方差分析-SPSS操作流程

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方差相等 时可选择 的比较方

方差不等 时可选择 的比较方

用t检验完成 各组均值的 配对比较
与对照 组的配 对比较
LSD(最小显著差异法):用 t检验完成各组均值间的配对 比较。 在变异和自由度的计算上利用了整个样本信息。对 多重比较误差率不进行调整;(此法最敏感)
Bonferroni(修正最小显著差异法) :用 t检验完成各组均 值间的配对比较,但通过设置每个检验的误差率来控制整 个误差;(应用较多)
常用方法备选:
LSD法:t检验的变形,在变异和自由度的计算上利用了整个样本信息

Duncan 新复极差测验法 Tukey 固定极差测验法 Dunnett最小显著差数测验法 等
实现手段:
方差分析菜单中的“Post hoc test…”按钮
步骤一: 同oneway
步A骤NO二V:A 选“Post
组内变异:每个处理组内部的各个观察值也大小不等,与每 组的样本均数也不相同,这种变异称为组内变异( variation within groups)。组内变异只反映随机误差的 大小,如个体差异wk.baidu.com随机测量误差等。因此,又称为误差变 异。用SS组内表示
方差分析中的多重比较
目的:
如果方差分析判断总体均值间存在显著差异,接下来可通过多 重比较对每个水平的均值逐对进行比较,以判断具体是哪些水 平间存在显著差异。
One-Way ANOVA过程要求:
n 因(分析)变量属于正态分布总体,若因(分析 )变量的分布明显的是非正态,应该用非参数分 析过程。
n 对被观测对象的实验不是随机分组的,而是进行 的重复测量形成几个彼此不独立的变量,应该用 Repeated Measure菜单项,进行重复测量方差分 析,条件满足时,还可以进行趋势分析。
Post Hoc(均数的多重比较选项)
进行多重比较是对每两个组的均值进行如下比较:MEAN(i)MEAN(j)≥4.6625×RANGE×SQRT(1/N(i)+1/N(j));其中i、j分 别为组序号, MEAN(i)、MEAN(j)分别为第i、j组均值, N(i)、 N(j)分别为第i、j组中的观测数。各组均值的多重比较方法的算 法不同RANGE值也不同。
Polynomial(多项式比较):均值趋势的检验有5种多 项式:Linear线性、Quadratic二次、Cubic三次、 4th四次、5th五次多项式
Coefficients:为多项式指定各组均值的系数。因素变量分为 几组,输入几个系数,多出的无意义。如果多项式中只包括第 一组与第四组的均值的系数,必须把第二个、第三个系数输入 为0值。如果只包括第一组与第二组的均值,则只需要输入前 两个系数,第三、四个系数可以不输入 。多项式的系数需要 由根据研究的需要输入。
• 如果进行先验对比检验,则应在Coefficients后依次输入系 数ci,并确保∑ci=0。应注意系数输入的顺序,它将分别与 控制变量的水平值相对应。
• 例如,当k=4时, 即有A、B、C、D 4个处理组,如果只将 B组和D组比较,则线性组合系数依次为0、-1、0、-1;如果 C组与其他3组的平均水平比较,则线性组合系数依次为-1、1、3、-1,余类推。线性组合系数要按照分类变量水平的顺 序依次填入Coefficients框中。
单因素方差分析
• 也称有一维方差分析,对二组以上的均值加以比较。 • 检验由单一因素影响的一个(或几个相互独立的)
分析变量由因素各水平分组的均值之间的差异是否 有统计意义。 • 并可以进行两两组间均值的比较,称作组间均值的 多重比较,还可以对该因素的若干水平分组中哪些 组均值不具有显著性差异进行分析,即一致性子集 检验。 • 步骤
Analyze→Compare means→
One-way ANOVA
One-Way过程
One-Way过程:单因素简单方差分析过程。在 Compare Means菜单项中,可以进行单因素方差分析 (完全随机设计资料的多个样本均数比较和样本均 数间的多重比较,也可进行多个处理组与一个对照 组的比较)、均值多重比较和相对比较,用于。
• analyze→compare means→one-way ANVOA
响应变量
因素
Contrasts:线性组合比较。是参数或统计量的线性函数,用于 检验均数间的关系,除了比较差异外,还包括线性趋势检验
Contrasts可以表达为: a1u1+ a2u2 +···+akuk =0;满足a1+ a2+···+ak =0。式中ai为线性组合系数,ui为总体均数,k为分 类变量的水平数
均值的多项式比较
可以同时建立多个多项式。一个多项式的一级系数 输入结束,激活Next按钮,单击该按钮后 Coefficients 框中清空,准备接受下一组系数数据。
如果认为输入的几组系数中有错误,可以分别单击 Previous或Next按钮前后翻找出错误的一组数据。 单击出错的系数,该系数显示在编辑框中,可以在 此进行修改,修改后击Change按钮,在系数显示框 中出现正确的系数值。当在系数显示框中选中一个 系数时,同时激活Remove按钮;单击该按钮将选中 的系数清除。
hoc test”
勾选多重 比较的方
法 (如LSD、 duncan
实例-多重比较
Post Hoc Test
方差分析步骤
方差分析的思路: 将全部观测值的总变异按影响结果的诸因素分
解为相应的若干部分变异,构造出反映各部分变 异作用的统计量,在此基础上,构建假设检验统 计量,以实现对总体参数的推断。
检验假设: H0:三个组的总体均数相同; H1:三个组的总体均数不全相同;
SPSS操作—方差分析
方差分析由英国统计
学家R.A.Fisher在 1923年提出,为纪念 Fisher,以F命名, 故方差分析又称 F 检 验。
三种变异
总变异:全部观察值大小各不相等,其变异就称为总变异( total variation)。用SST表示
组间变异:由于各组处理不同所引起的变异称为组间变异( variation between groups)。它反应了处理因素对不同组 的影响,同时也包括了随机误差。用SS组间表示
相关文档
最新文档