课程编号:02034916 课程名称:材料制备与合成/Preparation and Synthesis of Materials 学分: 2.5 学时:40 (课内实验(践):0 上机:0 课外实践:0 ) 适用专业:材料科学与工程 建议修读学期:6 开课单位:材料科学与工程学院材料物理与化学系 课程负责人:方道来 先修课程:材料化学基础、物理化学、材料科学基础、金属材料学 考核方式与成绩评定标准:期末开卷考试成绩(占80%)与平时考核成绩(占20%)相结合。 教材与主要参考书目: 教材:《材料合成与制备》. 乔英杰主编.国防工业出版社,2010年. 主要参考书目:1. 《新型功能材料制备工艺》, 李垚主编. 化学工业出版社,2011年. 2. 《新型功能复合材料制备新技术》.童忠良主编. 化学工业出版社,2010年. 3. 《无机合成与制备化学》. 徐如人编著. 高等教育出版社, 2009年. 4. 《材料合成与制备方法》. 曹茂盛主编. 哈尔滨工业大学出版社,2008年. 内容概述: 本课程是材料科学与工程专业本科生最重要的专业选修课之一。其主要内容包括:溶胶-凝胶合成法、水热与溶剂热合成法、化学气相沉积法、定向凝固技术、低热固相合成法、热压烧结技术、自蔓延高温合成法和等离子体烧结技术等。其目的是使学生掌握材料制备与合成的基本原理与方法,熟悉材料制备的新技术、新工艺和新设备,理解材料的合成、结构与性能、材料应用之间的相互关系,为将来研发新材料以及材料制备新工艺奠定坚实的理论基础。 The course of preparation and synthesis of materials is one of the most important specialized elective courses for the undergraduate students majoring in materials science and engineering. It includes the following parts: sol-gel method, hydrothermal/solvothermal reaction method, CVD method, directional solidification technique, low-heating solid-state reaction method, hot-pressing sintering technique, self-propagating high-temperature synthesis, and SPS technique. Its purpose is to enable students to master the basic principles and methods of preparation and synthesis of materials, and grasp the new techniques, new processes and new equipments, and further understand the relationship among the synthesis, structure, properties and the applications of materials. The course can lay a firm theoretical foundation for the research and development of new materials and new processes in the future for students.

耐火材料制备原理及工艺设计

攀枝花学院 学生课程设计(论文) 题目:耐火材料制备原理及工艺设计 学生姓名:李茂学号: 201111101027 所在院(系):材料工程学院 专业: 2011材料科学与工程 班级: 2011级材料科学与工程一班指导教师:李亮职称:副教授 2013年12 月16 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书

