贴片隔离器-表面封装SMT隔离器

贴片隔离器-表面封装SMT隔离器
贴片隔离器-表面封装SMT隔离器

表面封装隔离器/SMT隔离器

●频率范围410MHz至15GHz

●应用于民用,军事,航天,空间技术等●低插损,高隔离度,高功率

●可按客户要求订制生产

表贴隔离器实物图——优译:

表贴隔离器外形设计图UIYSI36A:

UIYSI25A:

UIYSI20A:

UIYSI12A:

表面封装隔离器:

表面封装隔离器又可称表贴隔离器、SMT隔离器、贴片隔离器,其原理就是普通隔离器原理,是一个有单向传输特性的二端口器件。隔离器在规定的方向上传输仅有很小的损耗,而在另一个方向上传输就有很大的损耗(隔离)。只不过内部磁场方向与普通隔离器磁场有些区别,这种贴片隔离器环形器基本没有带连接器的,一般也是直接焊接使用。表贴隔离器的特点:体积小,也有人将其成称为小型隔离器,安装方便,可用机器安装。

优译主要生产:

同轴隔离器、嵌入式(带线)隔离器、宽带隔离器、双节隔离器、表面封装(SMT)隔离器、微带(基片)隔离器、波导隔离器、高功率隔离器、同轴环形器、嵌入式(带线)环形器、宽带环形器、双节环形器、表面封装(SMT)环形器、微带(基片)环形器、波导环形器、高功率环形器、同轴衰减器、同轴终端(负载)、滤波器、放大器、功分器、电桥、定向耦合器、波导同轴转换、双工器/三工器等微波通讯产品,更多产品可参考优译官网:https://www.360docs.net/doc/d516078939.html,

SMT元件基础知识与命名统一

技术员培训资料—初级 提纲 一:生产程序的数据结构 二:元件数据的结构 三:Part Number(元件名称)命名规范 四:Part Type Name(外形类型名称)命名规范 五:Packaging Name(封装名称)命名规范 六:数据库中元件数据原始方向的统一 七:定位点命名规范 八:常用误差代码对照表 九:常用额定电压代码对照表 十:三星电容规格对照表 一:生产程序的数据结构 构成XP机器的生产程序的数据结构如下: 图一 每一个编辑好的程序都由定位点数据、吸嘴数据、电路板数据、顺序数据、供料器安装数据、元件数据等六块数据组成(其中,元件数据又包括:Part Number数据、Part Type数据、Packaging数据)。如图一左边(手画的框框里面的内容)。

每一个完整的程序中的数据都是独立的。两个不同的程序中的数据虽然都是独立的,但是他们中间还是有很多数据是相同的。我们把这些相同的数据都再另外保存在机器的数据库里面,方便下次编程的时候,遇到需要相同数据就可以直接读取。如图一右边的那些数据。 二:元件数据的结构 XP机器中使用的元件相关数据以如下结构进行管理: 如上图所示,这里的每一个数据都是由一个名称和它所对应的实质数据组成。 1、Part Number数据(元件数据)包括:Part Number(元件名称)、Part Type数据(外形类型数据)、Packaging数据(封装数据)和影像数据。 2、Part Type数据(外形类型数据)包括:Part Type Number(外形类型数据名称)、Template 数据(模板数据)。 3、Packaging数据(封装数据)包括:Packaging Number(封装名称)、封装模板数据 4、影像数据包括:影像数据文件名、图片。

贴片加工厂_SMT电子元器件知识

SMT电子元器件知识 在表面贴装技术生产的过程中,我们会接触到各种各样的电子物料,通常将这些物料分为SMT元件(也称SMC,包含表面贴装电阻、电容、电感等)和SMT器件(也称SMD,包含表面贴装二极管、三极管、插座、集成电路等)两大类,下面就我们常用的电子元器件作以介绍: 一、表面贴装电阻 表示,以大写英文字母 R 代表,其基本单位为欧姆,符号为Ω。 单位换算关系:1兆欧(MΩ)=1000千欧(KΩ)=1000000欧(Ω)。 主要参数:阻值、尺寸、功率、误差、温度系数和包装类型等。 1,表面贴装电阻的阻值大小一般丝印于元件表面,常用三位或四位数表示。当用三位数字表示阻值大小时,第一、二位为有效数字,第三位为在有效数字后添加 0 的个数,单位为欧姆。例如: 103 表示 10000Ω 10KΩ 101 表示 100Ω 124 表示 120000Ω 120KΩ 但对于阻值小的电阻,有如下的表示方法: 6R8 表示 6.8Ω 2R2 表示 2.2Ω用 R 代表小数点 000 表示 0Ω 当用四位数字表示阻值大小时,第一、二、三位为有效数字,第四位为在有

效数字后添加 0 的个数,单位为欧姆。例如: 3301 表示 3300Ω 3.3K Ω 1203 表示 120000Ω 120 K Ω 4702 表示 47000Ω 47 K Ω 2,表面贴装电阻的尺寸常用其体积的长度与宽度尺寸表示,有公制(单位为毫米mm )和英制(单位为英寸)两种尺寸代码,由4位数字组成,前两位数表示电阻的长度,后两位数表示电阻的宽度。另外,不同尺寸的电阻,其额定功率也不同,有1/16W 、1/10W 、1/8W 、1/4W 、1/2W 、1W 等。下表为几种常用贴片电阻的尺寸代码、实际尺寸和额定功率的相对应关系: 3,电阻元件在生产过程中其阻值不可能达到绝对的精确,为了判定其是否合格,常统一规定其阻值的上、下限,即误差范围对其进行检测。电阻常用的误差等级有±1%、±5%、±10%等,分别用字母M 、J 、K 代表。 4,温度系数:贴片电阻的温度系数有 2级,即W 级(±200ppm/℃); X 级(±100ppm/℃)。只有误差为M 级的电阻温度系数采用X 级,其它误差值的电阻温度系数一般采用W 级。

