工程力学实验报告模板

工程力学实验报告模板
工程力学实验报告模板

工程力学实验报告

学生姓名:

学号:

专业班级:

南昌大学工程力学实验中心

目录

实验一金属材料的拉伸及弹性模量测定试验 (1)

实验二弯扭组合变形的主应力测定 (6)

实验三压杆稳定实验 (11)

实验四金属扭转破坏实验、剪切弹性模量测定 (14)

实验五冲击实验 (18)

实验六单自由度系统固有频率和阻尼比的测定 (20)

实验七弯曲正应力电测实验 (22)

实验八叠(组)合梁弯曲的应力分析实验 (26)

实验九偏心拉伸实验 (35)

实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:

一、实验目的

二、实验设备和仪器

三、实验数据及处理

引伸仪标距l = mm 实验前

材料

标 距l 0(mm) 直径d 0(mm)

平均横截面积

A (mm 2) 最小横截面积

A 0(mm 2)

截面I 截面II 截面III 1 2 平均 1 2 平均 1 2 平均 低碳钢 铸 铁

低碳钢弹性模量测定

载荷F (kN)

变形Δl (mm)

变形增量()l δ? (mm)

F 0 = F 1 =

F 2 =

F 3 =

F 4 =

F 5 =

ΔF =

()l δ? =

()F l

E l A

δ??=

?? =

实验后

材料标距l1(mm)

断裂处直径d1(mm)

断裂处横截面

积A1(mm2)1 2 平均

低碳钢

铸铁

屈服载荷和强度极限载荷

材料

上屈服载荷下屈服载荷最大载荷断口形状F su(kN) Δl(mm) F sl(kN)Δl(mm) F b(kN) Δl(mm)

低碳钢

铸铁

载荷―变形曲线(F―Δl曲线)及结果

材料低碳钢铸铁F―Δl曲线

断口形状

实验结果上屈服极限

su

σ=

下屈服极限

sl

σ=

强度极限

b

σ=

延伸率δ=

断面收缩率ψ=

强度极限

b

σ=

延伸率δ=

四、问题讨论

(1)比较低碳钢与铸铁在拉伸时的力学性能;

(2)试从不同的断口特征说明金属的两种基本破坏形式。

金属材料的拉伸及弹性模量测定原始试验数据记录

实验指导教师:

20 年月日

实验二弯扭组合变形的主应力测定

实验时间:设备编号:温度:湿度:

一、实验目的

二、实验设备和仪器

三、实验数据及处理

1.数据记录

试件计算长度L= mm 试件材料泊松比 =

内径d= mm 试件材料弹性模量E= MP a 外径D= mm 应变片电阻值R= Ω加力杆长度a= mm 电阻片灵敏系数K=

应变片灵敏系数K仪=

2.布片展开图:截面单元体应力状态图:

3.荷载及应变

载荷(N)

电阻应变仪读数( )

A点B点C点D点

P ΔP

-450 00 450-45000450-45000450-45000450

应变增

量均值

8

4.根据实测数据计算A,B,C,D各点主应力大小及方向和剪应力的大小。

5.计算各点主应力大小及方向、剪应力的大小。

6.值和理论值的相对误差。

四、问题讨论

分析形成误差的主要因素。

弯扭组合变形的主应力测定原始试验数据记录

实验指导教师:

20 年月日

实验三压杆稳定实验

实验时间:设备编号:温度:湿度:一、实验目的

二、实验设备和仪器

三、实验数据及处理

1、试件尺寸及有关数据:

截面尺寸(mm)

截面I B1=b1=L1=

截面II B2=b2=L2=

截面III B3=b3=L3=

平均?B= ?b= ?L= 弹性模量E

长度系数μ

2、载荷和应变(或挠度):

次数载荷P

(N)

电阻应变仪读数(με)

或千分表读数次

载荷P

(N)

电阻应变仪读数(με)

或千分表读数测点○1测点○2测点○1测点○2

1 11

2 12

3 13

4 14

5 15

6 16

7 17

8 18

9 19

10 20 3、F—ω或F—ε曲线

4、临界压力F cr实验值和理论值计算和误差分析:

压杆稳定实验原始试验数据记录

实验指导教师:

20 年月日

实验四金属扭转破坏实验、剪切弹性模量测定实验时间:设备编号:温度:湿度:一、实验目的

二、实验设备和仪器

三、实验数据及处理

弹性模量E= 泊松比 =

实验前

材料

标距

l0(mm)

直径d0(mm) 平均极

惯性矩

P

I

(mm4)

最小抗

扭截面

模量W T

(mm3)截面I 截面II 截面III

1 2 平均 1 2 平均 1 2 平均

低碳钢铸铁

低碳钢剪切弹性模量测定

扭矩T (N·m)

扭转角? ( o )

扭转角增量?? ( o )

T 0 =

T 1 =

T 2 =

T 3 =

T 4 =

T 5 =

ΔT =

?? = ( o )= ( rad )

P

I l T G ??=???0=

理论值)

1(2μ+=E

G = ;相对误差(%)=

=?-%100理实理G G G 载荷―变形曲线(F ―Δl 曲线)及结果

材 料

低碳钢

铸 铁

T —φ曲线

断口形状

实验记录

屈服扭矩T s = 破坏扭矩T b =

破坏扭矩T b =

实验结果

屈服极限s τ= 强度极限b τ=

强度极限b τ=

四、问题讨论

(1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成45o 螺旋断裂面?