1.绪论 耐火度高于1580℃的无机非金属材料称为耐火材料,耐火度指耐火材料锥形体试样在没有荷重情况下,抵抗高温作用而不软化熔倒的摄氏温度。耐火材料主要是指无机非金属材料构成的材料和制品,是用作高温窑炉等热工设备的结构材料,以及工业用高温窑和部件的材料,并能承受相应的物理化学变化和机械作用。关于耐火材料的工艺20世纪50年代以前都是采用单一耐火原料制造的,50年代以后都采用了复合工艺。耐火材料种类繁多,通常按耐火度高低分为普通耐火材料(1580~1770℃)、高级耐火材料(1770~2000℃)和特级耐火材料(2000℃以上);按化学特性分为酸性耐火材料、中性耐火材料和碱性耐火材料。此外,还有用于特殊场合的耐火材料。现在对于耐火材料的定义,已经不仅仅取决于耐火度是否在1580℃以上了。目前耐火材料泛指应用于冶金、石化、水泥、陶瓷等生产设备内衬的无机非金属材料。经常使用的耐火材料有AZS砖、刚玉砖、直接结合镁铬砖、碳化硅砖、氮化硅结合碳化硅砖,氮化物、硅化物、硫化物、硼化物、碳化物等非氧化物耐火材料;氧化钙、氧化铬、氧化铝、氧化镁、氧化铍等耐火材料。经常使用的隔热耐火材料有硅藻土制品、石棉制品、绝热板等。经常使用的不定形耐火材料有补炉料、耐火捣打料、耐火浇注料、耐火可塑料、耐火泥、耐火喷补料、耐火投射料、耐火涂料、轻质耐火浇注料、炮泥等。 近几十年来,高温技术迅速发展,由于熔炼难熔金属和特种合金和超纯金属的需要,发展了特种耐火材料,耐火材料的应用领域不断扩大,占有重要地位。目前,我国每年消耗耐火材料约800万吨。镁铬质耐火材料是以氧化镁(MgO)和三氧化二铬(Cr2O3)为主要成分,以方镁石和尖晶石为主要矿物组分的耐火材料制品。镁铬耐火砖的耐火度高,高温强度大,抗碱性渣侵蚀性强,热稳定性优良,对酸性渣也有一定的适应性。但是今后镁铬材料产量将会下降,因为在高温条件下制备和使用时,它会产生有害的六价铬的化合物造成环境污染。制造镁铬砖的主要原料是烧结镁砂和铬铁矿。镁砂原料的纯度要尽可能高,铬铁矿化学成分的要求为:Cr2O3 30~45%,CaO不大于1.0~1.5%。烧制镁铬砖的生产工艺与镁质砖大体相仿。为了消除砖在烧成过程中由于MgO和Cr2O3、Al2O3或铁的氧化物反应生成尖晶石时的膨胀而引起的松散效应,也可采用合成的共同烧结料制成镁铬砖。此外,还有不烧镁铬砖,例如,用无机镁盐溶液结合的不烧镁铬砖。不烧镁铬砖生产工艺简单,成本低,热稳定性也好,但高温强度远不及烧成砖。50年代末,发展出一种所谓“直接结合”镁铬砖。这种砖的特点是原料纯,烧成温度高,方镁石、尖晶石等高温相之间直接结合,硅酸盐等低熔相为孤岛状分布,因此,显著地提高了砖的高温强度和抗渣性。镁铬砖主要用于冶金工业,如构

烧结钕铁硼的生产工艺流程要点

烧结钕铁硼的生产工艺流程 发布日期:2012-03-30 浏览次数:167 核心提示:本文对稀土永磁材料的发展过程、性能要求、主要类型等方面做了介绍,着重介绍了烧结钕铁硼磁体的生产工艺流程,最后对目前烧结钕铁硼在生产、科研、生活等各领域中的应用进行了总结,并对其发展方向进行了思考,指出应深入研究烧结钕铁硼磁体生产工艺,提高我国钕铁硼磁体的产品质量,才能增加企业自身的竞争力。 1.1稀土永磁材料概述 从广义上讲,所有能被磁场磁化、在实际应用中主要利用材料所具有的磁特性的一类材料成为磁性材料。它包括硬磁材料、软磁材料、半硬磁材料、磁致伸缩材料、磁光材料、磁泡材料和磁制冷材料等,其中用量最大的是硬磁材料和软磁材料。硬磁材料和软磁材料的主要区别是硬磁材料的各向异性场高、矫顽力高、磁滞回线面积大、技术磁化到饱和需要的磁场大。由于软磁材料的矫顽力低,技术磁化到饱和并去掉外磁场后,它很容易退磁,而硬磁材料由于矫顽力较高,经技术磁化到饱和并去掉磁场后,它仍然长期保持很强的磁性,因此硬磁材料又称为永磁材料或恒磁材料。古代,人们利用矿石中的天然磁铁矿打磨成所需要的形状,用来指南或吸引铁质器件,指南针是中国古代四大发明之一,对人类文明和社会进步做出过重要贡献。近代,磁性材料的研究和应用始于工业革命之后,并在短时间内得到迅速发展.现今,对磁性材料的研究和应用无论在广度或者深度上都是以前无可比拟的,各类高性能磁性材料,尤其是稀土永磁材料的开发和应用对现代工业和高新技术产业的发展起着巨大的推动作用。 1.2永磁材料性能要求 永磁材料的主要性能是由以下几个参数决定的 1.2.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积的最大值。这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。 1.2.2饱和磁化强度:是永磁材料极为重要的参数。永磁材料的饱和磁化强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。

