2种超超临界660MW机组汽轮机比较

2种超超临界660MW机组汽轮机比较
2种超超临界660MW机组汽轮机比较

热工自动控制B-总复习2016

热工自动控制B-总复习2016

在电站生产领域,自动化(自动控制)包含的内容有哪些? 数据采集与管理;回路控制;顺序控制及联锁保护。 电站自动化的发展经历了几个阶段,各阶段的特点是什么? 人工操作:劳动密集型;关键生产环节自动化:仪表密集型;机、炉、电整体自动化:信息密集型;企业级综合自动化:知识密集型; 比较开环控制系统和闭环控制系统优缺点。 开环:不设置测量变送装置,被控制量的测量值与给定值不再进行比较,克服扰动能力差,结构简单,成本低廉;闭环:将被控制量的测量值与给定值进行比较,自动修正被控制量出现的偏差,控制精度高,配备测量变送装置,克服扰动能力强; 定性判断自动控制系统性能的指标有哪些?它们之间的关系是什么? 指标:稳定性、准确性、快速性。关系:同一控制系统,这三个方面相互制约,如果提高系统快速性,往往会引起系统的震荡,动态偏差增大,改善了稳定性,过渡过程又相对缓慢。 定性描述下面4 条曲线的性能特点,给出其衰减率的取值范围。 粉:等幅震荡过程,ψ=0;绿:衰减震荡过程,0<ψ<1;红:衰减震荡过程,0<ψ<1;蓝:不震荡过程,ψ=1; 在热工控制系统中,影响对象动态特性的特征参数主要有哪三个?容量系数,阻力系数,传递迟延 纯迟延与容积迟延在表现形式上有什么差别,容积迟延通常出现在什么类型的热工对象上? 容积迟延:前置水箱的惯性使得主水箱的水位变化在时间上落后于扰动量。纯迟延:被调量变化的时刻,落后于扰动发生的时刻的现象。纯延迟是传输过程中因传输距离的存在而产生的,容积迟延因水箱惯性存在的有自平衡能力的双容对象 建立热工对象数学模型的方法有哪些? 机理建模:根据对象或生产过程遵循的物理或化学规律,列写物质平衡、能量平衡、动量平衡及反映流体流动、传热等运动方程,从中获得数学模型。实验建模:根据过程的输入和输出实测数据进行数学处理后得到模型 了解由阶跃响应曲线求取被控对象数学模型的方法、步骤及注意事项,能对切线法、两点法做简单的区分。 注意事项:1实验前系统处于需要的稳定工况,留出变化裕量;2扰动量大小适当,既克服干扰又不影响运行;3采样间隔足够小,真实记录相应曲线的变化;4实验在主要工况下进行,每一工况重复几次试验;5进行正反两个方向的试验,减小非线性误差的影响。方法:有自平衡无延迟一阶对象:切线发和0.632法;有自平衡有延迟一阶对象:切线发和两点法;有自平衡高阶对象:切线发和两点法;无自平衡对象:一阶近似法和高阶近