光隔离器的功能和基本原理教学文案

光隔离器的功能和基 本原理

光隔离器的功能和基本原理 光隔离器的功能是让正向传输的光通过而隔离反向传输的光,从而防止反射光影响系 统的稳定性,与电子器件中的二极管功能类似。光隔离器按偏振相关性分为两种:偏振相 关型和偏振无关型,前者又称为自由空间型(Freespace),因两端无光纤输入输出;后者 又称为在线型(in-Line),因两端有光纤输入输出。自由空间型光隔离器一般用于半导体 激光器中,因为半导体激光器发出的光具有极高的线性度,因而可以采用这种偏振相关的 光隔离器而享有低成本的优势;在通信线路或者 EDFA 中,一般采用在线型光隔离器,因 为线路上的光偏振特性非常不稳定,要求器件有较小的偏振相关损耗。 光隔离器利用的基本原理是偏振光的马吕斯定律和法拉第(Farady)磁光效应,自由 空间型光隔离器的基本结构和原理如下图所示,由一个磁环、一个法拉第旋光片和两个偏 振片组成,两个偏振片的光轴成45°夹角。正向入射的线偏振光,其偏振方向沿偏振片 1 的透光轴方向,经过法拉第旋光片时逆时针旋转45°至偏振片 2 的透光轴方向,顺利透射;反向入射的线偏振光,其偏振方向沿偏振片 2 的透光轴方向,经法拉第旋光片时仍逆 时针旋转45°至与偏振片 1 的透光轴垂直,被隔离而无透射光。自由空间型光隔离器相 对简单,装配时偏振片和旋光片均倾斜一定角度(比如4°)以减少表面反射光,搭建测 试架构时注意测试的可重复性,其他不赘述。下面详细介绍在线式光隔离器的发展情况。 最早的在线式光隔离器是用Displacer晶体与法拉第旋光片组合制作的,因体积大和 成本高而被Wedge型光隔离器取代;在线式光隔离器因采用双折射晶体而引入 PMD,因此相应出现 PMD 补偿型 Wedge 隔离器;某些应用场合对隔离度提出更高要求,因此出现双 级光隔离器,在更宽的带宽内获得更高隔离度。 下面依次介绍这些在线式光隔离器的结构和原理。 1) Displacer 型光隔离器 Displacer型光隔离器结构和光路如下图所示,由两个准直器、两个Displacer晶体,一个半波片、一个法拉第旋光片和一个磁环(图中未画出)组成。正向光从准直器 1入射在Displacer1 上,被分成o光和e光传输,经过半波片和法拉第旋光片后,逆时针 旋转45 +45 =90 ,发生o光与e光的转换,经Displacer2合成一束耦合进入准直器 2;反向光从准直器 2 入射在Displacer2 上,被分成o光和e光传输,经过法拉第旋光片和

SMT常见贴片元器件封装类型和尺寸

1、SMT 表面封装元器件图示索引(完善) 名称 图示 常用于 备注 Chip 电阻,电容,电感 片式元件 MLD : Molded Body 钽电容,二极 管 模制本体元件 CAE : Aluminum Electrolytic Capacitor 铝电解电容 有极性 Melf : Metal Electrode Face 圆柱形玻璃二极管, 电阻(少见) 二个金属电极 SOT : Small Outline Transistor 三极管,效应管 小型晶体管 JEDEC(TO) EIAJ(SC) TO : Transistor Outline 电源模块 晶体管外形的贴片元件 JEDEC(TO) OSC : Oscillator 晶振 晶体振荡器 Xtal :Crystal 晶振 二引脚晶振

SOD: Small Outline Diode 二极管 小型二极管(相 比插件元件) JEDEC SOIC: Small Outline IC 芯片,座子小型集成芯片 SOP: Small Outline Package 芯片 小型封装,也称 SO,SOIC 引脚从封装 两侧引出呈 海鸥翼状(L 字形) 前缀: S:Shrink T:Thin SOJ: Small Outline J-Lead 芯片 J型引脚的小芯 片【也成丁字形】 LCC: Leadless Chip carrier 芯片 无引脚芯片载 体: 指陶瓷基板的四 个侧面只有电极 接触而无引脚的 表面贴装型封 装。也称为陶瓷 QFN 或QFN-C PLCC: plastic leaded Chip carrier 芯片 引脚从封装的四 个侧面引出,呈 丁字形或J型, 是塑料制品。DIP: Dual In-line Package 变压器,开关, 芯片 双列直插式封 装:引脚从封装 两侧引出QFP: Quad Flat Package 芯片 四方扁平封装: 引脚从四个侧面 引出呈海鸥翼 (L)型。基材有陶

最新光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试 一.实验目的和任务 1.了解光隔离器的工作原理和主要功能。 2.了解光隔离器各参数的测量方法。 3.测量光隔离器的插入损耗、反向隔离度、回波损耗参数。 二.实验原理 光隔离器又称为光单向器,是一种光非互易传输无源器件,该器件用来消除或抑制光纤信道中产生的反向光,由于这类反向光的存在,导致光路系统间将产生自耦合效应,使激光器的工作变得不稳定和产生系统反射噪声,使光纤链路上的光放大器发生变化和产生自激励,造成整个光纤通信系统无法正常工作。若在半导体激光器输出端和光放大器输入或输出端连接上光隔离器,减小反射光对LD的影响,因此,光隔离器是高码速光纤通信系统、精密光纤传感器等高技术领域必不可少的元器件之一。 光隔离器是利用了磁光晶体的法拉第效应,其组成元件有:光纤准直器(Optical Fiber Collimator)、法拉第旋转器(Faraday Rotator)和偏振器(Polarizator)。隔离器按照偏振特性来分,有偏振相关型和偏振无关型。它们的原理图如图1.1和图1.2所示: 图1.1 偏振相关的光隔离器 图1.2 偏振无关的光隔离器