最新原理以及制备工艺的资料

原理以及制备工艺的 资料

1.2 有机电致发光二极管结构及其发光原理 有机电致发光二极管是将电能转化成光能的器件,属于电荷注入型发光器件。其基本结构如上文所述为夹心结构[Error! Bookmark not defined.],最简单的结构是一个发光层薄膜(EML)加在正负两个电极之间,正负电荷分别从两个电极注入到发光层中并进行复合发光。发光的过程大致可以总结为下面5个步骤: 1.载流子的注入; 2.载流子的传输; 3.激子的产生; 4.激子的迁移和衰减(辐射衰减); 5.激子的出射(光的耦合输出) 1.载流子的注入:在正向偏压的作用下,空穴从金属阳极费米能级(φa)注入到发光层的最高未占有轨道(HOMO),而电子从金属阴极费米能级(φc)注入到发光层的最低未占有轨道(LUMO)。形成PLED的正向和负向两种载流子。 载流子注入时,空穴要克服阳极与发光层HOMO之间的能量势垒,而电子要克服阴极与发光层LUMO能级之间的能量势垒,势垒越小,载流子越容易注入,因此金属电极的功函数要与发光层的HOMO和LUMO相匹配。当势垒高度小于0.3-0.4eV时可认为该接触为欧姆接触[i],此时可以认为载流子的注入是没有势垒的。电致发光器件要求两个电极至少一段是透明,光可以由此段出射。作为底端出射结构,氧化铟锡(ITO)由于具有较高的透光率和优良的导电率以基脚高的功函数,通过溅射的方法,制备成ITO玻璃被广泛用作阳极。

而阴极则常用一些具有较高发射率的低功函数金属,例如钡,钙,镁,铯等[ii,iii,iv]。图1-1给出了典型器件结构的相应能级示意图。[v]但是一般的聚合物发光材料的HOMO和LUMO与阳极和阴极的能级匹配并不是最理想的状态,存在载流子的注入势垒,导致器件高的起亮电压,高的能耗和低的器件性能。 图1-1 器件的能级结构示意图[14] Fig.1-1 The sketch of PLED’s energy level[14] 载流子的注入有两种理论机制,分别是隧穿机制[vi,vii,viii ]和空间电荷限制效应机制[ix,x,xi]。一般情况下,当载流子的注入都不存在势垒时的载流子注入机制符合空间电荷限制效应理论。即此时的注入情况取决于发光层材料的载流子迁移率,低的载流迁移率会导致电荷在界面层的积累,阻止载流子的进一步注入[xii,xiii,xiv]。当界面的接触不是欧姆接触时,要将加在器件上的电场增大到一定的程度才能使载流子注入,载流子开始注入时的电压称为阈值电压,阈值电场的大小取决于注入的能量势垒的高低,此时的载流子注入机制符合隧道贯穿机制。但是,实际情况下这两种载流子注入情况并不是孤立存在的。 2.载流子的传输:诸如的载流子在电场作用下,在器件中向对面的电极迁移。