660MW超超临界机组汽轮机真空系统节能运行分析

660MW超超临界机组汽轮机真空系统 节能运行分析 摘要:针对某厂660MW#7机组汽轮机真空系统设计布置及运行情况进行分析,为提高机组凝汽器真空,进一步降低机组煤耗,提出新的建议及改造方案,不断提高机组运行经济性。 关键词:抽真空系统;真空泵;节能改造。 1抽真空系统布置方式节能分析 1.1概述 我厂四期#7机组为超超临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机,型号为N660-27/600/600,机组凝汽器为双背压汽轮机,给水泵汽轮机排汽入单独的凝汽器。每台主汽轮机设置3台50%机械水环式真空泵组,2台运行1台备用。在机组启动建立真空期间,3台泵同时投入运行。型号:2BW5353-0EL4平面泵。循环水系统采用带自然通风冷却塔的再循环扩大单元制供水系统。机组配循环水泵两台(每台机组配置一台定速电机和一台双速电机)。冷却塔一座,循环水供水和排水管各一根,回水沟一条。 1.1.1凝汽器介绍 本机组所采用凝汽器是表面式的热交换器,冷却水在管内流动过程中与管外的排汽进行热交换,使排汽凝结成水,同时使凝汽器形成真空。凝汽器采用双背压设计,即两个凝汽器在运行中处于两个不同的压力下工作。当循环水进入第一个凝汽器后吸收热量,水温升高,然后再进入第二个凝汽器(第一个凝汽器出口水温即为第二个凝汽器的入口水温)。由于凝汽器的特性主要取决于冷却水的温度,不同的水温对应不同的背压,于是在两个凝汽器中形成了不同压力,即低压凝汽器和高压凝汽器。双背压凝汽器的优点: ①根据传热学原理,双背压凝汽器的平均背压低于同等条件下单背压凝汽器的背压,因此汽机低压缸的焓降就增大了,从而提高了汽轮机的经济性。 图(1)凝汽器结构 ②双背压凝汽器的另一个优点 就是低背压凝汽器中的低温凝结水 可以进入高背压凝汽器中去进行加 热,既提高了凝结水温度,又减少了 高背压凝汽器被冷却水带走的的冷 源损失。低背压凝汽器中的低温凝结 水通过管道利用高度差进入高背压 凝汽器管束下部的淋水盘,在淋水盘 内,低温凝结水与高温凝结水混合在 一起,再经盘上的小孔流下,凝结水 从淋水盘孔中下落的过程中,凝结水 被高背压低压缸的排汽加热到相应 的饱和温度。在相同条件下,双背压 凝汽器的平均压力低于循环水并联 的单压凝汽器的压力,可提高循环效 率。凝汽器结构见图(1)。凝汽器两个壳体底部为连通的热井,上部布置有低压加热器、小汽机排汽管、减温减压器和低压侧抽气管等。凝汽器抽空气管布置在其管束区中心以抽吸其内的不凝结气体。高、低压凝汽器中的抽空气管采用串联结构,不凝结气体由高压侧流向低压侧,最后由低压凝汽器冷端引向真空泵。这种结构可减轻真空泵的负担,减少其备用台数,使系统简化。 1.1.2主机凝汽器规范 表(1):本机组凝汽器规范