(2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。

金属扭转破坏实验、剪切弹性模量测定原始试验数据记录

实验指导教师:

20 年月日

实验五冲击实验

实验时间:设备编号:温度:湿度:一、实验目的

二、实验设备和仪器

三、实验数据及处理

材料厚度h(mm) 宽度b(mm) 截面积A(mm2) 冲击功W(J) 室温

冲击韧性αK=W/A=

四、问题讨论

(1)分析比较低碳钢与铸铁在冲击载荷作用下所表现的力学性能及破坏特性。(2)试解释缺口附近产生脆性破坏的原因。

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

工程力学实验报告

工程力学实验报告 自动化12级实验班 §1-1 金属材料的拉伸实验 一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度R eH,下屈服强度R eL和抗拉强度R m 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度R m。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。 二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。 三、试样 (a) (b) 图1-1 试样 拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试

样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料 室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。平行部分中测量伸长用的长度称为标距。受力前的标距称为原始标距,记作l 0,通常在其两端划细线标志。 国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。 四、实验原理 低碳钢(Q235 钢)拉伸实验(图解方法) 将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F-ΔL 曲线),如图(1-2)。观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。 屈服阶段反映在F-ΔL 曲线图上为一水平波动线。上屈服力eH F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力eL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力R m 是试样在屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算: 上屈服强度R eH :0 S F R eH eH = (1-1) 下屈服强度R eL :0 S F R eL eL = (1-2 ) 抗拉强度R m : 0 S F R m m = (1-3) 在强化阶段任一时刻卸载、再加载,可以观察加载、御载规律和冷作硬化现象。 在F m 以前,变形是均匀的。从F m 开始,产生局部伸长和颈缩,由于颈缩,使颈缩处截面减小,致使载荷随之下降,最后断裂。断口呈杯锥形。

工程力学实验报告

实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度: 一、实验目的 1、观察低碳钢和铸铁在拉伸过程中的力与变形的关系。 2、测定低碳钢的弹性模量E。 3、测定低碳钢拉伸时的屈服极限;强度极限,伸长率和截面收缩率 4、测定铸铁的强度极限。 5、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。 6、了解CMT微机控制电子万能实验机的构造原理和使用方法。 二、实验设备和仪器 1.CMT微机控制电子万能实验机 2.电子式引伸计仪 3.游标卡尺 4.钢尺 三.实验原理 试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。 试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。

低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、颈缩四个阶段。 铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。抗拉强度σb 较低,无明显塑性变形。与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs 、最大载荷Fb 和铸铁试件的最大载荷Fb 。 取下试件测量试件断后最小直径d1和断后标距 l1,由下述公式 A Fs s = σ A F b b = σ %1000 1?-= l l l δ %1000 1 0?-= A A A ψ 可计算低碳钢的拉伸屈服点σs 。、抗拉强度σb 、伸长率δ,和断面收缩率ψ;铸铁的抗拉强度σb 。 低碳钢的弹性模量E 由以下公式计算: l A Fl E ??= 00 式中ΔF 为相等的加载等级,Δl 为与ΔF 相对应的变形增量。 四、实验步骤 (1)低碳钢拉伸试验步骤

工程力学实验总结

工程力学实验总结 1.对于标准拉伸试件为测量标距Lo的长度,可选用游标卡尺;为测量标距Lo的总变形在 弹性范围内的?长,可选用引伸计;对其加载并测量荷载值,可选用万能试验机。 2.我们接触过的动态试验机有冲击试验机和疲劳试验机,而后者又分为两种,一种是旋转 弯曲疲劳试验机,另一种是高频拉压疲劳试验机。 3.如果测点处是二向应力状态,则当主应力方向已知时,应选择直角应变花,使丝韧沿主 应力方向粘贴,当主应力方向根本无法估计时,应选用等角应变花。 4.对粘贴后的应变片进行质量检查,要求为:a粘贴位置,方向准确b粘贴缝内无气泡, 孔隙c应变计阻值无明显变化d一般测量引出线与构件间的绝缘电阻大于100M欧姆5.在对断后的低碳钢进行拉伸试件测定长度时,若断面距最近标距点的距离大于Lo/3,可 采用直接测量法;若该距离等于或者小于Lo/3,采用移位法测量。(工程力学实验课本P160);若断口在两段与头部距离小于或者等于2d时,试验无效。 6.为减小应变片机械滞后效应,可采取的措施有:采用高质量的应变计;固化完全;在正 式测量前,预先加,卸载3-5次。 7.对于液压式试验机,测力的方式有压力表测试,摆锤测试,弹簧测试,电子测试。 8.如果进行高温下的应变测量,多选电阻应变计的基底为金属基,敏感栅的材料为铂钨合 金,敏感栅最好为丝绕式。 9.使用液压摆锤式万能试验机时,确认摆杆是否铅垂有三种方法:a看摆杆标示牌上的刻 线与缓冲挡座的指示刻线是否对齐b看水准仪的气泡是否居中c增减摆锤,看力度盘上的指针位置是否变化。 10.为了减少电磁干扰对对电阻应变测量的影响可采取的措施有:a将测量导线捆绑成束b 改变应变仪的方向c使用屏蔽电缆线。 11.金属材料的圆截面拉伸试样分为比例试样和非比例试样。比例试样关系式:Lo=Kd,其 中K=5为短比例试样,K=10为长比例试样。Lo为原始标距,d为原始直径。 12.引伸计是一种测量变形的器具,按其结构原理引伸计可分为机械引伸计,光学引伸计, 电学引伸计三大类。 13.以敏感栅的工艺上考虑,横向效应最大的是丝绕式应变计,疲劳寿命最短的是短接式应 变计,横向效应最小的是箔式应变计。 14.使用液压万能试验机时为减少读数误差,常要求所测荷载在满量程的20%-80%之间。 15.应变片粘贴方向不准造成的误差,不仅与角偏差有关,还和预定粘贴方位与该点主应变 的夹角有关。 16.对发动机活塞连杆机构中的连杆,若要测量其材料的持久极限,需选择拉压疲劳试验机。 17.在铸铁的拉伸,压缩,扭转实验中,试样破坏后的形式分别为横截面,45°斜截面,45° 螺旋断面。 18.电测法测量应变时,为尽量显示测点的真实应变,在应力集中点应选用小应变计,在测 非均质材料的应用大应变计,并且应变计的标距长度至少是直径的4倍。 19.为减少应变片粘贴不准确带来大测量误差,在测点的主应力方向已知时,选择直角应变 花,并沿主应力方向粘贴;在主应力方向未知时,选择等角应变花。 20.由于应变计敏感栅的横栅部分感受横向应变而对轴向测量值产生的影响称为横向效应, 其大小用H表示。 21.在一钢结构表面某点站贴一枚应变计(另有一枚补偿计)应变计与应变仪间用80米的 长导线连接,连接方式为半桥三线接法,若已知应变计与应变仪的灵敏系数均为2.0,导线电阻为0.175Ω/m,应变计电阻为120Ω,测得应变仪读数为。。。。。。 22.一构件处于平面应力状态,若要测定构件上的某点的主应力,在该点至少站贴2枚应变