对于偏振相关光隔离器,光通过法拉第旋转器时,在磁场作用下,光偏振方向旋转角为FHL =φ,式中H 为磁场强度,L 为法拉第材料长度,F 为材料的贾尔德系数。如图 1.1,当输入光通过垂直偏振起偏器后,成为垂直偏振光,经过法拉第旋转器旋转了 045,而检偏器偏振方向和起偏器偏振方向成045角,使得光线顺利通过,而反射回来 的偏振光经过检偏器、法拉第旋转器以后,继续沿同一方向旋转045,即偏振方向刚好与起偏器偏振方向垂直,则光无法反向通过。由于只有垂直偏振的光能通过光隔离器,因此称为偏振相关光隔离器。 偏振无关光隔离器如图1.2所示,图1.2(a)为光隔离器正向输入。当包含两个正交偏振的输入光波被一个偏振分束器分离,变为垂直偏振光和平行偏振光。这两束光通过法拉第旋转器,沿同一方向旋转045,再通过λ/2波片旋转045,垂直偏振光变为平行偏振光,平行偏振光变为垂直偏振光,经过偏振分束器合为一束光输出。图1.2(b)是反向输入光的偏振态在隔离器中的演化过程。在SWP 水平偏振态光折射,垂直偏振态光透射,则光不能从正向输入端输出。 (一) 光隔离器插入损耗测试的实验原理 光隔离器的插入损耗是光隔离器正向接入时,输出光功率相对输入光功率的比率(以dB 为单位)。假设光隔离器的正向输入光功率为正1P ,输出光功率为正2P ,则其计算公式为: 正 正 21lg 10P P Insertloss = (1-1) 其插入损耗实验原理图如图1.3所示。 光隔离器 图1.3 光隔离器插入损耗测量原理图 (二) 光隔离器隔离度测试的实验原理 反向隔离度是隔离器最重要的指标之一,它表征光隔离器对反向传输光的隔离能力。将光隔离器按图1.4反向接入,假设光隔离器反向输入光功率为反1P ,输出光功率为反2P 。则光隔离器隔离度计算公式为:

常用SMT元件封装

常用SMT贴片元件封装说明 SMT是电子业界一门新兴的工业技术,它的兴起及迅猛发展是电子组装业的一次革命,被誉为电子业的“明日之星”,它使电子组装变得越来越快速和简单,随之而来的是各种电子产品更新换代越来越快,集成度越来越高,价格越来越便宜。为IT(Information Technology)产业的飞速发展作出了巨大贡献。 SMT所涉及的零件种类繁多,样式各异,有许多已经形成了业界通用的标准,这主要是一些芯片电容电阻等等;有许多仍在经历着不断的变化,尤其是IC类零件,其封装形式的变化层出不穷,令人目不暇接,传统的引脚封装正在经受着新一代封装形式(BGA、FLIP CHIP等等)的冲击,在本章里将分标准零件与IC 类零件详细阐述。 标准零件 标准零件是在SMT发展过程中逐步形成的,主要是针对用量比较大的零件,本节只讲述常见的标准零件。目前主要有以下几种:电阻(R)、排阻(RA或RN)、电感(L)、陶瓷电容(C)、排容(CP)、钽质电容(C)、二极管(D)、晶体管(Q)【括号内为PCB(印刷电路板)上之零件代码】,在PCB上可根据代码来判定其零件类型,一般说来,零件代码与实际装着的零件是相对应的。 一、零件规格: 贴片电阻尺寸图

贴片电容尺寸图

含义1206/3216 L:1.2inch(3.2mm) W:0.6inch(1.6mm) 0805/2125 L:0.8inch(2.0mm) W:0.5inch(1.25mm) 0603/1608 L:0.6inch(1.6mm) W:0.3inch(0.8mm) 0402/1005 L:0.4inch(1.0mm) W:0.2inch(0.5mm) 注:a、L(Length):长度; W(Width):宽度; inch:英寸 b、1inch=25.4mm (b)、在(1)中未提及零件的厚度,在这一点上因零件不同而有所差异,在生产时应以实际量测为准。 (c)、以上所讲的主要是针对电子产品中用量最大的电阻(排阻)和电容(排容),其它如电感、二极管、晶体管等等因用量较小,且形状也多种多样,在此不作讨论。 (d)、SMT发展至今,随着电子产品集成度的不断提高,标准零件逐步向微型化发展,如今最小的标准零件已经到了0201。 二、常用元件封装 1)电阻: 最为常见的有0805、0603两类,不同的是,它可以以排阻的身份出现,四位、八位都有,具体封装样式可参照MD16仿真版,也可以到设计所内部PCB库查询。 注:A\B\C\D四类型的封装形式则为其具体尺寸,标注形式为L X S X H 1210具体尺寸与电解电容B类3528类型相同 0805具体尺寸:2.0 X 1.25 X 0.5(公制表示法) 1206具体尺寸:3.0 X 1.5 0X 0.5(公制表示法) 贴片电阻 贴片排阻 2)电阻的命名方法

SMT常见贴片元器件封装类型和尺寸

1、SMT表面封装元器件图示索引(完善)

2、SMT物料基础知识 一. 常用电阻、电容换算: 1.电阻(R): 电阻:定义:导体对电流的阻碍作用就叫导体的电阻。 无方向,用字母R表示,单位是欧姆(Ω),分:欧(Ω)、千欧(KΩ)、兆欧(MΩ)1MΩ=1000KΩ=1000000Ω 1).换算方法: ①.前面两位为有效数字(照写),第三位表示倍数10n次方(即“0”的个数) 103=10*103=10000Ω=10KΩ 471=47*101=470Ω 100=10*100=10Ω 101=10×101=100Ω 120=12×100=12Ω ②.前面三位为有效数字(照写),第四位表示倍数倍数10n次方(即“0”的个数). 1001=100*101=1000Ω=1KΩ 1632=163*102=16300Ω=16.3KΩ 1470=147×100=147Ω 1203=120×103Ω=120KΩ 4702=470×102Ω=47KΩ