超临界火力发电机组热工控制技术及其应用

超临界火力发电机组热工控制技术及其应用 摘要:基于超临界火力发电机组的运行特点,结合热工控制系统的设计要求,深入探讨了超临界发电机组热工控制技术的特殊性,首以锅炉给水控制系统和过热汽温控制系统为例,详细分析了热工控制系统的设计原理。实际应用表明了该方案的有效性。 超临界发电机组以其热能转换效率高、发电煤耗低、环境污染小、蓄热能力小和对电网的尖峰负荷适应能力强等特点而得到广泛应用,日益成为我国火力发电的主力机组。超临界直流锅炉没有汽包,工质一次通过蒸发部分,即循环倍率等于1,在省煤器、蒸发部分和过热器之间没有固定不变的分界点,水在受热蒸发面中全部转变为蒸汽,沿工质整个行程的流动阻力均由给水泵来克服。 超临界直流锅炉主要输出量为汽温、汽压和蒸汽流量(负荷),主要输入量是给水量、燃烧率和汽机调门开度。由于是强制循环且受热区段之间无固定界限,一种输入量扰动则将对各输出量产生影响,如单独改变给水量或燃料量,不仅影响主汽压与蒸汽流量,过热器出口汽温也会产生显著的变化,所以比值控制(如给水量/蒸汽量/燃料量/给水量及喷水量/给水量等)和变定值、变参数调节是直流锅炉的控制特点。 一、超临界机组的控制原则 (1)保持燃料量与给水流量之间的比值关系不变,保证过热蒸汽温度为额定值。当有较大的温度偏差时,若仅依靠喷水减温的方法来校正温度,则需要大量的减温水,这不仅进一步加剧燃水比例失调,还会引起喷水点前各段受热面金属和工质温度升高,影响锅炉安全运行。 (2)不能直接采用燃料量或给水流量来调节过热汽温,而是采用微过热汽温作为燃水比校正信号。虽然锅炉出口汽温可以反映燃水比例的变化,但由于迟延很大,因而不能以此作为燃水比例的校正信号。在燃料量或给水流量扰动的情况下,微过热汽温变化的迟延远小于过热汽温。同时,微过热点前包括有各种类型的受热面,工质在该点前的恰增占总恰增的3/4左右,此比例在燃水比及其他工况发生较大变化时变化并不大。因此,通过保持一定的燃水比例,维持微过热点的汽温(或焰值)不变,以间接控制出口汽温。 因此,与亚临界汽包锅炉机组相比,在超临界发电机组的热工控制系统中,锅炉给水控制系统和过热蒸汽温度控制系统不同,其他系统大致相似。下面以某发电厂4×6OOMW超临界发电机组为例,介绍其主要特色。 二、锅炉给水控制系统 2.1 给水控制系统的主要任务 超临界发电机组没有汽包,锅炉给水控制系统的主要任务不再是控制汽包水位,而是以汽水分离器出口温度或烙值作为表征量,保证给水量与燃料量的比例不变,满足机组不同负荷下给水量的要求。 当给水量或燃料量扰动时,汽水行程中各点工质焰值的动态特性相似;在锅炉的燃水比保持不变时(工况稳定),汽水行程中某点工质的烙值保持不变,所以采用微过热蒸汽烩替代该点温度作为燃水比校正是可行的,其优点如下: (1)分离器出口焰(中间点焰)值对燃水比失配的反应快,系统校正迅速。 (2)烩值代表了过热蒸汽的作功能力,随工况改变恰给定值不但有利于负荷控制,而且也能实现过热汽温(粗)调正。 (3)焓值物理概念明确,用"焓增"来分析各受热面的吸热分布更为科学。它不仅受温度变化的影响,还受压力变化的影响,在低负荷压力升高时(分离器出口温度有可能进人饱和区),恰值的明显变化有助于判断,进而能及时采取相应措施。 因此,静态和动态燃水比值及随负荷变化的恰值校正是超临界直流锅炉给水系统的主要控制特征。 2.2 给水控制系统的工艺流程 此发电厂为600MW超临界发电机组的锅炉为螺旋管圈、变压运行直流锅炉,其启动系统配有2只内置式启动分离器,在锅炉启动和低负荷运行时,分离器处于湿态运行,同汽包一样起着汽水分离的作用,此时适当控制分离器水位,通过循环回收合格工质;当锅炉进入直流运行阶段时,分离器处于干态运行,成为(过热)蒸汽通道。机组配备有2台50%锅炉最大额定出力(BMCR)汽动给水泵和1台30%BMCR的电动抬水泵。由变速汽轮机拖动的锅炉给水泵(汽动给水泵),布置在汽机房13~70m 层。每台汽动给水泵配有1台定速电动机拖动的前置泵,布置在除氧间零米层。给水泵汽轮机的转速由给水控制系统调节,以改变给水流量;液力偶合器调速的电动给水泵,作为启动和备用,前置泵与主泵用同一电动机拖动,它布置在除氧间零米层。在机组启动时,电动给水泵以最低转速运行,用其出口管道旁路上的气动调节阀控制给水流量。当机组负荷上升,给水流量加大时,由给水控制系统的信号控制给水泵的转速,以调节给水流量,直至汽动给水泵投人,停止电动给水泵运行,使其处

1000MW超超临界机组控制介绍

目录 目录 一、国际上超临界机组的现状及发展方向 二、国内500MW及以上超临界直流炉机组投运情况 三、超临界直流炉的控制特点 四、1000MW超(超)临界机组启动过程 五、1000MW超(超)临界机组的控制方案