聚丙烯腈碳纤维的工艺流程

聚丙烯腈碳纤维的工艺流程 1.概述 碳纤维是一种力学性能优异的新材料,它不仅具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。聚丙烯碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 2.制备 聚丙烯腈碳纤维是以聚丙烯腈纤维为原料制成的碳纤维,主要作复合材料用增强体。无论均聚或共聚的聚丙烯腈纤维都能制备出碳纤维。为了制造出高性能碳纤维并提高生产率,工业上常采用共聚聚丙烯腈纤维为原料。对原料的要求是:杂质、缺陷少;细度均匀,并越细越好;强度高,毛丝少;纤维中链状分子沿纤维轴取向度越高越好,通常大于80%;热转化性能好。 生产中制取聚丙烯腈纤维的过程是:先由丙烯腈和其他少量第二、第三单体(丙烯酸甲醋、甲叉丁二脂等)共聚生成共聚聚丙烯腈树脂(分子量高于 6~8万),然后树脂经溶剂(硫氰酸钠、二甲基亚矾、硝酸和氯化锌等)溶解,形成粘度适宜的纺丝液,经湿法、干法或干-湿法进行纺丝,再经水洗、牵伸、干燥和热定型即制成聚丙烯腈纤维。若将聚丙烯腈纤维直接加热易熔化,不能保持其原来的纤维状态。因此,制备碳纤维时,首先要将聚丙烯腈纤维放在空气中或其他氧化性气氛中进行低温热处理,即预氧化处理。预氧化处理是纤维碳化的预备阶段。一般将纤维在空气下加热至约270℃,保温0.5h~3h,聚丙烯腈纤维的颜色由白色逐渐变成黄色、棕色,最后形成黑色的预氧化纤维。这是聚丙烯腈线性高分子受热氧化后,发生氧化、热解、交联、环化等一系列化学反应形成耐热梯型高分子的结果。再将预氧化纤维在氮气中进行高温处理(l 600℃),即碳化处理,则纤维进一步产生交联环化、芳构化及缩聚等反应,并脱除氢、氮、氧原子,最后形成二维碳环平面网状结构和层片粗糙平行的乱层石墨结构的碳纤维。 由PAN原丝制备碳纤维的工艺流程如下:PAN原丝→预氧化→碳化→石墨化→表面处理→卷取→碳纤维。 3.性能 碳纤维有如下的优良特性:①比重轻、密度小;②超高强力与模量;③纤维细而柔软; ④耐磨、耐疲劳、减振吸能等物理机械性能优异;⑤耐酸、碱和盐腐蚀,可形成多孔、表面活性、吸附性强的活性碳纤维;⑥热膨胀系数小,导热率高,不出现蓄能和过热;高温下尺寸稳定性好,不燃,热分解温度800℃,极限氧指数55;⑦导电性、X射线透过性及电磁波遮蔽性良好;⑧具有润滑性,不沾润在熔融金属中,可使其复合材料磨损率降低; ⑨生物相容性好,生理适应性强。

防火材料的制备工艺技术

1 02137686.7 防火保温材料 2 01130037.X 一种隔热防火材料 3 02108446.7 轻质隔音隔热防火建筑材料及其制造方法 4 02113998.9 防火铝塑板用无卤阻燃聚乙烯芯层材料及其制备方法 5 03118965.2 防火膨胀型酚醛树脂基无机纤维增强复合材料与制作方法 6 95107617.5 防火材料及其制造防火材料的方法 7 96109749.3 无机保温隔声防火泡沫材料及其生产方法 8 95113792.1 蜂窝复合防火材料及其制作方法 9 85109741 防火材料 10 87100146 防水防火建筑材料 11 87107316 隔声、隔热和防火的轻质材料及其制造方法 12 88105944.7 隔热防火复合材料及其用途 13 92114521.7 内墙保温绝热隔音防火材料及其制作方法 14 94190052.5 用于屋顶和护板的防火材料 15 94101365.0 防火隔热材料 16 95105457.0 改良的可喷涂波特兰水泥基防火复合材料 17 95109200.6 高浓度硼酸化合物及其防火耐火组合物和防火耐火材料 18 95101363.7 保险箱防火隔热漂珠复合耐火材料 19 97107484.4 一种防火膨胀材料、一种防火膨胀密封条及其制作方法 20 99116060.6 用玻璃粉制造的隔热防火材料及制造方法 21 99116059.2 用硅质材料粉制造的隔热防火材料及制造方法 22 99102993.3 用于防火用途的硅氧烷树脂复合材料及制造该复合材料的方法 23 98102760.1 硅酸钙隔热防火材料及其制造方法 24 00104138.X 含水膨胀涂料组合物及用其生产的防火材料 25 00120490.4 防火材料 26 00100540.5 硅酸钙隔热防火材料的制造方法 27 99809162.6 耐热防火材料 28 01129957.6 一种新型的防火材料 29 02109724.0 镁质防火隔热材料及制品 30 200610069252.5 高抗弯强度的防火绝热蜂窝复合材料制品及制作方法 31 200710157532.6 一种防火保温材料 32 200710050745.9 隧道轻质无机防火复合材料 33 200710164832.7 用竹木丝条或刨花为原料压制防火材料的方法 34 200610171790.5 有机/无机复合材料与包含该复合材料的防火板材 35 200810046666.5 节能防火建筑材料纳米聚脲硬泡体的生产工艺 36 200580050039.3 防火毡材料

相关文档
最新文档