2.电容(C): 电容的特性是可以隔直流电压,而通过交流电压。它分为极性和非极性,用C表示。 2.1三种类型:电解电容钽质电容有极性, 贴片电容无极性。 用字母C表示,单位是法(F),毫法(MF),微法(UF),纳法(NF)皮法(PF) 1F=103MF=106UF=109NF=1012PF 2.2换算方法: 前面两位为有效数字(照写),第三位倍数10n次方(即“0”的个数) 104=10*104=100000PF=0.1UF 100=10*100=10PF 473=47×103=47000pF=47nF=0.047uF 103=10×103=10000pF=10nF=0.01uF 104=10×104=100000pF=10nF=0.1uF 221=22×101=220pF 330=33×100=33pF 2.3钽电容: 它用金属钽或者铌做正极,用稀流酸等配液做负极,用钽或铌表面生成的氧化膜做成介质制成,其特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好,用在要求较高的设备中。钽电容表面有字迹表明其方向、容值,通常有一条横线的那边标志钽电容的正极。钽电容规格通常有:A型、B型、C型、P型。 2.4 电容的误差表示 2.4.1常用钽电容代换参照表. 1UF:105、A6、CA6 2.2UF:225 3.3UF:335、AN6、CN6、JN6、CN69 4.7UF:475、JS6 10UF:106、JA7、AA7、GA7 22UF:226、GJ7、AJ7、JJ7 47UF:476 3. 电感(L) 电感的单位:亨(H)、毫享(MH)、微享(μH)、纳享(NH),其中:1H=103MH=106μH=109NH 片状电感 电感量:10NH~1MH 材料:铁氧体绕线型陶瓷叠层

光隔离器的功能和基本原理

光隔离器的功能和基本原理 光隔离器的功能是让正向传输的光通过而隔离反向传输的光,从而防止反射光影响系统的稳定性,与电子器件中的二极管功能类似。光隔离器按偏振相关性分为两种:偏振相关型和偏振无关型,前者又称为自由空间型(Freespace),因两端无光纤输入输出;后者又称为在线型(in-Line),因两端有光纤输入输出。自由空间型光隔离器一般用于半导体激光器中,因为半导体激光器发出的光具有极高的线性度,因而可以采用这种偏振相关的光隔离器而享有低成本的优势;在通信线路或者EDFA 中,一般采用在线型光隔离器,因为线路上的光偏振特性非常不稳定,要求器件有较小的偏振相关损耗。 光隔离器利用的基本原理是偏振光的马吕斯定律和法拉第(Farady)磁光效应,自由空间型光隔离器的基本结构和原理如下图所示,由一个磁环、一个法拉第旋光片和两个偏振片组成,两个偏振片的光轴成45°夹角。正向入射的线偏振光,其偏振方向沿偏振片1 的透光轴方向,经过法拉第旋光片时逆时针旋转45°至偏振片2 的透光轴方向,顺利透射;反向入射的线偏振光,其偏振方向沿偏振片2 的透光轴方向,经法拉第旋光片时仍逆时针旋转45°至与偏振片 1 的透光轴垂直,被隔离而无透射光。自由空间型光隔离器相对简单,装配时偏振片和旋光片均倾斜一定角度(比如4°)以减少表面反射光,搭建测试架构时注意测试的可重复性,其他不赘述。下面详细介绍在线式光隔离器的发展情况。 最早的在线式光隔离器是用Displacer晶体与法拉第旋光片组合制作的,因体积大和成本高而被Wedge型光隔离器取代;在线式光隔离器因采用双折射晶体而引入PMD,因此相应出现PMD 补偿型Wedge 隔离器;某些应用场合对隔离度提出更高要求,因此出现双级光隔离器,在更宽的带宽获得更高隔离度。 下面依次介绍这些在线式光隔离器的结构和原理。 1) Displacer 型光隔离器 Displacer型光隔离器结构和光路如下图所示,由两个准直器、两个Displacer晶体,一个半波片、一个法拉第旋光片和一个磁环(图中未画出)组成。正向光从准直器1入射在Displacer1 上,被分成o光和e光传输,经过半波片和法拉第旋光片后,逆时针旋转45 +45 =90 ,发生o光与e光的转换,经Displacer2合成一束耦合进入准直器2;反向光从准直器2 入射在Displacer2 上,被分成o光和e光传输,经过法拉第旋光片和半波片后,逆时针旋转45 -45 =0 ,未发生o光和e光的转换,经Displacer1 后两束光均偏离准直器 1 而被隔离。 Displacer 型光隔离器的缺点是,为了满足隔离度要求,反向光路中的两束光需偏移较大距离,可参考图2(a),而双折射特性较好的钒酸钇Displacer 晶体,其长度与偏移量

SMT常用封装建库规范

部分常用 SMT封装建库规范§1分立器件 一,贴装电容(chip) 1.一般陶瓷电容: 陶瓷电容的基本尺寸和类型: 封装型号(INCH)封装型号 (METRIC) L S W H min max nom min max max C0402C1005、 C0603C1608、 C0805C2012、、 C1206C32163 C1210C3225/ C1808/ C1812 2 C18256 C22206 C222562标准焊盘: 1.2.1 回流焊标准焊盘: (mm/mils) (mm)