一、国际上超临界机组的现状及发展方向 我国一次能源以煤炭为主,火力发电占总发电量的75% 全国平均煤耗为394g/(kWh),较发达国家高60~80g,年均多耗煤6000万吨,不仅浪费能源,而且造成了严重的环境污染,烟尘,SOx,NOx,CO2的排放量大大增加 火电机组随着蒸汽参数的提高,效率相应地提高 ?亚临界机组(17MPa,538/538℃),净效率约为37~38%,煤耗330~340g ?超临界机组(24MPa,538/538℃),净效率约为40~41%,煤耗310~320g ?超超临界机组(30MPa,566/566℃),净效率约为44~45%,煤耗290~300g (外三第一台机组2008.3.26投产,运行煤耗270g)由于效率提高,污染物排量也相应减少,经济效益十分明显。

一、国际上超临界机组的现状及发展方向 1957年美国投运第一台超临界试验机组,截止1986年共166 台超临界机组投运,其中800MW以上的有107台,包括9台 1300MW。 1963年原苏联投运第一台超临界300MW机组,截止1985年共187台超临界机组投运,包括500MW,800MW,1200MW。 1967年日本从美国引进第一台超临界600MW机组,截止1984年共73台超临界机组投运,其中31台600MW, 9台700MW,5台 1000MW,在新增机组中超临界占80%。

大型火电机组热工自动控制系统

大型火电机组热工自动控制系统 一、自动化 支撑:理论与技术 从技术装置来看发展: 1.三、四十年代基地式仪表 2.五、六十年代单元组合仪表 3 .七十年代计算机控制 国外,五十年代开始试验计算机控制 (1)DDC控制 (Direct Digital Control直接数字控制) (2)SCC控制 (Supervisory Computer Control监督计算机控制) (3)DCS控制 (Distributed Control Systems分散控制系统) (4)FCS控制 (Fieldbus Control System现场总线控制系统) 理论上看控制发展: 五十年代以前, 理论基础是传递函数(经典控制),以简单控制系统为主。六十年代,以状态空间分析方法为基础,现代控制理论应用。 由于以线性系统为前提,但实际应用效果不好。 第三代控制理论出现

针对机理复杂,精确数学模型难以建立。 理论上看控制发展: 以专家控制系统、神经网络控制和模糊控制为主。 典型应用: MAX Power 1000+ 以专家系统,神经网络进行生产过程设备故障分析和性能分析。 XDPS分散控制系统(新华控制工程公司)加入了模糊控制模块。 OVATION分散控制系统(西屋)提供模糊控制、神经网络算法模块。 二热工自动化 自动检测 顺序控制 自动保护 自动调节 我国机组近年发展: 300MW→600MW亚临界→ 600MW超临界 →1000MW( 660MW)超超临界 一般 600 MW机组单元机组和公用系统I/O 测点数量一般约8000~9000点;控制设备数量约为 750~ 900 个。( DCS 系统) 1000MW超超临界机组单元机组和公用系统 I/ 0 测点数量达到 12000 点左右,控制设备数量约为 1100~1400 个,模拟量控制回路数量和600MW机组无明显差别。

660MW超超临界机组汽轮机轮机组轴系安装工艺控制研究

图1汽轮机轴承座布置图 低压缸的支撑系统 低压外缸与低压内缸无刚性连接,只在低压内缸猫爪支撑和中心导向销的位置采用波纹管进行补偿和密封。低压外缸直接支撑在凝汽凝汽器支撑在刚性基础上。低压内缸猫爪穿过低压外缸上面的四个孔支撑在落地式轴承座上。由于低压内缸和低压转子都支撑在轴运行时转子与内缸的径向间隙不会像传统机组那样受到支撑点温度高低膨胀不均的影响。 滑销系统设计点 整个轴系的死点在2号轴承,高压转子向车头方向膨胀 子连带着两根低压转子向发电机方向膨胀,本台机组中低压转子整体