工程力学拉伸实验报告

试验目的: 1. 测定低碳钢(塑性材料)的弹性摸量E;屈服极限σs 等机械性能。 2.测定灰铸铁(脆性材料)的强度极限σb 3.了解塑性材料和脆性材料压缩时的力学性能。 材料拉伸与压缩实验指导书 低碳钢拉伸试验 拉伸试验的意义: 单向拉伸试验是在常温下以缓慢均匀的速度对专门制备的试件施加轴向载荷,在试件加载过程中观测载荷与变形的关系,从而决定材料有关力学性能。通过拉伸试验可以测定材料在单向拉应力作用下的弹性模量及屈服强度、抗拉强度、延伸率、截面收缩率等指标。其试验方法简单且易于得到较可靠的试验数据,所以是研究材料力学性能最基本、应用最广泛的试验。 操作步骤: 1.试验设备:WDW-3050电子万能试验机 2.试件准备:用游标卡尺测量试件试验段长度l0和截面直径d0,并作记录。 3.打开试验机主机及计算机等相关设备。 4.试件安装(详见WDW3050电子万能试验机使用与操作三.拉伸试件的安装)。 5.引伸计安装(用于测量E, 详见WDW3050电子万能试验机使用与操作四.引伸计安装)。 6.测量参数的设定: 7.再认真检查一遍试件安装等试验准备工作。 8.负荷清零,轴向变形清零,位移清零。 9.开始进行试验,点击试验开始。 10.根据提示摘除引伸计。 11.进入强化阶段以后,进行冷作硬化试验,按主机控制面板停止,再按▼,先卸载到10kN,再加载,按▲,接下来计算机控制,一直到试件断裂(此过程中计算机一直工作,注意观察负荷位移曲线所显示的冷作硬化现象.). 12.断裂以后记录力峰值。 13.点击试验结束(不要点击停止)。

14.材料刚度特征值中的弹性模量E的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择应力─应变曲线。在曲线上较均匀地选择若干点,记录各点的值,分别为及 (如i =0,1,2,3,4),并计算出相应的 计算E i的平均值,得到该材料的弹性模量E的值。 15.材料强度特征值屈服极限和强度极限的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择负荷─位移曲线,找到的曲线屈服阶段的下屈服点,即为屈服载荷F s, 找到的曲线上最大载荷值,即为极限载荷P b. 计算屈服极限:;计算强度极限:; 16.材料的塑性特征值延伸率及截面收缩率的测定 试件拉断后,取下试件,沿断裂面拼合,用游标卡尺测定试验段长度,和颈缩断裂处截面直径。 计算材料延伸率 计算截面收缩率 低碳钢拉伸试验报告 试验目的: 1. 掌握电子万能试验机操作; 2. 理解塑性材料拉伸时的力学性能; 3. 观察低碳钢拉伸时的变形特点; 4. 观察低碳钢材料的冷作硬化现象; 5. 测定低碳钢材料弹性模量E ; 6. 测定材料屈服极限和强度极限; 7. 测定材料伸长率δ和截面收缩率Ψ 试验设备:

工程力学实验报告

实验一金属材料的拉伸及弹性模量测定试验 实验时间:设备编号:温度:湿度: 一、实验目的 1、观察低碳钢和铸铁在拉伸过程中的力与变形的关系。 2、测定低碳钢的弹性模量E。 3、测定低碳钢拉伸时的屈服极限;强度极限,伸长率和截面收缩率 4、测定铸铁的强度极限。 5、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。 6、了解CMT微机控制电子万能实验机的构造原理和使用方法。 二、实验设备和仪器 1.CMT微机控制电子万能实验机 2.电子式引伸计仪 3.游标卡尺 4.钢尺 三.实验原理 试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。 试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。 1 分为四个阶段―弹性、屈服、强化、颈—12a)低碳钢试件的拉伸曲线

