运用简单线性规划思想理解求最值问题

运用简单线性规划思想理解求最值问题
运用简单线性规划思想理解求最值问题

运用简单线性规划思想理解求最值问题

华东师范大学2003级(数学)教育硕士

江苏省溧阳市戴埠高级中学(213331) 潘晓春

简单线性规划是高中数学教学的新内容之一,是解决一些在线性约束条件下的线性目标函数的最值(最大值或最小值)的问题。它是运筹学的一个重要内容,对于形成最优化思想有着重要的作用,并且在实际生产活动中也有着广泛的应用,可以实现对资源的最佳利用。简单线性规划只能解决一些二元线性约束下条件下的二元函数的最值问题,但它的思想可以延伸到其他的数学最值问题的求解过程中。

简单线性规划的基本思想即在一定的约束条件下,通过数形结合求函数的最值。解决问题时主要是借助平面图形,运用这一思想能够比较有效地解决一些二元函数的最值问题。本文将从规划思想出发来探讨一些高中数学中一些常见的函数最值问题。

一、 线性约束条件下线性函数的最值问题

线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。

例1 已知4335251x y x y x -≤-??+≤??≥?

,2z x y =+,求z 的最大值和最小值

约束条件:4335251x y x y x -≤-??+≤??≥? ,是关于,x y 的一个

二元一次不等式组; 目标函数:2z x y =+,是关于,x y 的一个二元一次函数;

可行域:是指由直线43x y -=-,3525

x y +=和1x =所围成的一个三角形区域(包括边界)U

(如图1);

可行解:所有满足(),x y U ∈(即三角形区域内(包括边界)的点的坐标)实数,x y 都是可行解;

最优解:(),x y U ∈,即可行域内一点(),x y ,使得一组平行线0x y z +-=(z 为参数)中的z 取得最大值和最小值时,所对应的点的坐标(),x y 就是线性规划的最优解。

图 1

当线性约束条件中的二元一次不等式组中出现一个二元一次方程(或一元一次方程)时,则可行域就转变成一条线段(或一条直线,或一条射线)。

例2 已知,x y 满足124126x y x y x y +=??+≥??-≥-?,求5x y -的最大值和最小值 约束条件:124126x y x y x y +=??+≥??-≥-?

,是关于,x y

的一个二元一次不等式组;

目标函数:5z x y =-,是关于,x y 的

一个二元一次函数;

可行域:是指由直线1x y +=被直线26x y -=-和241x y +=所夹的一条线段

AB (如图1)

; 可行解:所有满足(),x y AB ∈(即线段上的点的坐标)实数,x y 都是可行解; 最优解:(),x y U ∈,即可行域内一点(),x y ,使得一组平行线50x y z --=(z 为参数)中的z 取得最大值和最小值时,所对应的点的坐标(),x y 就是线性规划的最优解。

这类问题的解决,关键在于能够正确理解线性约束条件所表示的几何意义,并画出其图形,利用简单线性规划求最优解方法求出最优解及目标函数的最大值或最小值。

二、 非线性约束条件下线性函数的最值问题

高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值

约束条件:224x y +=,是关于,x y 的一个二元二次方程;

目标函数:32z x y =+,是关于,x y 的一个二元一

次函数;

可行域:是圆224x y +=上的圆周U (如图3)

可行解:所有满足(),x y U ∈(即圆周上的点的坐标)

实数,x y 都是可行解;

最优解:(),x y U ∈,即可行域内一点(),x y ,使得

一组平行线320x y z +-=(z 为参数)中的z 取得最大

值和最小值时,所对应的点的坐标(),x y 就是线性规划

的最优解。

3 24x +图 2

给定区间内的函数最值问题也可以看作是这类问题。

例4 求函数4y x x

=+[]()1,5x ∈的最大值和最小值。 约束条件:154x y x x ≤≤???=+??

是关于,x y 的一个二元不等式组; 目标函数:z y =是关于,x y

可行域:函数4y x x

=+的图象在直线1x =和5x =之间(包括端点)的部分曲线U (如图4)

可行解:所有满足(),x y U ∈(即曲线段上的点的坐标)实数,x y 都是可行解;

最优解:(),x y U ∈,即可行域内一点(),x y ,使得

一组平行线0y z -=(z 为参数)中的z 取得最大值和最

小值时,所对应的点的坐标(),x y 就是线性规划的最优解。 这类问题的解决,关键在于能够正确理解非线性约束条件所表达的几何意义,并画出其图形,利用简单线性规划求最优解方法求出最优解及目标函数的最大值或最小值。

三、 线性约束条件下非线性函数的最值问题

这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例5 已知实数,x y 满足不等式组10101x y x y y +-≤??-+≥??≥-?

