2018中考数学分类汇编二次函数压轴题14道
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学分类汇编二次函数压轴题
1.(2016•成都第28题)
如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点
C (0,﹣),顶点为
D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧.
(1)求a 的值及点A ,B 的坐标;
(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式; (3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.
2.(2016•扬州第28题)如图1,二次函数2
y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.
(1)求这个二次函数的表达式;
(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标; (3)如图3,一次函数y kx =(k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y 轴
交OC 于点N 。若在点T 运动的过程中,2
ON OM
为常数,试确定k 的值。
图3
图2(备用图)
图1
二、与轴对称和等腰三角形性质有关的综合题
3.(2016•益阳第21题)
如图,顶点为A的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;
(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.
4.(2016•哈尔滨第27题)如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=-3
2
,
线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;
(2)设点F是BD的中点,点P是线段DO上的动点,将△BPF沿边PF翻折,得到△B′PF,使△B′PF与△DPF重叠部
分的面积是△BDP的面积的1
4
,若点B′在OD上方,求线段PD的长度;
(3)在(2)的条件下,过B′作B′H⊥PF于H,点Q在OD下方的抛物线上,连接AQ与B′H交于点M,点G在线段
AM上,使∠HPN+∠DAQ=135°,延长PG交AD于N.若AN+ B′M=5
2
,求点Q的坐标.
K
O y x C B
A 图2
三、与图形的平移与旋转变换性质有关的综合题
5.(2016•重庆第26题)如图1,二次函数1x 2-x 2
1y 2
+=
的图象与一次函数y =kx +b (k ≠0)的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数y =kx +b (k ≠0)的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且S △AMO ︰S 四边形AONB =1︰48。 (1)求直线AB 和直线BC 的解析式;
(2)点P 是线段AB 上一点,点D 是线段BC 上一点,PD //x 轴,射线PD 与抛物线交于点G ,过点P 作PE ⊥x 轴于点E ,
PF ⊥BC 于点F ,当PF 与PE 的乘积最大时,在线段AB 上找一点H (不与点A ,点B 重合),使GH +
2
2
BH 的值最小,求点H 的坐标和GH +2
2BH 的最小值;
(3)如图2,直线AB 上有一点K (3,4),将二次函数1x 2-x 21y 2+=沿直线BC 平移,平移的距离是t (t ≥0),平移
后抛物线上点A ,点C 的对应点分别为点A /
,点C /
;当△A /C /
K 是直角三角形时,求t 的值。
6.(2016•苏州第28题)如图,直线:33l y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线
224(0)y ax ax a a =-++<经过点B .
(1)求该地物线的函数表达式;
(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM .设点M 的横坐标为m ,△ABM 的面积为S .求S 与m 的函数表达式,并求出S 的最大值;
(3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;
②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l '与直线AM '重合时停止旋转.在旋转过程中,直线l '与线段BM '交于点C .设点B 、M '到直线l '的距离分别为
1d 、2d ,当12d d +最大时,求直线l '旋转的角度(即∠BAC 的度数).
四、与直角三角形性质有关的综合题
7.(2016•甘肃平凉第28题)如图,已知抛物线y =﹣x 2+bx +c 经过A (3,0),B (0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;
(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,
沿着AB 方向以个单位/秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形?
(3)如图②,取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.