统计学第七章虚拟变量
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反常年份:
E(Ct | X t , Dt 0) 0 1 X t
当截距与斜率发生变化时,则需要同时引入加法与乘法形 式的虚拟变量。
例,考察1990年前后的中国居民的总储蓄-收入关 系是否已发生变化。 表中给出了中国 1979~2001 年以城乡储蓄存 款余额代表的居民储蓄以及以 GNP 代表的居民收 入的数据。
二、虚拟变量的引入
虚拟变量做为解释变量引入模型有两种基本方 式:加法方式和乘法方式。
1. 加法方式 上述企业职工薪金模型中性别虚拟变量的 引入采取了加法方式。 在该模型中,如果仍假定E(i)=0,则 企业女职工的平均薪金为:
E(Yi | X i , Di 0) 0 1 X i
企业男职工的平均薪金为:
E(Yi | X i , Di 1) ( 0 2 ) 1 X i
几何意义:
• 假定2>0,则两个函数有相同的斜率, 但有不同的截距。意即,男女职工平均薪金对 工龄的变化率是一样的,但两者的平均薪金水 平相差2。
可以通过传统的回归检验,对2的统计显著性进 行检验,以判断企业男女职工的平均薪金水平是 否有显著差异。
概念:
同时含有一般解释变量与虚拟变量的模型 称为虚拟变量模型或者方差分析 ( analysis-of variance: ANOVA)模型。 一个以性别为虚拟变量考察企业职工薪金的 模型:
Yi 0 1 X i 2 Di i
其中:Yi为企业职工的薪金,Xi为工龄, Di=1,若是男性,Di=0,若是女性。
表 5.1.1 90年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 储蓄 281 399.5 523.7 675.4 892.5 1214.7 1622.6 2237.6 3073.3 3801.5 5146.9 7034.2
1 正常年份 Dt 消费模型可建立如下: 0 反常年份
如,设
Ct 0 1 X t 2 Dt X t t
这里,虚拟变量D以与X相乘的方式引入了模型中, 从而可用来考察消费倾向的变化。
假定E(i)= 0,上述模型所表示的函数可化为:
正常年份:
E(Ct | X t , Dt 1) 0 ( 1 2 ) X t
年薪 Y 男职工 女职工
2 0
工龄 X
又例:在横截面数据基础上,考虑个人保 健支出对个人收入和教育水平的回归。
教育水平考虑三个层次:高中以下, 高中, 大学及其以上。
这时需要引入两个虚拟变量:
1 D1 0 高中 其他 1 D2 0 大学及其以上 其他
模型可设定如下:
Yi 0 1 X i 2 D1 3 D2 i
•男职工本科以下学历的平均薪金:
E(Yi | X i , D1 1, D2 0) ( 0 2 ) 1 X i
•女职工本科以上学历的平均薪金:
E(Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i
•男职工本科以上学历的平均薪金:
• 大学及其以上:
E(Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i
假定3>2,其几何意义:
大学教育 保健 支出 高中教育 低于中学教育
收入
• 还可将多个虚拟变量引入模型中以考察多种“定性”因 素的影响。
如在上述职工薪金的例中,再引入代表学历 的虚拟变量D2:
E(Yi | X i , D1 1, D2 1) ( 0 2 3 ) 1 X i
2. 乘法方式
加法方式引入虚拟变量,考察:截距的不同。 许多情况下:往往是斜率就有变化,或斜率、截距 同时发生变化。 斜率的变化可通过以乘法的方式引入虚拟变量来测 度。
例:根据消费理论,消费水平C主要取决于收 入水平Y,但在一个较长的时期,人们的消费倾 向会发生变化,尤其是在自然灾害、战争等反常 年份,消费倾向往往出现变化。这种消费倾向的 变化可通过在收入的系数中引入虚拟变量来考察。
1 D2 0
本科及以上学历 本科以下学历
职工薪金的回归模型可设计为:
Yi 0 1 X i 2 D1 3 D2 i
于是,不同性别、不同学历职工的平均薪金分别为:
•女职工本科以下学历的平均薪金:
E(Yi | X i , D1 0, D2 0) 0 1 X i
一、虚拟变量的基本含义 许多经济变量是可以定量度量的,如:商品需求 量、价格、收入、产量等。 但也有一些影响经济变量的因素无法定量度量, 如:职业、性别对收入的影响,战争、自然灾害 对GDP的影响,季节对某些产品(如冷饮)销售 的影响等等。 为了在模型中能够反映这些因素的影响,并提高 模型的精度,需要将它们“量化”。
1979~2001 年中国居民储蓄与收入数据(亿元) GNP 90年后 储蓄 4038.2 1991 9107 4517.8 1992 11545.4 4860.3 1993 14762.4 5301.8 1994 21518.8 5957.4 1995 29662.3 7206.7 1996 38520.8 8989.1 1997 46279.8 10201.4 1998 53407.5 11954.5 1999 59621.8 14922.3 2000 64332.4 16917.8 2001 73762.4 18598.4
Βιβλιοθήκη Baidu
这种“量化”通常是通过引入“虚拟变量”来完成的。 根据这些因素的属性类型,构造只取“0”或“1”的人工变量, 通常称为虚拟变量(dummy variables),记为D。
例如,反映文化程度的虚拟变量可取为:
1,
D= 0,
本科学历
非本科学历
一般地,在虚拟变量的设置中: 基础类型、肯定类型取值为1; 比较类型,否定类型取值为0。
在E(i)=0 的初始假定下,高中以下、高中、大学及
其以上教育水平下个人保健支出的函数:
高中以下: E(Yi | X i , D1 0, D2 0) 0 1 X i
• 高中: E(Yi | X i , D1 1, D2 0) ( 0 2 ) 1 X i