,求22448x y x y +--+的最小值。

约束条件:10101x y x y y +-≤??-+≥??≥-?是一个关于,x y 的一个二元一次不等式组;

目标函数:22448z x y x y =+--+是一个关于

,x y 的一个二元二次函数,可以看作是一点(),x y 到

点()2,2的距离的平方;

可行域:是指由直线10x y +-=,10x y -+=和

1y =-所围成的一个三角形区域(包括边界)U (如图5);

可行解:所有满足(),x y U ∈(即三角形区域(包括边界)内的点的坐标)实数,x y

图 4

O 1y =-

图 5

都是可行解;

最优解:(),x y U ∈,即可行域内一点(),x y ,使得它到点()2,2的距离最小,则其距离的平方也取得最小值,此时所对应的点的坐标(),x y 就是最优解。

例6 实数,x y 满足不等式组00220y x y x y ≥??-≥??--≥?,求11y x -+的最小值 约束条件:00220y x y x y ≥??-≥??--≥?是一个关于,x y

二元一次不等式组;

目标函数:22448z x y x y =+--+,x y 的一个二元函数,可以看作是一点(),x y ()1,1

-的斜率;

可行域:是指由直线0y =,0x y -=220x y --=所围成的一个三角形区域

(包括边界)(如图6);

可行解:所有满足(),x y U ∈括边界)内的点的坐标)实数,x y 都是可行解;

最优解:(),x y U ∈,即可行域内一点(),x y ,使得它与点()2,2的斜率取得最小值,此时所对应的点的坐标(),x y 就是最优解。

这类问题的解决,关键在于能够正确理解非线性目标函数所表示的几何意义,并利用图形及非线性目标函数所表示的几何意义求出最优解及目标函数的最大值或最小值。

四、 非线性约束条件下非线性函数的最值问题

在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例7

已知,x y 满足y =2y x +的最大值和最小值

约束条件:y =,x y 的一个二元

方程;

目标函数:2

y z x =+是一个关于,x y 的一个二元函数,可以看作是一点(),x y 与点()2,0-的斜率;

可行域:以原点为圆心,1为半径的在x 轴上方的x y =O 图 6

图 7

半圆及与x 轴的交点U (如图7);

可行解:所有满足(),x y U ∈(即半圆(包括交点)上的点的坐标)实数,x y 都是可行解;

最优解:(),x y U ∈,即可行域内一点(),x y ,使得它与点()2,0-的斜率取得最大值和最小值,此时所对应的点的坐标(),x y 就是最优解。

这类问题的解决,关键在于能够正确理解非线性约束条件与非线性目标函数所表示的几何意义,利用非线性约束条件作出图形并利用非线性目标函数所表示的几何意义求出最优解及目标函数的最大值或最小值。

利用线性规划思想去理解高中数学中一些求最值问题,实际上是对数学形结合思想的提升,利用线性或非线性函数的几何意义,通过作图解决最值问题。是从一个新的角度对求最值问题的理解,对于学生最优化思想的形成是非常有益的。

人教版 高中数学 简单的线性规划问题教案

简单的线性规划问题 一、教学内容分析 普通高中课程标准教科书数学5(必修)第三章第3课时 这是一堂关于简单的线性规划的“问题教学”. 线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科 学研究、工程设计、经济管理等许多方面的实际问题. 简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源 一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以 最少的人力、物力、资金等资源来完成.突出体现了优化的思想. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等的概 念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用. 二、学生学习情况分析 本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义, 并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问 题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关 系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日, 这都成了学生学习的困难. 三、设计思想 本课以问题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,以几何画 板作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。注重引导帮助学生充分体验 “从实际问题到数学问题”的建构过程,“从具体到一般”的抽象思维过程,应用“数形结 合”的思想方法,培养学生的学会分析问题、解决问题的能力。 四、教学目标 1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解. 2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神; 3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用. 五、教学重点和难点 求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点.