图2轴系找中示意图 联轴器联接 本机组的所有联轴器现场都不需要绞孔,联轴器螺栓的安装在整个轴系的找中心完成后进行,此时联轴器已经被临时螺栓联接 径较正式螺栓小1mm左右),为保证联接前联轴器的同心度 。 图3盘车找中示意图 。 图4晃度测量百分表架设位置及托环使用示意图6)缓慢盘动发电机转子带动励磁机转子转动,测取水平位移表计的晃动值,为保证准确性至少有二遍重复数据出现后,以每次增加100~200Nm的力矩,对角地均匀地紧固联轴器螺栓一遍。紧固时先从需借正晃度的一组螺栓开始,如此反复紧固和测量后直至螺栓紧固力矩达到1250Nm左右,盘动转子多次测量晃度达到稳定状态后,可视晃度情况,以不同的力矩分别紧固螺栓,目的在于校准晃度。校准结束后,要求最小力矩值大于1660Nm,最大力矩不超过1930Nm即可,且最终测得晃度应小于0.05mm。 7)需要严格注意的是:螺栓紧固时,应逐步增大力矩,不可采用松 验收,确保达到设计要求 。 Science&Technology Vision 科技视界

。 其意义最根本的是我从这个实验中体会到科学实验要有严谨的治。 对教师素质的要求更加严格,师德建设也必须与时俱。 型圈设计完成后。 以提供高品质的服务为重点举措。

600MW超临界机热工试题

600MW超临界机组热控试题 一、填空题(每小题1分)共10分 1.锅炉跟随为基础(CBF)的协调控制方式,即主蒸汽压力通过锅炉 自动控制,机组功率通过汽机调门自动控制。 2.直流锅炉汽温调节的主要方式是调节煤水比,辅助手段是喷 水减温。 3.当任一跳机保护动作后,汽机主汽阀将迅速关闭、停止机组运行。 4.汽轮机的进汽方式主要有节流进汽、喷嘴进汽两种。 5.有一测温仪表,精确度等级为0.5级,测量范围为400—600℃, 该表的允许误差是±1℃。 6.DEH基本控制有转速、功率、调节级压力三个回路。 7.任何情况下,只要转速n>103‰立即关闭高压调门和中压调门。 8.单元机组按运行方式可分为炉跟机、机跟炉、协调、手动四种方 式。 9.动态偏差是指调节过程中被调量与给定值之间的最大偏差。 10.滑压运行时滑主蒸汽的质量流量、压力与机组功率成正比例变化。 二、选择题(每小题1分)共10分 1.下列参数哪个能直接反映汽轮发电机组的负荷( B ) A 主汽压力 B 调节级压力 C 高调门开度 D 凝气器真空 2.锅炉MFT的作用是:(C ) A跳引风机 B跳送风机 C切断所有燃料 D切断所有风源

3.锅炉点火前必须建立启动流量的原因是( A )。 A、防止启动期间水冷壁超温 B、防止启动期间过热器超温 C、为强化热态冲洗效果 D、为建立汽轮机冲转压力 4.高主、高调、中主、中调门的缩写正确的是:( A ) A、TV、GV、RSV、IV B、TV、RSV、GV、IV C、TV、IV、RSV、GV D、IV、TV、GV、RSV 5.炉水循环泵跳闸条件是:( B、 C、 D ) A、过冷度>30℃ B、冷却水温度>55℃ C、最小流量阀关闭 D、给水泵全跳闸 6.直流锅炉的中间点温度控制不是定值,随:( B ) A、机组负荷的增大而减小 B、机组负荷的增大而增大 C、火焰中心位置的升高而降低 D、减温水量的增大而减小 7.对于直流锅炉,燃水比变大,则不正确的叙述是( D ) (A)过热汽温升高;(B)水冷壁管子温度升高; (C)排烟温度升高;(D)主汽压升高 8. 滑压控制方式其最大的优点在于( A )。 (A)减少了蒸汽在调门处的节流损失;(B)提高了汽机本体的热效率; (C)汽包水位控制较容易;(D)主蒸汽温度容易维持恒定。 9.直线结构特性的阀门在变化相同行程的情况下,在阀门小开度时要比在大开度时对系统的调节影响( A )。 (A)大;(B)小;(C)相等;(D)无法确定。 10. 汽轮机调节系统的作用是调节汽轮发电机组的( B )。