封装类型 X Y C C0402 / 25 / 20 / 40 C0603 / 35 / 32 / 60 C0805 / 45 / 50 / 70 C1206 / 55 / 63 / 110 C1210 / 55 / 92 / 110 C1808 / 60 / 80 / 180 C1812 / 60 / 125 / 180 C1825 / 60 / 200 / 180 C2220 / 70 / 200 / 235 C2225 / 70 / 235 / 235 1.2.2波峰焊标准: 封装类型X Y C C0603 / 35 / 32 / 70 C0805 / 45 / 52 / 90 C1206 / 60 / 62 / 145 C1210 / 60 / 102 / 145 C1808 / 82 / 82 / 205 C1812 / 82 / 122 / 205 C1825 / 60 / 252 / 200 C2220 / 60 / 222 / 270 C2225 / 65 / 252 / 270 2.一般钽电解电容: 钽电容的基本尺寸和类型: 型号封装型 号 L S W1W2H1H2 min max min max min max min max max max A C321631 B C352823 C C6032 D C7343754 标准焊盘:

实验报告光隔离器(中大)

光隔离器相关参数测量 中山大学理工学院光信息专业 摘要:本文通过测量光隔离器的插入损耗、隔离度等相关参数,并对相关数据进行分析,得出结论,以进一步了解光隔离器的原理、功能。 关键词:光隔离器光功率插入损耗隔离度偏振相关损耗回波损耗 Measurement of the Parameters of an Optoisolator Major of optical information science and technology, SYSU, Guangzhou Abstract: In this experiment, we measured several important parameters of an optoisolator, then analyzed the data and draw some useful conclusions. After that, we got a further comprehension about the principles, the functions of the optoisolator. Key Words: optoisolator, optical power, insertion loss(IL), isolation, polarization dependent loss(PDL), return loss(RL); 一、实验目的 1.学习光隔离器的原理。 2.了解光准直器的原理及其应用。 3.学习测量光隔离器的主要技术参数。 二、实验用具及装置图 实验用具:稳定光远、光功率计(武邮)、单模标准跳线(用于测量器件的输入功率)、光隔离器(OISS1310ASO1111) 实验装置示意图如下所示: 三、实验原理与器件

SMT常见贴片元器件

SMT贴片元器件封装类型的识别 封装类型是元件的外观尺寸和形状的集合,它是元件的重要属性之一。相同电子参数的元件可能有不同的封装类型。厂家按照相应封装标准生产元件以保证元件的装配使用和特殊用途。 由于封装技术日新月异且封装代码暂无唯一标准,本指导只给出通用的电子元件封装类型和图示,与SMT工序无关的封装暂不涉及。 1、常见SMT封装 以公司内部产品所用元件为例,如下表:

通常封装材料为塑料,陶瓷。元件的散热部分可能由金属组成。元件的引脚分为有铅和无铅区别。

2、 SMT 封装图示索引 以公司内部产品所用元件为例,如下图示: 名称 图示 常用于 备注 Chip 电阻,电容,电感 MLD 钽电容,二极管 CAE 铝电解电容 Melf 圆柱形玻璃二极管, 电阻(少见) SOT 三极管,效应管 JEDEC(TO) EIAJ(SC) TO 电源模块 JEDEC(TO) OSC 晶振 Xtal 晶振

SOD二极管JEDEC SOIC芯片,座子 SOP芯片 前缀: S:Shrink T:Thin SOJ芯片 PLCC芯片 含LCC座子 (SOCKET)DIP变压器,开关 QFP芯片 BGA芯片 塑料:P 陶瓷:C QFN芯片 SON芯片

3、常见封装的含义 1、BGA(ball grid array):球形触点陈列 表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为的360 引脚BGA 仅为31mm 见方;而引脚中心距为的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。该封装是美国Motorola公司开发的,首先在便携式电话等设备中被采用。 2、DIL(dual in-line):DIP的别称(见DIP)。欧洲半导体厂家多用此名称。 3、DIP(dual in-line Package):双列直插式封装 引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距,引脚数从6到64。封装宽度通常为。有的把宽度为和的封装分别称为skinny DIP 和slimDIP(窄体型DIP)。但多数情况下并不加区分,只简单地统称为DIP。 4、Flip-Chip:倒焊芯片 裸芯片封装技术之一,在LSI芯片的电极区制作好金属凸点,然后把金属凸点与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有封装技术中体积最小、最薄的一种。但如果基板的热膨胀系数与LSI芯片不同,就会在接合处产生反应,从而影响连接的可靠性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。5、LCC(Leadless Chip carrier):无引脚芯片载体 指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是高速和高频IC用封装,也称为陶瓷QFN 或QFN-C(见QFN)。

