数学四基四能十个核心概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学新课标中的
四基、四能、十个核心概念
新课标明确提出了“四基”、“四能”。“四基”即学生通过学习,获得必需的基础知识、基本技能、基本思想、基本活动经验;“四能”发现问题和提出问题的能力、分析问题和解决问题的能力。
数学课程标准修订提出了十个核心概念包括数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识和创新意识。
现在新课标指的“四基”包括基础知识、基本技能、基本思想和基本活动经验。即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学基本思想;积累数学基本活动经验。我认为双基变四基对老师的要求会更高,整个课程改革的推进过程,对教师各方面的要求都会很高,教师需要不断学习不断更新才会有创新和发展,工作中教师要积极交流,在合作中提升和发展。教师需要不断学习不断更新才会有创新和发展。与时俱进,积极投身新课程改革,在合作中提升和发展。这就要求数学教师必须为学生的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进学生的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。小学数学要发展,就需要根据时代的需要,将基础知识、基本技能发展为,基础知识、基本技能、基本思想、基本活动经验;也需要将
分析问题、解决问题的能力,发展为发现问题、提出数学问题并加以分析和解
决的能力;更需要将以往重视培养演绎能力,发展为归纳能力、演绎能力并举。只有对
课标理解透彻、具体,才能灵活处理好知识、技能、基本思想和基本活动经验。
在新课标中“四能”包括发现问题和提出问题的能力、分析问题和解决问题的能力。分析与解决问题涉及的是已知,而发现问题与提出问题涉及的是未知。因此,发现问题与提出问题比分析与解决问题更重要,难度也更高。对小学生来说,发现问题更多地是指发现了书本上不曾教过的新方法、新观点、新途径以及知道了以前不曾知道的新东西。这种发现对教师可能是微不足道的,但是对于学生却是难得的,因为这是一种自我超越,可以获得成功的体验。可以逐渐积累创新和创造的经验。更重要的是,可以培养学生学习的兴趣,树立进步的信心,激发创造的激情。在发现问题的基础上提出问题,需要逻辑推理和理论抽象,需要精确的概括。问题的提出必须进行深入思考和自我组织,因而可以激发学生的智慧,调动学生
的身心进入活动状态。这与跟着教师去验证、推断既有的结论是不同的思维方式。学生只有多次在这样的思维方式训练下,才能逐渐形成创新意识、创新精神和创新能力。”我在上课时经常用学生熟悉的形式开展学习活动例如:我在上“探索三角形全等的条件”这节课时,先叫学生随意画个三角形,让大家看看彼此画的同不同(这样做好让全等的条件更有代表性),然后量出一个角的度数,再将它的二条夹边的长度量出来,让学生画出一个等角,一样长的夹边,将夹边开口处连接起来,得到一个新的三角形,最后让学生用重叠的方法看看二个三角形的形状的对比,在得出结论后,让学生进行思考为什么这样做就能得到这样的结果在指导学生动手操作中,教师既是组织者,同时又是帮助者。学生的学习活动中充满好奇、猜想,为了让学生学习兴趣在好奇和猜想中发展下去,教师就需用更有趣的方式来刺激学生产生好奇,产生动力力三者之间的关系,才能提高数学课堂练习的实效性。
请问本次数学课程标准修订提出了哪十个核心概念
答:《数学课程标准(实验稿)》在“课程设计思路”中提出了六个核心概念:“数感、符号感、空间观念、统计观念、应用意识和推理能力”,本次修订对此做了调整,共数学课程标准修订提出了十个核心概念包括数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识和创新意识。同时,对每一个核心概念都做出了较为明确的阐述,有助于教师更好地把握课程目标、深刻地理解课程内容,同时对于数学课程内容的选择和教学方法的改革也有重要的指导意义。
事实上,把上面这些词统称为“概念”并不确切,因为这些词所要表达的东西并不是客观存在,甚至很难清晰地表达这些词的内涵,因此修订后的数学课程标准中没有对这些词本身统一给出的确切表达。数学课程标准之所以提出这些词,希望表达的是认识一类数学概念的思维模式,而正确地把握这些思维模式,对理解相关的数学概念是非常重要的。