快冷装置在660MW超超临界汽轮机的应用

快冷装置在660MW超超临界汽轮机的应用 发表时间:2018-12-21T09:33:03.480Z 来源:《电力设备》2018年第23期作者:唐春飞胡小波 [导读] 摘要:介绍并分析了某电厂660MW超超临界汽轮机快冷装置投用操作及冷却效果,与自然冷却进行了比较,并提出了快冷系统投入的风险及控制措施,可为同类型机组快冷装置投入提供参考。 (重庆三峰百果园环保发电有限公司重庆 404100) 摘要:介绍并分析了某电厂660MW超超临界汽轮机快冷装置投用操作及冷却效果,与自然冷却进行了比较,并提出了快冷系统投入的风险及控制措施,可为同类型机组快冷装置投入提供参考。 关键词:超超临界;汽轮机;快冷装置;控制措施 1概述 某发电公司2×660MW机组汽轮机为上海汽轮机有限公司生产的超超临界、一次中间再热、单轴、四缸四排汽、凝汽式汽轮机(型号:N660-25/600/600)。汽轮机的高排蒸汽从高压缸排出后,经由带有逆止阀的冷再热管道到达再热器,再进入中压缸,中压缸排汽不经任何阀门直接进入低压缸。高压缸设有通向凝汽器的高排通风系统;如果高排通风系统开启,则高排逆止阀关闭,这就意味着高、中压缸的快冷系统可单独带真空泵运行。 为了能尽早对汽轮机进行检查,必须减少冷却过程的时间以提高汽轮机的可用性,所以很有必要投用快冷系统使冷却过程的时间尽量缩短。整个冷却过程必须考虑到机 组的轴向与径向间隙,还必须要考虑到机组各部件之间的最大允许温差,避免对汽轮机造成任何损伤。 2快冷系统介绍 2.1快冷装置 “汽轮机快速冷却”简称快冷,是指通过强迫方式快速冷却汽轮机内部部件,其作用是尽可能快地使汽轮机冷却以便尽早停用盘车,缩短汽轮机冷却时间。快冷的投用有效地提高了机组的可用性。我厂快冷装置如图一。 图一快冷装置 为了保证冷却的效果,很有必要投用真空泵使外界空气通过高压主汽门后、调节汽门前的快冷接口和中压主汽门后、调节汽门前的快冷接口按顺流方式进入通流部分进行快速冷却、为了避免环境中的颗粒进入汽轮机必须在快冷接口处安装滤网装置。整个快冷系统的设计和过程必须保证可以同时冷却所有的高温部件,例如调节汽门、转子、内缸、外缸等。 图二高压缸快冷空气流向 高压缸的结构设计决定了高压内、外缸夹层之间为高压第五级后的蒸汽(根据各个项目的差异,夹层蒸汽参数可能略有差别),因此在稳态的情况下高压内、外缸的整体的平均温度会比高压转子的平均温度高、因此在冷却过程中,高压转子会比高压内、外缸冷却得快,这就意味着。在快冷过程末期,模拟的转子温度要比外缸(进汽部分)上下半测量的温度低、这种情况对TSE(汽轮机应力分析)在高压缸进汽区域的测点同样适用。由于高压内、外缸之间的辐射,因此高压外缸对冷却速率的影响是很显著的。