(图缩四个阶段。比较简单,既没有明显的直线段,也没有—2b)铸 铁试件的拉伸曲线(图1屈服阶段,变形很小时试件就突然断裂,断 口与横截面重合,断口形貌粗较低,无明显塑性变形。与电子万能实验机联机的微型σb糙。抗拉强度和铸铁试件、最大载荷Fb电子计 算机自动给出低碳钢试件的屈服载荷Fs Fb。的最大载荷 l1,由下述公式取下试件测量试件断后最小直径d1和断后标距 A??lAFlFs????10b01%%?100????100?bs AAlA 0000,和断面收缩δσb、伸长率。可计算低碳钢的拉伸屈服点σs、抗拉强度。σbψ率;铸铁的抗拉强度由以下公式计算:低碳钢的弹 性模量E Fl?0?E l?A0相对应的变形增量。ΔΔl为与F为相等的加载等级,Δ式中F四、实验步骤 低碳钢拉伸试验步骤(1) 2 按照式样、设备的准备及测试工作,大致可以将低碳钢拉伸试验步骤归纳如下: do lo。在式样标距段的及标距首先,将式样标记标距点,测量式样直 径两端和中间3处测量式样直径,每处直径取两个相互垂直方向的平均值,do。用扎规和钢板尺处直径的最小值取作试验的初始直径做好记录。3lo测量低碳钢式样的初始标距长度。接着,安装试件。按照微机控制电子万能试验机的操作方法,运行电子万能试验机程序, 并开启控制器电源。先将有力传感器的夹具夹住式样的一端,在微型电子计算机电子万能试验机应用软件界面中执行力清零;在移动横梁,使式样的另一端缓慢插入另型卡板中,锁紧夹头,进行保护从而消除

材料力学扭转实验实验报告

扭 转 实 验 一.实验目的: 1.学习了解微机控制扭转试验机的构造原理,并进行操作练习。 2.确定低碳钢试样的剪切屈服极限、剪切强度极限。 3.确定铸铁试样的剪切强度极限。 4.观察不同材料的试样在扭转过程中的变形和破坏现象。 二.实验设备及工具 扭转试验机,游标卡尺、扳手。 三.试验原理: 塑性材料和脆性材料扭转时的力学性能。(在实验过程及数据处理时所支撑的理论依据。参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。) 四.实验步骤 1.a 低碳钢实验(华龙试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。。 (2)安装试样: 启动扭转试验机,手动控制器上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。 (3)调整试验机并对试样施加载荷: 在电脑显示屏上调整扭矩、峰值、切应变1、切应变2、夹头间转角、时间的零点;根据你所安装试样的材料,在“实验方案读取”中选择“教学低碳钢试验”,并点击“加载”而确定;用键盘输入实验编号,回车确定(按Enter 键);鼠标点“开始测试”键,给试样施加扭矩;在加载过程中,注意观察屈服扭矩的变化,记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“终止测试”键,使试验机停止转动。 (4)试样断裂后,从峰值中读取最大扭矩 。从夹头上取下试样。 (5)观察试样断裂后的形状。 1.b 低碳钢实验(青山试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。 (2)安装试样: 启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,s τb τb τ 0d S M b M 0d

工程力学实验总结

工程力学实验总结 对于标准拉伸试件为测量标距Lo的长度,可选用游标卡尺;为测量标距Lo的总变形在弹性范围内的?长,可选用引伸计;对其加载并测量荷载值,可选用万能试验机。 我们接触过的动态试验机有冲击试验机和疲劳试验机,而后者又分为两种,一种是旋转弯曲疲劳试验机,另一种是高频拉压疲劳试验机。 如果测点处是二向应力状态,则当主应力方向已知时,应选择直角应变花,使丝韧沿主应力方向粘贴,当主应力方向根本无法估计时,应选用等角应变花。 对粘贴后的应变片进行质量检查,要求为:a粘贴位置,方向准确b粘贴缝内无气泡,孔隙c应变计阻值无明显变化d一般测量引出线与构件间的绝缘电阻大于100M欧姆 在对断后的低碳钢进行拉伸试件测定长度时,若断面距最近标距点的距离大于Lo/3,可采用直接测量法;若该距离等于或者小于Lo/3,采用移位法测量。(工程力学实验课本P160);若断口在两段与头部距离小于或者等于2d时,试验无效。 为减小应变片机械滞后效应,可采取的措施有:采用高质量的应变计;固化完全;在正式测量前,预先加,卸载3-5次。 对于液压式试验机,测力的方式有压力表测试,摆锤测试,弹簧测试,电子测试。 如果进行高温下的应变测量,多选电阻应变计的基底为金属基,敏感栅的材料为铂钨合金,敏感栅最好为丝绕式。 使用液压摆锤式万能试验机时,确认摆杆是否铅垂有三种方法:a看摆杆标示牌上的刻线与缓冲挡座的指示刻线是否对齐b看水准仪的气泡是否居中c增减摆锤,看力度盘上的指针位置是否变化。 为了减少电磁干扰对对电阻应变测量的影响可采取的措施有:a将测量导线捆绑成束b改变应变仪的方向c使用屏蔽电缆线。 金属材料的圆截面拉伸试样分为比例试样和非比例试样。比例试样关系式:Lo=Kd,其中K=5为短比例试样,K=10为长比例试样。Lo为原始标距,d为原始直径。 引伸计是一种测量变形的器具,按其结构原理引伸计可分为机械引伸计,光学引伸计,电学引伸计三大类。 以敏感栅的工艺上考虑,横向效应最大的是丝绕式应变计,疲劳寿命最短的是短接式应变计,横向效应最小的是箔式应变计。 使用液压万能试验机时为减少读数误差,常要求所测荷载在满量程的20%-80%之间。 应变片粘贴方向不准造成的误差,不仅与角偏差有关,还和预定粘贴方位与该点主应变的夹角有关。 对发动机活塞连杆机构中的连杆,若要测量其材料的持久极限,需选择拉压疲劳试验机。在铸铁的拉伸,压缩,扭转实验中,试样破坏后的形式分别为横截面,45°斜截面,45°螺旋断面。 电测法测量应变时,为尽量显示测点的真实应变,在应力集中点应选用小应变计,在测非均质材料的应用大应变计,并且应变计的标距长度至少是直径的4倍。 为减少应变片粘贴不准确带来大测量误差,在测点的主应力方向已知时,选择直角应变花,并沿主应力方向粘贴;在主应力方向未知时,选择等角应变花。 由于应变计敏感栅的横栅部分感受横向应变而对轴向测量值产生的影响称为横向效应,其大小用H表示。 在一钢结构表面某点站贴一枚应变计(另有一枚补偿计)应变计与应变仪间用80米的长导线连接,连接方式为半桥三线接法,若已知应变计与应变仪的灵敏系数均为2.0,导线电阻