光隔离器的基本原理

光隔离器的基本原理 偏振无关光纤隔离器(Polarization Insensitive Fiber Isolator)光纤隔离器根据偏振特性可分为偏振无关型(Polarization Insensitive)和偏振相关型(Polarization Sensitive)两种。由于通过偏振相关型光纤隔离器的光功率依赖于输入光的偏振态,因此要求使用保偏光纤作尾纤。这种光纤隔离器将主要用于相干光通信系统。目前光纤隔离器用的最多的仍然是偏振无关型的, 我们也只对此类光纤隔离器做分析。 1偏振无关光纤隔离器的典型结构 一种较为简单的结构如图1所示。这种结构只用到四个主要元件:磁环(Magnetic Tube)、法拉第旋转器(Faraday Rotator)、两片LiNbO3 楔角片(LN Wedge),配合一对光纤准直器(Fiber Collimator), 可以做成一种在线式(In-line)的光纤隔离器。 2 基本工作原理 下面具体分析光纤隔离器中光信号正向和反向传输的两种情况。 2.1 正向传输 如(图2)所示,从准直器出射的平行光束,进入第一个楔角片P1后,光束被分为o光和e光,其偏振方向相互垂直,传播方向成一夹角。当他们经过45°法拉第旋转器时,出射的o光和e光的偏振面各自向同一个方向旋转45°,由于第二个LN楔角片P2的晶轴相对于第一个楔角片正好呈45°夹角,所以o光和e光被折射到一起,合成两束间距很小的平行光,然后被另一个准直器耦合到光纤纤芯里去。这种情况下,输入的光功率只有很小一部分被损耗掉,这种损耗称之为隔离器的插入损耗。(图中“+”表示e光向 此方向偏折) 2.2 反向传输 如(图3)所示,当一束平行光反向传输时,首先经过P2晶体,分为偏振方向与P1的晶轴各呈45°夹角的o光和e光。由于法拉第效应的非互易性,o光和e光通过法拉第旋转器后,偏振方向仍然向同一个方向(图中为逆时针方向)旋转45°,这样,原先的o光和e光在进入第二个楔角片(P1)后成了e光和o光。由于折射率的差别,这两束光在P1中再也不可能合成一束平行光,而是向不同的方向折射,e光和o光被进一步分开一个更大的角度,即使经过自聚焦透镜的耦合,也不能进到光纤纤芯中去,从而达到了反向隔 离的目的。此时的传输损耗称之为隔离度。 3 技术参数 对于光纤隔离器,主要的技术指标有插入损耗(Insertion Loss)、反向隔离度(Isolation)、回波损耗(Return Loss)、偏振相关损耗(Polarization Dependent Loss)、偏振模色散(Polarization Mode Dispersion)等,以 下将作一一说明。 3.1 插入损耗(Insertion Loss) 在偏振无关光纤隔离器中,插入损耗主要包括光纤准直器、法拉第旋转器和双折射晶体等的损耗,由光纤准直器造成的插入损耗的详细分析请参见《准直器原理》。隔离器芯主要由法拉第旋转器和两片LN楔角片组成。法拉第旋转器的消光比越高、反射率越低、吸收系数越小,插入损耗就越小,一般法拉第旋转器的损耗约为0.02~0.06dB。由(图2)可知,一束平行光经过隔离器芯后,会分成o、e两束平行光。由于双折射晶体的固有特性,no1ne, o光和e光不能完全会聚,从而造成附加损耗。 3.2 反向隔离度(Isolation)

光隔离器

光隔离器的基本原理 光隔离器又称光单向器, 是一种光非互易传输的光无源器件。在光纤通信系统中总是存在许多原因产生的反向光。光源所发出的信号光, 以活动连接器的形式耦合到光纤线路中去, 活动接头处的光纤端面间隙会使约4% 的反射光向着光源传输。 一.光隔离器的类型 1.1光隔离器按其外部结构可分为型、连接器端口型(也称在线安装型)和微型化型(自由空间隔离器)。前两种也称为在线型, 可直接插入光纤网络中。微型化光隔离器则常用于半导体激光器及其他器件中。 自由空间隔离器 1.2 .隔离器按其性能可分为偏振灵敏型( 也称偏振相关) 和偏振无关型。一般情况下, 偏振灵敏型的光隔离器常做成微型化的, 偏振无关型光隔离器则常做成在线型的。 1.3.偏振无相关光隔离器的结构包括空间型和光纤型。由于不论入射是否为偏振光, 经 过这种光隔离器后的出射光均为线偏振光, 因而称之为偏振无相关光隔离器, 主要用于DFB激光器中。 1.4.偏振无关光隔离器是一种对输入光偏振态依赖性很小( 典型值 0. 2dB) 的光隔离器。一般来说, 偏振无关光隔离器的典型结构、工作原理都更复杂一些。它采用有角度的分离光束的原理来制成, 可起到偏振无关的目的。 1.5 根据光纤类型分为保偏隔离器和普通隔离器。

由于通过偏振相关型光纤隔离器的光功率依赖于输入光的偏振态,因此要求使用保偏光纤作尾纤。这种光纤隔离器将主要用于相干光通信系统。目前光纤隔离器用的最多的仍然是偏振无关型的。 1.6 保偏光纤:保偏光纤传输线偏振光,偏振光在光纤中传输的时候,其偏振态在很长一端光纤内几乎保持不变的光纤。广泛用于航天、航空、航海、工业制造技术及通信等国民经济的各个领域。在以光学相干检测为基础的干涉型光纤传感器中,使用保偏光纤能够保证线偏振方向不变,提高相干信躁比,以实现对物理量的高精度测量。 保偏光纤的使用:保偏光纤作为一种特种光纤,主要应用于光纤陀螺,光纤水听器等传感器和DWDM、EDFA等光纤通信系统。由于光纤陀螺及光纤水听器等可用于军用惯导和声呐,属于高新科技产品,而保偏光纤又是其核心部件,因而保偏光纤一直被西方发达国家列入对我禁运的清单。 保偏光纤的类型:熊猫型、椭圆型、领结型和类矩形