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

简单的线性规划问题附答案)

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变化时,方程表 示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

特别解析线性规划求最值

特别解析线性规划求最 值 Document number:BGCG-0857-BTDO-0089-2022

特别解析:线性规划求最值一、目标函数线的平移法:利用直线的截距解决最值问题 例1 已知点() P x y ,在不等式组 20 10 220 x y x y - ? ? - ? ?+- ? , , ≤ ≤ ≥ 表示的平面区域上运动,则 z x y =-的取值范围是(). (A)[-2,-1](B)[-2,1] (C)[-1,2](D)[1,2] 解析:由线性约束条件画出可行域,考虑z x y =-, 变形为y x z =-,这是斜率为1且随z变化的一族平行 直线.z-是直线在y轴上的截距.当直线满足约束条件且经过点(2,0)时,目标函数z x y =-取得最大值为2;直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C). 注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y的取值范围为 [-1,2]更为简单. 例2 已知实数x、y满足约束条件 50 3 x y x y x +≥ ? ? -+≥ ? ?≤ ? ,则24 z x y =+的最小值为 () 分析:将目标函数变形可得 1 24 z y x =-+,所求的目标函数的最小值 即一组平行直 1 2 y x b =-+在经过可行域时在y轴上的截距的最小值的4 倍。

解析:由实数x 、y 满足的约束条件,作可行域如图所示: 当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为 min 234(3)6z =?+?-=-。 二、数行结合,构造斜率法:利用直线的斜率解决最值问题 例3 设实数x y ,满足20240230x y xc y y --?? +-??-? , ,, ≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2), y y z x x -= = -表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点. ∴31 2P ?? ??? ,.故答案为32 . 注:解决本题的关键是理解目标函数0 y y z x x -== -的 几何意义,当然本题也可设 y t x =,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时, t 最大.代入y tx =,求出32 t =, 即得到的最大值是32 . -5 3 O x y C A B L

特别解析:线性规划求最值

特别解析:线性规划求最值 一、目标函数线的平移法:利用直线的截距解决最值问题 例1 已知点()P x y ,在不等式组2010220x y x y -??-??+-? ,,≤≤≥表示的平面区域上运动,则z x y =-的 取值范围是( ). (A )[-2,-1] (B )[-2,1] (C )[-1,2] (D )[1,2] 解析:由线性约束条件画出可行域,考虑z x y =-, 变形为y x z =-,这是斜率为1且随z 变化的一族平行 直线.z -是直线在y 轴上的截距.当直线满足约束条件且经过点(2,0)时,目标函数z x y =-取得最大值为2;直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ). 注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单. 例2 已知实数x 、y 满足约束条件0503x y x y x +≥??-+≥??≤? ,则24z x y =+的最小值为( ) 分析:将目标函数变形可得124z y x =-+,所求的目标函数的最小值即一组平行直12 y x b =-+在经过可行域时在y 轴上的截距的最小值的4倍。 解析:由实数x 、y 满足的约束条件,作可行域如图所示: 当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为min 234(3)6z =?+?-=-。 -5 5 3 O x y C A B L

二、数行结合,构造斜率法:利用直线的斜率解决最值问题 例3 设实数x y ,满足20240230x y xc y y --??+-??-? ,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),00 y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率, 要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交 点,即A 点. ∴31 2P ?? ???,.故答案为32. 注:解决本题的关键是理解目标函数00y y z x x -= =-的 几何意义,当然本题也可设y t x =,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时, t 最大.代入y tx =,求出32 t =, 即得到的最大值是32 . 例3.已知实数x 、y 满足不等式组2240 x y x ?+≤?≥?,求函数31y z x +=+的值域. 解析:所给的不等式组表示圆22 4x y +=的右半圆(含边界), 31y z x += +可理解为过定点(1,3)P --,斜率为z 的直线族.问题的几何意义:求过半圆域224(0)x y x +≤≥上任一点与点(1,3)P --的直线 斜率的最大、最小值.由图知,过点P 和点(0,2)A 的直线斜率最大,max 2(3)50(1)z --==--.过 -2 2 O x y ?(-1,-3) -2

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 5 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C 七、比值问题