工程力学学习心得

不知不觉中,本学期又过大半,同时,学习工程力学这门课程也快一年了。刚开始学时觉得这门课和高中的物理力学没啥大的区别,都是分析力学问题。但是随着深入的学习,慢慢的,发现了这门课程没那么简单,并不只是简单的分析力的构成。 工程力学这门课程包括有理论力学和材料力学两大部分。理论力学主要讲述的是经典力学部分的内容,讲述了静力学和运动学和动力学三大部分。静力学是研究物体在力系作用下的平衡规律的科学,动力学主要研究了点和刚体的简单运动和合成运动,动力学研究物体的机械运动和作用力之间的关系。材料力学研究物体(变形体模型)在外力作用下的内力、应力、变形及失效规律。 理论力学不像是生物化学,很多知识要靠记忆去扩展,这是一门更多得靠逻辑和推理去构建知识构架的学科。我对需要大量记忆的课程并不擅长,但我喜欢在错综复杂的力学体系中用最基本的东西去思考,解决问题,并想出自己真正有个性的办法,我也觉得这样对自己的智力和思维方式才是有帮助的。而理论力学又不同于以前作为基础学科的物理,其分析的问题更加复杂,更加接近实际,对问题的剖析也更加深刻,因此对思维也提出了更多的挑战,激起人的兴趣。 在具体学习的过程中,自己还是碰到了很多的困难的,有时觉得会烦躁,但最后静下心来好好把书上的内容系统地过一遍,有时甚至往复地看好多遍,直到自己真正理解,成为让自己接受的知识。理论力学的难点不在于知识的多,而是真正要学好这门课,对其中没一点知识必须有足够深的理解,然后各种综合性交叉性的题目也便能很自然得想到用书中不同的知识去解决。自己也便能顺利地去推倒自己想要的结论了。 另外这门课最有特色的地方就是将理论和实际结合起来了,我们不仅在可以学到课本上的内容,同时,我们还可以亲自动手在实验中检验理论。这与以往学习理论力学的过程中有很大的不同,也更加激起了我们的学习兴趣。 工程力学理论性强且与专业课、工程实际紧密联系,是科学、合理选择或设计结构的尺寸、形状、强度校核的理论依据。具有承上启下的作用。所以,学好工程力学,为后续专业课的应用和拓展奠定了很强的理论基础。

工程力学知识点总结教学文稿

工程力学知识点总结

工程力学知识点总结 第0章 1.力学:研究物体宏观机械运动的学科。机械运动:运动效应,变形效应。 2.工程力学任务:A.分析结构的受力状态。B.研究构件的失效或破坏规律。C.分研究物体 运动的几何规律D.研究力与运动的关系。 3.失效:构件在外力作用下丧失正常功能的现象称为失效。三种失效模式:强度失效、刚 度失效、稳定性失效。 第1章 1.静力学:研究作用于物体上的力及其平衡的一般规律。 2.力系:是指作用于物体上的一组力。 分类:共线力系,汇交力系,平行力系,任意力系。 等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。 3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。 4.分力的方位角:力与x 轴所夹的锐角 α: 方向:由 Fx 、Fy 符号 定。 5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。(刚体是理想化 模型,实际不存在) 6.力矩:度量力使物体在平面内绕一点转动的效果。 方向: 力使物体绕矩心作逆时针转动时,力矩为正;反之,为负 力矩等于0的两种情况: (1) 力等于零。(2) 力作用线过矩心。 力沿作用线移动时,力矩不会发生改变。力可以对任意点取矩。 ()O M F Fd =±v

7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。(例:不能单手握方向盘,不能单手攻丝) 特点: 1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。 2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。 3.力偶对其作用面内任一点的矩恒等于力偶矩。即:力偶对物体转动效应与矩心无关。 三要素:大小,转向,作用面。 力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。 推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。(只能在作用面内而不能脱离。) 推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力和力偶臂的大小,而不改变对刚体的作用。 8.静力学四大公理 A.力的平行四边形规则(矢量合成法则):适用范围:物体。 B.二力平衡公理:适用范围:刚体(对刚体充分必要,对变形体不充分。)注:二力构件受力方向:沿两受力点连线。 C.加减平衡力系公理:适用范围:刚体 D.作用和反作用公理:适用范围:物体特点:同时存在,大小相等,方向相反。注:作用力与反作用力分别作用在两个物体上,因此,不能相互平衡。(即:作用力反作用力不是平衡力) 9.常见铰链约束及其性质