光隔离器实验汇总

廿一、光隔离器 实验人:合作人: (物理科学与工程技术学院,光信息科学与技术2011 级 1 班,学号11343026)一、实验目的: 1.学习光隔离器的原理 2.了解光准直器的原理及其应用 3.学习测量光隔离器的主要技术参数 二、实验原理与器件: 光隔离器是一种只允许光沿光路正向传输的互易性光无源器件,主要用于抑制光通信网络中的反射波。光隔离器广泛应用于光信号的发射、放大、传输等过程中。因为许多光器件对来自连接器、熔接点、滤波器等的反射光非常敏感,若不消除这些反射光将导致器件性能的急剧恶化。这时就需要用光隔离器来阻止反射光返回系统。 1.法拉第磁光效应 光隔离器的工作原理需要是利用磁光晶体的法拉第效应。典型的光隔离器采用法拉第旋转器,转光转角为45度,其材料主要为钇铁石榴石(YIG),现在多采用高性能磁光晶体。高性能磁光晶体是一种采用液相外延技术在石榴石单晶上生成掺镱、镓、钬或铽等元素的薄膜材料,如:(YbTbBi)3Fe5O12石榴石单晶薄膜,其单位长度的法拉第旋转角是传统YIG晶体的5倍以上,而所需磁感应强度B却仅为传统材料的一半或者1/3。 法拉第效应(1945年):对于给定的磁光晶体材料,光振动面旋转的角度θ与光在该物质中通过的距离L和磁感应强度B成正比(α为光线与磁场的夹角,): θcosα(21.1) = VLB 式中,V是比例系数,它是材料的特性常数,称维尔德(Verdet)常数,单位是:分/高斯?厘米。进一步研究表明,法拉第效应旋转角是材料的介电常数、旋磁比和饱和磁场强度以及光波频率、外加磁场强度的函数。 值得注意的事,磁致旋光效应和材料的固有磁光效应不同。固有磁光效应的方向受光的传播方向影响,而与外加磁场的方向无关,无论外界磁场如何变化,迎着光看去,光的偏振面总是朝同一方向旋转。因此,在材料的固有旋光效应中,如果光束沿着原光路返回时,其偏振面将转回到初始位置。而在法拉第磁光旋转效应中,磁场对此光材料产生作用,是导致磁致旋转现象发生的原因,所以磁光材料引起的光偏振面旋转的方向取决于外加磁场的方向,与光的传播方向无关。迎着光看去,当线偏振光方向沿磁力线方向通过介质时,其振动面向右旋转;当线偏振光方向沿磁力线反方向通过介质时,其振动面向左旋转。旋转角θ的大小受磁光材料的旋磁特性、长度、工作波长及磁场强度的影响。材料介质越长、磁场强度越强、工作波长越短,旋转角度将越大。 不同介质,振动面的旋转方向不同。顺着磁场方向看,使振动面向右旋的,称为右旋或正旋介质,V为正值。反之,则称为左旋或负旋介质,V为负值。 对于给定的磁光介质,振动面的旋转方向只决定于磁场方向,与光线的传播方向无关。这点是磁光介质和天然旋光介质之间的重要区别。就是说,天然旋光性物质,它的振动面旋转方向不只是与磁场方向有关,而且还与光的传播方向有关。例如,光线两次通过天然性的旋光物质,一次是沿着某个方向,

贴片元件的封装,规格,换算单位,SMT基础知识

贴片元件封装说明 BGM SMT是电子业界一门新兴的工业技术,它的兴起及迅猛发展是电子组装业的一次革命,被誉为电子业的”明日之星”,它使电子组装变得越来越快速和简单,随之而来的是各种电子产品更新换代越来越快,集成度越来越高,价格越来越便宜。为IT(Information Technology)产业的飞速发展作出了巨大贡献。 SMT零件:SMT所涉及的零件种类繁多,样式各异,有许多已经形成了业界通用的标准,这主要是一些芯片电容电阻等等;有许多仍在经历着不断的变化,尤其是IC类零件,其封装形式的变化层出不穷,令人目不暇接,传统的引脚封装正在经受着新一代封装形式(BGA、FLIP CHIP等等)的冲击,在本章里将分标准零件与IC类零件详细阐述。 标准零件 标准零件是在SMT发展过程中逐步形成的,主要是针对用量比较大的零件,本节只讲述常见的标准零件。目前主要有以下几种:电阻(R)、排阻(RA或RN)、电感(L)、陶瓷电容(C)、排容(CP)、钽质电容(C)、二极管(D)、晶体管(Q)【括号内为PCB(印刷电路板)上之零件代码】,在PCB上可根据代码来判定其零件类型,一般说来,零件代码与实际装着的零件是相对应的。 一、零件规格: (a)、零件规格即零件的外形尺寸,SMT发展至今,业界为方便作业,已经形成了一个标准零件系列,各家零件供货商皆是按这一标准制造。 标准零件之尺寸规格有英制与公制两种表示方法,如下表 公制表示法1206080506030402 英制表示法3216212516081005 含义 L:1.2inch(3.2mm)W:0.6inch(1.6mm) L:0.8inch(2.0mm)W:0.5inch(1.25mm) L:0.6inch(1.6mm)W:0.3inch(0.8mm) L:0.4inch(1.0mm)W:0.2inch(0.5mm)

SMT常用封装建库要求规范

部分常用SMT封装建库规 §1分立器件 一,贴装电容(chip) 1.一般陶瓷电容: 1.1陶瓷电容的基本尺寸和类型: 封装型号 (INCH) 封装型号 (METRIC ) L S W H min max nom min max max C0402 C1005 0.9 1.1 0.30、0.40 0.4 0.56 0.95 C0603 C1608 1.45 1.75 0.50、0.70 0.65 0.95 0.95 C0805 C2012 1.8 2.2 0.50、0.70、0.75 1.05 1.45 1.35 C1206 C3216 3 3.4 1.5 1.4 1.8 1.75 C1210 C3225 2.9 3.5 / 2.3 2.7 1.7 C1808 4.32 4.82 / 1.78 2.28 2.54 (mm)

C1812 4.1 4.9 2 2.9 3.5 2.54 C1825 4.2 4.8 3.3 6 6.8 1.7 C2220 5.2 6 4.4 4.6 5.4 1.8 C2225 5.2 6 4.4 5.9 6.7 2 1.2标准焊盘: 1.2.1 回流焊标准焊盘: (mm/mils)封装类型X Y C C0402 0.63 / 25 0.50 / 20 1.00 / 40 C0603 0.89 / 35 0.80 / 32 1.52 / 60 C0805 1.10 / 45 1.27 / 50 1.78 / 70 C1206 1.40 / 55 1.60 / 63 2.80 / 110 C1210 1.40 / 55 2.40 / 92 2.80 / 110 C1808 1.50 / 60 2.00 / 80 4.60 / C1812 1.50 / 60 3.20 / 125 4.60 /