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

高中数学解题方法谈线性规划求最值问题

线性规划求最值问题 一、与直线的截距有关的最值问题 例1 已知点()P x y ,在不等式组2010220x y x y -??-??+-? ,,≤≤≥表示的平面区域上运动,则z x y =-的 取值范围是( ). (A )[-2,-1] (B )[-2,1] (C )[-1,2] (D )[1,2] 解析:由线性约束条件画出可行域如图1,考虑z x y =-, 把它变形为y x z =-,这是斜率为1且随z 变化的一族平行 直线.z -是直线在y 轴上的截距.当直线满足约束条件且 经过点(2,0)时,目标函数z x y =-取得最大值为2; 直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ). 注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单.这需要有最值在边界点取得的特殊值意识. 二、与直线的斜率有关的最值问题 例2 设实数x y ,满足20240230x y xc y y --??+-??-? ,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),00y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点. ∴312P ?? ???,.故答案为32 . 注:解决本题的关键是理解目标函数00y y z x x -= =-的 几何意义,当然本题也可设y t x =,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时, t 最大.代入y tx =,求出32 t =, 即得到的最大值是32 . 三、与距离有关的最值问题

《管理运筹学》期中复习题答案

《管理运筹学》期中测试题 第一部分 线性规划 一、填空题 1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。 2.图解法适用于含有 两个 _ 变量的线性规划问题。 3.线性规划问题的可行解是指满足 所有约束条件_ 的解。 4.在线性规划问题的基本解中,所有的非基变量等于 零 。 5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关 6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。 7.若线性规划问题有可行解,则 一定 _ 有基本可行解。 8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。 9.满足 非负 _ 条件的基本解称为基本可行解。 10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系 数为 正 。 11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。 12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。 13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。 14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所 有决策变量必须 非负 。 15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不 然 16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。 17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。 18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。 19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。 20.表达线性规划的简式中目标函数为 线性函数 _ 。 21.线性规划一般表达式中,a ij 表示该元素位置在约束条件的 第i 个不等式的第j 个决 策变量的系数 。 22.线性规划的代数解法主要利用了代数消去法的原理,实现_ 基变量 的转换,寻 找最优解。 23.对于目标函数最大值型的线性规划问题,用单纯型法代数形式求解时,当非基变量检 验数_ 非正 时,当前解为最优解。 24.在单纯形迭代中,选出基变量时应遵循_ 最小比值 法则。 二、单选题 1. 如果一个线性规划问题有n 个变量,m 个约束方程(m

求线性目标函数的取值范围或最值

简单的线性(整数)规划问题 一.知识要点: 1.线性规划的基础概念 (1)线性约束条件 约束条件都是关于x, y的一次整式不等式. (2)目标函数 待求最值(最大值或最小值)的函数. (3)线性目标函数 目标函数是关于变量x, y的一次解析式(整式). (4)线性规划 在线性约束条件下求线性目标函数的最大值或最小值的问题, 其中在限定变量为整数的时候, 对应的线性规划问题, 也称为整数规划问题. (5)可行解 满足全部约束条件的解(x, y). (6)可行域 全部可行解构成的集合称为线性规划问题的可行域. (7)最优解 使目标函数取到最大值或最小值的可行解. 注意: ①线性约束条件即可用二元一次不等式表示, 也可以用二元一次方程表示.

②最优解如果存在(当然, 最优解有不存在的情况), 其个数并不一定是唯一的, 可能有多个最优解, 也可能存在无数个最优解. ③目标函数z ax by =+取到最优解(最大或最小值)的点, 往往出现在可行域的顶点或边界上. ④对于整数规划问题(, x y ゥ), 最优解未必在边界或顶点处取 ∈∈ 得, 往往要在可行域的顶点或边界附近寻找. ⑤寻找最优解的前提是尽量准确画出可行域的草图, 从而有助于我们发现最优解. 二. 解题思路: 解决线性规划问题, 先要准确作出可行域, 且明白目标函数表示的几何意义, 通过数形结合找到目标函数取到最值时可行域的顶点(或边界上的点). 而对于整数规划问题, 则应该进一步验证解决, 边界点或顶点可能不在是最优点, 而是在它们的临近区域的整点. 三.求解步骤 ①在平面直角坐标系中画出可行域(对于应用问题, 则要先正确写出 规划模型及满足的约束条件, 再画出可行域). ②结合目标函数的几何意义, 将目标函数变形写成直线的方程形式或写成一次函数的形式. ③确定最优点: 在可行域平行移动目标函数变形后的直线, 从而找到最优点.