金属轴向拉压和扭转实验报告工程力学

金属材料轴向拉伸、压缩实验 预习要求: 1、复习教材中有关材料在拉伸、压缩时力学性能的内容; 2、预习本实验内容及微控电子万能试验机的原理和使用方法; 一、实验目的 1、观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限 σ, s 强度极限 σ,延伸率δ和断面收缩率ψ; b 2、观察铸铁在轴向拉伸时的各种现象; 3、观察低碳钢和铸铁在轴向压缩过程中的各种现象; 4、掌握微控电子万能试验机的操作方法。 二、实验设备与仪器 1、微控电子万能试验机; 2、游标卡尺。 三、试件 试验表明,试件的尺寸和形状对试验结果有影响。为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。根据国家标准(GB6397—86),将金属拉伸比例试件的尺寸列表如下: 本实验的拉伸试件采用国家标准中规定的长比例试件(图一),试验段直径

d 0=10mm ,标距l 0=100mm.。 本实验的压缩试件采用国家标准(GB7314-87 h /d 0=2, d 0=10mm, h =20mm (图二)。 四、实验原理和方法 (一)低碳钢的拉伸试验 实验时,首先将试件安装在试验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量试验段的变形。然后开动试验机,缓慢加载,同时,与试验机 相联的微机会自动绘制出载荷—变形曲线 (F —?l 曲线,见图三)或应力—应变 曲线(σ—ε曲线,见图四)。随着载荷的逐渐增大, 材料呈现出不同的力学性能: 1、线性阶段 在拉伸的初始阶段,σ—ε曲线为一直线,说明应力σ与应变ε成正比,即满足胡克定律。线性段的最高点称为材料的比例极限(σp ),线性段的直线斜率即 图二 图一 σ σσσ图四 ?l F 图三

土力学学习心得与总结

土力学学习心得与总结 土力学是工程力学专业的一门专业课,经过2个多月的学习,我 对专业知识有了新的理解和掌握。为了巩固所学的理论知识,提高同学之间的合作能力与动手能力,学校为我们专业开设土力学实验课程。土力学实验我们供选作了5个有代表性的实验,分别是:1、颗粒分析试验2、界限含水率(稠度)试验3、渗透试验4、压缩试验5、直接剪切试验。 我们做试验的顺序基本上是和理论课程同步的。我们首先做的实 验是颗粒分析试验。粒分析试验是测定干土中各颗粒含量占该土总质量的百分数,土的大小、级配和粒组含量是土的工程分类的重要依据。由于我们选用的土粒粒径小于0.075mm,因此我们选用了密度计法。这次试验做起来还算是比较轻松,但处理数据却有一定的困难,这个也是土力学试验这一门课的比较明显的特点。这次土力学试验规范了我写试验报告的模式,相比这对于以后我写报告会有很大的帮助。为了更好的将土的液塑限指标和土的含水率联系起来,我们又做了界限含水率(稠度)试验。这个试验在处理数据时要注意用电子天平测出的是土和盒子的质量,因此,要减去盒子的质量才能的出土的质量。 为了让我们进一步的体验土的渗透性这一个特点,我们又做了渗 透试验。这个试验是基于达西定律建立起来的理论。经过理论的推导可以得知渗流速度是和土的渗透系数和水力梯度有关的,根据土的种

类的不同,我们选用了常水头试验和变水头试验两个试验方案。这个试验也提高了我们的团队协作能力。 压缩试验相对来说是比较简单的一个试验。这个试验和最后一个直接剪切试验有点相似。在做直接剪切试验中要注意有一个步骤是把销钉去掉后才加载的,结果我们忘记了去销钉,幸亏老师的提醒,我们才把这个错误改过来。做试验要讲究一个认真仔细。 以上是我对这一学期土力学试验的一个小结,我从这次总结中也学到了好多东西。总的来说,土力学试验对我的提高还是很大的。 模板,内容仅供参考

工程力学实验报告书[1].

工程力学实验报告 学院: 班级: 学号: 姓名:

报告一金属拉伸和压缩实验报告 一、实验目的: 二、实验设备: 三、实验纪录: 四、实验数据整理与计算: 1、绘制试验中的拉伸图和压缩图 P P P P o Δl o Δl o Δl o Δl 低碳钢拉伸图铸铁拉伸图低碳钢压缩图铸铁压缩图

2、对低碳钢冷作硬化的观察 3、计算结果: 五、分析总结 1、低碳钢拉伸与压缩的机械性质有何相同点与不同点? 2、铸铁拉伸与压缩的机械性质有何相同点与不同点? 3、低碳钢拉伸时断口破坏是什么形状?即是那种应力破坏? 4、铸铁拉伸与压缩时其断口破坏是什么形状?是那种应力破坏?

报告二 测定低碳钢弹性模量E 的实验报告 一、实验目的: 二、实验设备: 三、实验纪录: 四、数据处理 △A 平= △P = △ε 平 = A =b ╳h = =???= %100P A E 平ε 五、分析误差原因:

报告三扭转实验报告 一、实验目的: 二、实验设备: 三、实验纪录: 1、对比两种材料的扭转机械性质。 2、低碳钢与铸铁的断口破坏是什么形状?并分别说明是那种应力。

报告四 测定低碳钢切变模量G 的报告 一、实验目的: 二、实验设备: 平均读数差mm =?A ;百分表放大倍数k=100; 标距mm = l ; 试件直径mm = d ; 百分表触头到试件轴线的距离mm =b 。 四、计算结果: 44 mm 32 = = d I P π; )(r a d b K A =?= ???; )(G P a I l T G P = ??= ??? 五、分析误差:

工程力学公式总结

刚体 力的三要素:大小、方向、作用点 静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律 约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。 平面汇交力系平衡几何条件:力多边形自行封闭 合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。它表明了合力与分力在同一坐标轴投影时投影量之间的关系。 平面汇交力系平衡条件:∑F ix =0;∑F iy =0。2个独立平衡方程 第三章 力矩 平面力偶系 力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。 Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F ) 力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正) 力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。 平面力偶系平衡条件是合力偶矩等于零。 第四章 平面任意力系 力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向 平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 平面平行力系平衡条件:∑F iy =0,∑M 0(Fi)=02个独立方程 摩擦,阻止两物体接触表面发生切向相互滑动或滚动的现象。静摩擦力,若两相互接触且相互挤压,而又相对静止的物体,在外力作用下如只具有相对滑动趋势,而又未发生相对滑动,则它们接触面之间出现的阻碍发生相对滑动的力,谓之“静摩擦力”。动摩擦力,两物体相对运动时的摩擦力。 重心是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。 第五章 空间力系 P53 空间力系平衡条件:6个方程。空间平行力系:3个方程 影响构件持久极限的主要因素:构件尺寸外形和表面质量。 质点的运动:点的速度dt ds v =,加速度:切向加速度dt dv a =τ,速度大小变化;法向加速度ρ 2v a n = , 速度方向变化,加速度22n a a a +=τ 刚体的基本运动角速度dt d ?ω= ,角加速度dt d ωα= ,角速度n πω2=(n 是转速,r/s) 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==, 质心运动定理:e F ma ∑=转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2 mR J z =:

工程力学实验报告.

工程力学实验报告(附测试曲线) 实验名称:金属材料拉伸实验 实验地点 实验日期 指导教师 班 级 小组成员 报告人 一、实验目的: 二、实验设备及仪器 试验机型号、名称: 量 具型号、名称: 三、试件 1) 试件材料:试件①:低碳钢20,试件②:灰口铸铁HT150 2) 成 绩 批阅人

四、 实验数据及计算结果 注:1. 数据的有效位数按实验指导书附录的修约规定; 2. 弹性模量() l A l F E ????= δ0 (由试验曲线的弹性直线段上确定两点,测出F ?和)(l ?δ。 五、 拉伸曲线示意图 六、回答题 1) 参考低碳钢拉伸图,分段回答力与变形的关系以及在实验中反映出的现象。 2) 由低碳钢、铸铁的拉伸图和试件断口形状及其测试结果,回答二者机械性能有什么不同。 3) 回忆本次实验过程,你从中学到了哪些知识。 七、体会与建议

工程力学实验报告(附测试曲线) 实验名称:金属材料压缩实验 实验地点 实验日期 指导教师 班 级 小组成员 报告人 一、实验目的: 二、实验设备及仪器 试验机型号、名称: 量 具型号、名称: 三、 试件 3) 试件材料:试件①:低碳钢(20),试件②:灰口铸铁(HT150) 4) 成 绩 批阅人

六、 实验数据及计算结果 注:数据的有效位数按实验指导书附录的修约规定。 七、 压缩曲线示意图 六、回答问题 4) 参考低碳钢与与铸铁的压缩图,分段回答力与变形的关系以及在实验中反映出的现象。 5) 由低碳钢、铸铁的压缩图和试件断口形状及其测试结果,回答二者机械性能有什么不同。 6) 回忆本次实验过程,你从中学到了哪些知识。 七、体会与建议

工程力学实验报告

(2014 ——2015 学年第二学期) 成绩 评定 课程: 班级: 学号: 座号: 姓名:

实验一:金属材料的拉伸实验 ①实验步骤 1.测量试样尺寸 直径d0在试样标距两端和中间三个截面上测量直径,每个截面在相互垂直方向各测量一次,取其平均值。用三个平均值中最小者计算横截面面积,数据列表记录。 标距长度L 0量取计算长度L 0(取L 0=10 d0,或L 0=5 d0),在试样两端划细线标志,用刻线机将其划分成10等分(或5等分)。 2. 开机 打开电源开关;启动计算机进入Windos操作系统;点击试验机控制软件,进入试验操作界面;按复位按扭使控制系统上电。 3. 系统参数设置 点击“模式设置”选项,选择试验模式--拉伸实验。 4. 试验基本参数设置 点击“操作”按扭,进入“试验基本参数”界面,选择变形测量模式—引伸计。 5. 试验过程设置 主要有:试样基本参数设定;试验力档位设定;变形调零;变形档位设定;曲线参数设定等。 6.装夹试样,安装引伸计 上下夹头均为斜锲夹块,将试样的夹持部位放入V型槽中央。注意低碳钢拉伸实验须测定标距范围内的变形,因此试样上下夹持部位均须留出5-10mm,以便安装引伸计。铸铁拉伸实验则不用安装引伸计。 7.测试 待一切准备工作完成后,点击“上行”按扭,开始拉伸实验。测试完毕保存实验文件。注意实验过程中观察图形和数据显示窗口以及试样破坏情况。特别提请注意的是,当实验曲线出现水平线一定程度后,试样开始进入局部变形阶段时,点击“取引伸计”按扭,迅速取下引伸计,以免引伸计损伤。 8.打印 点击“报告打印”,输出实验曲线。 9.卸载并取出试样 卸载并取出试样,注意保护试样断口形貌。 10.测量断后标距L1和断后颈缩处最小直径d1(仅对低碳钢拉伸实验) 测量时应注意将低碳钢试样两段的断口紧密对接,若断口到邻近标距端距离小于 或等于 03 L时,则应用所谓移位法(亦称为补偿法)测定断后标距长度 1 L。测量颈缩处最小直径d u时,在最小处互相垂直的两个方向测量直径。注意应用卡尺测量前端较窄的部位,以免由于弧线的影响而测量不到实际的最小值。 11.关机 注意清理实验现场,将相关仪器还原。 ②实验分析: 铸铁拉伸试验——断口是平面,属于拉伸破坏。 通过实验数据可得铸铁(脆性材料)的抗拉强度远低于低碳钢(塑性材料)的抗拉强度。断口位置大多在根部的原因:夹具夹得太紧了,铸铁在受拉的同时还受到夹具给试件的力,试件的中部只受到拉应力而根部除了拉应力外还会受到来自夹具的扭转力,故一般端口会在根部。 低碳钢常温拉伸断口一般呈典型的杯椎状断口。铸铁试样常温拉伸断口基本没有变化(或者说稍微缩小的圆截面),破坏断口与横截面重合,断口粗糙,呈凹凸颗粒状。原因是因