SMT基础知识试题库

SMT基础知识 一,填空题: 1.锡膏印刷时,所需准备的材料及工具:焊膏、模板、刮刀、擦拭纸、无尘纸、清洗剂、搅拌刀。 2.Chip 元件常用的公制规格主要有0402 、0603 、1005 、1608 、3216 、3225 。 3.锡膏中主要成份分为两大部分合金焊料粉末和助焊剂。 4.SMB板上的Mark标记点主要有基准标记(fiducial Mark)和IC Mark 两种。5.QC七大手法有调查表、数据分层法、散布图、因果图、控制图、直方图、排列图等。 6.静电电荷产生的种类有摩擦、感应、分离、静电传导等,静电防护的基本思想为对可能产生静电的地方要防止静电荷的产生、对已产生的静电要及时将其清除。7.助焊剂按固体含量来分类,主要可分为低固含量、中固含量、高固含量。8.5S的具体内容为整理整顿清扫清洁素养。 9.SMT的PCB定位方式有:针定位边针加边。 10.目前SMT最常使用的无铅锡膏Sn和Ag和Cu比例为96.5Sn/3.0Ag/0.5Cu 。11.常见料带宽为8mm的纸带料盘送料间距通常为4mm 。 12. 锡膏的存贮及使用: (1)存贮锡膏的冰箱温度范围设定在0-10℃度﹐锡膏在使用时应回温4—8小时 (2)锡膏使用前应在搅拌机上搅拌2-3分钟,特殊情况(没有回温,可直接搅拌15分钟。(3)锡膏的使用环境﹕室温23±5 ℃,湿度40-80%。 (4)锡膏搅拌的目的:使助焊剂与锡粉混合均匀。 (5)锡膏放在钢网上超过 4 小时没使用,须将锡膏收回罐中重新搅拌后使用(6)没用完的锡膏收 3 次后报废或找相关人员确认。 (2)贴片好的PCB,应在 2 小时内必须过炉。 3、锡膏使用(C. 24小时)小时没有用完,须将锡膏收回罐中重新放入冰箱冷藏 4、印好锡膏PCB应在( 4 )小时内用完 13、PCB,IC烘烤 (1)PCB烘烤温度125 ℃、IC烘烤温度为125 ℃。 (2)PCB开封一周或超过三个月烘烤时间:2—12 小时IC烘烤时间4—24 小时(3)PCB的回温时间 2 小时 (4)PCB需要烘烤而没有烘烤会造成基板炉后起泡、焊点、上锡不良; 3、PCB焊盘上印刷少锡或无锡膏:应检查网板上锡膏量是否过少、检查网板上锡膏是否均匀、检查网板孔是否塞孔、检查刮刀是否安装好。 4、印刷偏位的允收标准:偏位不超出焊盘的三分之一。 5、锡膏按先进先出原则管理使用。 6、轨道宽约比基板宽度宽0.5mm ,以保证输送顺畅。 二、SMT专业英语中英文互换 1.SMD:表面安装器件 2.PGBA:塑料球栅阵列封装 3.ESD:静电放电现象 4.回流焊:reflow(soldering)

SMT表面贴片技术教学设计

以工作过程为导向, 设计《SMT工艺》课程教学 ――构建以“SMT工艺为主线”的教学模式 南京信息职业技术学院 机电工程系 《 SMT工艺》课程负责人:韩满林 其他人员:舒平生、张裕荣、朱桂兵、谢飞飞 二OO八年五月

《SMT工艺》课程教学设计简介 《SMT工艺》(Surface Mounting Technology)课程的整体教学设计,“强调职业方向,注重技能培养,强调行业特点,注重企业需求”。按照“工作过程导向”的高职教育理念,以SMT工艺为主线,遵循“SMT生产工艺流程”来组织教学内容及安排授课顺序。采用“一体化和双语教学模式”,基于“SMT教学工厂和校内生产性实训基地――南极星科技有限公司”平台,开展“实战训练、工学结合”,真正的将“教、学、做”融合,全面培养学生的岗位技能和职业素质。 目录 一、课程说明 二、教学媒体的组合使用方案 三、教学过程设计与评价方案 四、教学设施、环境和实训场所 五、本课程的学习方法 六、附件: P PT

?一、课程说明 1.课程性质与作用 《SMT工艺》(Surface Mounting Technology)课程是电子组装技术与设备(SMT)专业的核心职业能力课程,是一门与生产实践紧密相关的课程。 通过本课程的学习使学生建立SMT系统的概念、了解SMT生产系统的构成;正确识别表面组装元器件,熟悉表面组装材料;掌握表面组装设备的基本工作原理及操作规程;掌握表面组装工艺、生产的组织和管理等。培养学生SMT 设备安装、管理、操作与维护的能力,拓宽学生的知识面。通过系统学习,学生们能熟练的使用有关软件进行操作与生产,使学生胜任SMT生产线各岗位要求,熟悉SMT工艺编程。为今后SMT生产一线的工作奠定较坚实的理论基础和操作技能。 在教学实践中,通过对学生情感的引导,学习策略和方法的交流,知识和技能的指导,培养学生热爱《SMT工艺》课程,培养学生自学能力、分析并解决问题的能力,培养学生的创新意识和团队意识,树立正确的人生观、科学观,具有可持续发展的能力,全面提高学生的综合素质。 2.课程的知识结构 本课程“基于工作过程导向”,以“SMT工艺为主线”,即按照SMT生产的工艺流程,分别讲授“SMT生产前准备、SMT涂敷工艺、SMT贴装工艺、SMT焊接工艺、SMT检测工艺、SMT返修工艺、SMT清洗工艺以及SMT综合实践等”八个工艺模块的基础知识,并进行各模块的实际操作训练。

相关文档
最新文档