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

利用线性规划求最值

利用线性规划求最值 陕西宁强县天津高级中学 李红伟 简单线性规划是高中数学教学的新内容之一,是解决一些在线性约束条件下的线性目标函数的最值(最大值或最小值)的问题。简单线性规划的基本思想即在一定的约束条件下,通过数形结合的思想求函数的最值。解决问题时主要是借助平面图形,运用这一思想能够较快的解决一些二次函数的最值问题。现对高中数学中目标函数常见类型的最值问题做一探讨。 一、线性约束条件下线性目标函数的最值(即截距型:c by ax z ++=) 例1.已知实数y x ,满足?? ???≤≥+-≥-+,2, 01,03x y x y x 若y x z +=2,求z 的最大值和最小值。 解析:不等式组 ?? ???≤≥+-≥-+,2, 01,03x y x y x 表示的平面区域如图所示。 图中阴影部分即为可行域。 图示—1 由?? ?=+-=-+,01,03x y x 得???==,2,1y x )2,1(A ∴ 由???=-+=, 03,2y x x 得???==, 1,2y x )1,2(B ∴ 由???=+-=,01,2y x x 得???==,3,2y x )3,2(M ∴ y x z +=2,z x y +-=∴2, 即z 表示直线z x y +-=2在y 轴的截距. 当直线z x y +-=2经过可行域内的点)3,2(M 时,直线在 y 轴的截距最大,z 也最大,此时7322m a x =+?=Z . 当直线z x y +-=2经过可行域内的点)2,1(A 时,直线在y 轴的截距最小,z 也最小,此时4212min =+?=Z . 所以,Z 的最大值为7,Z 最小值为4. 这类问题的解决,关键在于能够正确理解目标函数的几何意义——目标函数的“截距”。 二、线性约束条件下非线性目标函数的最值 1.距离型:22)()(b y a x z -+-= 即z 几何意义为可行域内的动点) (y x ,与定点),(b a 的距离的平方。 例2.同例1,若22y x z +=,求z 的最大值和最小值。 解析:因为目标函数z 表示可行域内的动点) (y x ,到定点)(0,0的距离的平方的最大值与最小值。 因此,过原点)(0,0作直线l 垂直直线03=-+ y x ,垂足为N ,则直线直线l 的方程为x y =, 由???=-+=,03,y x x y 得?????==,2 3,23y x ∴ )23,23(N

高考线性规划必考题型(非常全)

线性规划专题 一、命题规律讲解 1、 求线性(非线性)目标函数最值题 2、 求可行域的面积题 3、 求目标函数中参数取值范围题 4、 求约束条件中参数取值范围题 5、 利用线性规划解答应用题 一、线性约束条件下线性函数的最值问题 线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。 例1 已知43 35251x y x y x -≤-?? +≤??≥? ,2z x y =+,求z 的最大值和最小值 例2已知,x y 满足124126x y x y x y +=?? +≥??-≥-? ,求z=5x y -的最大值和最小值 二、非线性约束条件下线性函数的最值问题 高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标 (),x y 即最优解。 例3 已知,x y 满足,2 2 4x y +=,求32x y +的最大值和最小值 例4 求函数4 y x x =+[]()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题 这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例5 已知实数,x y 满足不等式组10101x y x y y +-≤??-+≥??≥-? ,求22 448x y x y +--+的最小值。 例6 实数,x y 满足不等式组0 0220 y x y x y ≥?? -≥??--≥? ,求11y x -+的最小值 四、非线性约束条件下非线性函数的最值问题 在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例7 已知,x y 满足y 2 y x +的最大值和最小值

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2 .线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7?试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8?试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10. 大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问 题呢? 11 ?什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续 第二阶段? 二、判断下列说法是否正确。 1 .线性规划问题的最优解一定在可行域的顶点达到。 2 .线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的 范围一般将扩大。 5 .线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与j 0对应的变量都可以被 选作换入变量。 8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一 个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k对应的变量x k作为换入变量,可使目 标函数值得到最快的减少。 10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形 表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1 .某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目n需要在第一年初投资,经过两年可收回本利150% , 又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目川需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资额 不得超过15万元;项目"需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有 30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2 .某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