工程力学学习心得

《工程力学与建筑结构》课程技能考试 不知不觉中,本学期又过大半,同时,学习工程力学这门课程也快一年了。刚开始学时觉得这门课和高中的物理力学没啥大的区别,都是分析力学问题。但是随着深入的学习,慢慢的,发现了这门课程没那么简单,并不只是简单的分析力的构成。 工程力学这门课程包括有理论力学和材料力学两大部分。理论力学主要讲述的是经典力学部分的内容,讲述了静力学和运动学和动力学三大部分。静力学是研究物体在力系作用下的平衡规律的科学,动力学主要研究了点和刚体的简单运动和合成运动,动力学研究物体的机械运动和作用力之间的关系。材料力学研究物体(变形体模型)在外力作用下的内力、应力、变形及失效规律。 理论力学不像是生物化学,很多知识要靠记忆去扩展,这是一门更多得靠逻辑和推理去构建知识构架的学科。我对需要大量记忆的课程并不擅长,但我喜欢在错综复杂的力学体系中用最基本的东西去思考,解决问题,并想出自己真正有个性的办法,我也觉得这样对自己的智力和思维方式才是有帮助的。而理论力学又不同于以前作为基础学科的物理,其分析的问题更加复杂,更加接近实际,对问题的剖析也更加深刻,因此对思维也提出了更多的挑战,激起人的兴趣。 在具体学习的过程中,自己还是碰到了很多的困难的,有时觉得会烦躁,但最后静下心来好好把书上的内容系统地过一遍,有时甚至往复地看好多遍,直到自己真正理解,成为让自己接受的知识。理论力学的难点不在于知识的多,而是真正要学好这门课,对其中没一点知识必须有足够深的理解,然后各种综合性交叉性的题目也便能很自然得想到用书中不同的知识去解决。自己也便能顺利地去推倒自己想要的结论了。 另外这门课最有特色的地方就是将理论和实际结合起来了,我们不仅在可以学到课本上的内容,同时,我们还可以亲自动手在实验中检验理论。这与以往学习理论力学的过程中有很大的不同,也更加激起了我们的学习兴趣。 工程力学理论性强且与专业课、工程实际紧密联系,是科学、合理选择或设计结构的尺寸、形状、强度校核的理论依据。具有承上启下的作用。所以,学好工程力学,为后续专业课的应用和拓展奠定了很强的理论基础。 .1

《工程力学》综合设计性实验报告书

《工程力学》综合设计性实验 报告书 实验题目:3D打印件的综合力学性能测试实验 北方民族大学机械工程及自动化系 2018年12月制

目录 一、3D打印实验 (1) 二、3D打印杆件拉伸实验 (4) 三、3D打印圆杆压缩实验 (11) 四、3D打印杆件弯曲实验 (18)

综合设计性实验说明 一、实验说明 本实验旨在对熔融沉积3D打印件进行力学性能测试,具体过程如下: 1、通过使用三维设计软件,设计试件的三维模型,导出“stl”格式模型文件; 2、使用makerbot dektop切片软件进行3D打印前的切片处理; 3、使用makerbot replicator桌面3D打印机进行试件打印实验; 4、使用力学拉伸试验机进行拉伸、压缩和弯曲实验。 二、实验要求 1、每位同学单独进行实验数据采集及分析,个别小组如果试件数量小于成员数,则2位同学可使用一个试件,但实验数据也须单独进行采集; 2、实验报告中应包含以下几部分内容: (1)3D打印实验 介绍拉伸、压缩、弯曲试件的3D打印过程,包括叙述从三维建模到3D打印成型的过程,并简要介绍3D打印原理; (2)3D打印杆件的拉伸实验 介绍实验目的及试件拉伸实验过程,包括实验地点、实验设备、试件装夹方式及实验操作过程。 实验原理:根据课堂讲解叙述。 实验数据分析:包括变形量的计算、实际应变的计算、实际应力的计算,绘制载荷-时间曲线、载荷-变形曲线、应力-应变曲线,并在图中指出哪一段为弹性阶段;分析断口形式;总结出杆件在不同加载阶段的变形情况,分析3D打印杆件的在不同加载阶段的应力应变变化规律,计算出杆件的弹性模量和泊松比。 (3)3D打印圆柱的压缩实验 介绍实验目的及试件压缩实验过程,包括实验地点、实验设备、试件装夹方式及实验操作过程。 实验原理:与拉伸相同。 实验数据分析:包括变形量的计算、实际应变的计算、实际应力的计算,绘制载荷-时间曲线、载荷-变形曲线、应力-应变曲线,并在图中指出哪一段为弹性阶段;分析圆杆变形形式,总结出杆件在不同加载阶段的变形情况,分析3D打印杆件的在不同加载阶段的应力应变变化规律,计算出杆件的弹性模量和泊松比。 (4)3D打印杆件的弯曲实验 实验目的:测试3D打印杆件的弯曲力学性能,计算杆件的弯曲应力、弹性模量及抗弯刚度。 实验原理:杆件在集中力作用下发生弯曲变形,变形量用挠度y来描述;y 的值可直接从电脑中读取,由公式y=Fl3/48EI Z,可计算材料弹性模量E和抗弯刚度EI Z。其中F可从电脑读取,l为杆件有效长度,I Z为轴惯性矩,对于矩形截面,其表达式为I Z=bh3/12,b为横截面宽度,h为横截面高度。

相关文档
最新文档