线性规划求最大值或最小值

线性规划求最大值或最小值linprog 2011-09-03 18:43:17| 分类:Matlab | 标签:最优值最优解最大值最小值linprog 函数格 |字号大中小订阅式: linprog (f,a,b,a1,b1,xstart,xend) f:求解最小函数的表达式系数矩阵是m*1的矩阵 a: w不等式条件约束矩阵其均为形式 b:a 对应不等式右边的常数项 a1:=等式条件约束矩阵 b1:a1 对应不等式右边的常数项 xstart:x 的取值范围的最小值的系数矩阵为n*1 的矩阵 xend:x 的取值范围的最大值的系数矩阵为n*1 的矩阵 函数说明: 不存在的项填写[] 即可 函数功能: 线性规划求最优值. 例子1: 求f=3*x1+6*x2+2*x3 的最大值 满足的条件是 3*x1+4*x2+x3 w 2 x1+3*x2+2*x3 w 1 且x1 、x2、x3 均大于等于0 Matlab 求解如下 a =[ 3 4 1 1 3 2 ] b =[ 2 1 ]

f=[ -3 -6 -2 ] %这里为什么会是负数, 因为Matlab 求的是f 的最小值, 要求最大值则取要求系数的相反数即可x=[ 0 0 0 ] linprog (f,a,b,[],[],x,[]) %执行的matlab 命令后输出的如下内容. 注意这里的[] 表示那一项不存在. 当然最后那一个[] 也可以不要即linprog(f,a,b,[],[],x) Optimization terminated. ans = 0.4000 0.2000 0.000 0%即x1=0.4,x2=0.2,x3=0 为最优解. 带回原式我可以知道f 的最大值=3*0.4+6*0.2=2.4 例子2: 求f=-2*x1-3*x2-x3 的最小值 满足的条件是 x1+x2+x3W 3 x1+4*x2+7*x3+x4=9 且x1、x2、x3、x4均大于等于0 Matlab 求解如下 原题等价于求f=-2*x1-3*x2-x3+0*x4 的最小值 其条件等价于 x1+x2+x3+0*x4W3 x1+4*x2+7*x3+x4=9

线性规划求最值问题

线性规划求最值问题 角度(一) 截距型 1.(2017·全国卷Ⅲ)设x ,y 满足约束条件???? ? 3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是 ( ) A .[-3,0] B .[-3,2] C .[0,2] D .[0,3] 2.(2017·全国卷Ⅰ)设x ,y 满足约束条件???? ? x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为 ________. 角度(二) 求非线性目标函数的最值 一、距离型 3.(2018·太原模拟)已知实数x ,y 满足约束条件???? ? 3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范 围为( ) A .[1,13] B .[1,4] 二、斜率型 4.(2018·成都一诊)若实数x ,y 满足约束条件????? 2x +y -4≤0,x -2y -2≤0,x -1≥0,则y -1 x 的最小值为 ________. 变式训练 1、若x ,y 满足约束条件????? x -1≥0,x -y ≤0,x +y -4≤0,则y x 的最大值为________.

[题型技法] 常见的2种非线性目标函数及其意义 (1)点到点的距离型:形如z =(x -a )2+(y -b )2,表示区域内的动点(x ,y )与定点(a ,b )的距离的平方; (2)斜率型:形如z =y -b x -a ,表示区域内的动点(x ,y )与定点(a ,b )连线的斜率. 角度(三) 线性规划中的参数问题 5.(2018·郑州质检)已知x ,y 满足约束条件???? ? x ≥2,x +y ≤4,2x -y -m ≤0.若目标函数z =3x +y 的最 大值为10,则z 的最小值为________. 变式训练 2.(2018·惠州调研)已知实数x ,y 满足:???? ? x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实 数a 的值为________. [题型技法] 求解线性规划中含参问题的基本方法 (1)把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围. (2)先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数. 作业: 1.变量x ,y 满足???? ? x -4y +3≤0,3x +5y -25≤0,x ≥1. (1)设z 1=4x -3y ,求z 1的最大值; (2)设z 2=y x ,求z 2的最小值; (3)设z 3=x 2+y 2,求z 3的取值范围.

相关文档
最新文档