第1-3热工自动控制系统

热工自动控制系统 一、教材 热工控制系统华北电力大学边立秀等编中国电力出版社 http:〃61.155.6.178/zyf 密码:200803Y 二、主要参考书 0:超超临界机组控制设备及系统肖大雏主编化学工业出版社2007年 1.陈来九:热工过程自动调节原理与应用第三章第七章 2 .电子书:热工过程自动控制杨献勇主编清华大学出版社 3.《热工自动控制系统》华北电力大学李遵基 4.《热工自动控制系统》东北电院张玉铎、王满稼 三、课程主要内容 1 ?简单介绍单回路反馈系统(复习) (1)基本调节作用 (2)工业调节器 (3)调节器参数的整定 2.重点介绍电厂热工过程自动控制系统,包括汽温、给水、燃烧自动控制 3?介绍单元机组负荷(协调)控制系统(直流锅炉自动控制系统以及单元机组给水全程控制系统) 三、考核方法 1.期末考试+平时成绩。 2.平时成绩包括:作业,回答问题,出勤,平时答疑,约占10% 第一章概述 § 1-1火电厂自动控制的发展 控制方式大致经历了三个发展阶段: 1、独立控制: 机、炉、电各自独立地进行控制,机、炉、电及重要的辅机各自设置一套控制表盘,它们之间无联系。 调节仪表均为大尺寸的较笨重的基地式仪表,由运行人员进行监视与控制。国外在20-40年代,我国50年代建造的火电厂属该类型。 2、集中控制: 40年代以后,由于中间再热式汽轮机的出现,使锅炉和汽轮机之间的关系更加密切,为了便于 机炉的协调运行和事故处理,将它们的控制盘集中安装在一起,对机炉实行集中控制。集中控制的初 级阶段,调节仪表采用电动或汽动单元组合仪表。50年代后,采用组件组装仪表或以微处理机为核 心的数字调节器,对机炉进行集中控制。

660MW超临界汽轮机设计说明

660MW超临界汽轮机设计说明 1 概述 哈汽公司660MW超临界汽轮机为单轴、三缸、四排汽、一次中间再热、凝汽式机组。高中压汽轮机采用合缸结构,低压积木块采用哈汽成熟的600MW超临界机组积木块。应用哈汽公司引进三菱技术制造的1029mm末级叶片。机组的通流及排汽部分采用三维设计优化,具有高的运行效率。机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。 机组设计有两个主汽调节联合阀,分别布置在机组的两侧。阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大的降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。调节阀为柱塞阀,出口为扩散式。来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后通入四个喷嘴室。导汽管通过挠性进汽套筒与喷嘴室连接。 进入喷嘴室的蒸汽流过冲动式调节级,做功后温度明显下降,然后流过反动式高压压力级,做功后通过外缸下半上的排汽口排入再热器。 再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回中压部分,中压调节阀通过挠性导汽管与中压缸连接,因此降低了各部分的热应力。 蒸汽流过反动式中压压力级,做功后通过高中压外缸上半的出口离开中压缸。出口通过连通管与低压缸连接。 高压缸与中压缸的推力是单独平衡的,因此中压调节阀或再热主汽阀的动作对推力轴承负荷的影响很小。 汽轮机留有停机后强迫冷却系统的接口。位于高中压导汽管的疏水管道上的接头可永久使用,高中压缸上的现场平衡孔可临时使用。 汽轮机的外形图及纵剖面图见图1。

洛河2×600MW超临界机组热工自动化系统的优化改进

洛河2×600MW超临界机组热工自动化系统的优化改进 刘斌 一、概述 大唐淮南洛河发电厂三期2×600MW超临界机组分散控制系统(DCS)采用ABB 公司生产的Symphony控制系统。软件组态采用Composer 4.3控制软件,图形组态采用PGP 4.0组态软件。其主要包括:数据采集及处理系统(DAS)、模拟量控制系统(MCS)、顺序控制系统(SCS)、旁路系统(BPS)、炉膛安全监视系统(FSSS)以及事故追忆系统(SOE)等。DEH系统和MEH系统也采用ABB的控制软件及硬件,即与DCS一体化,是一套完成全套机组各项控制功能的完善的控制系统。两台机组分别于2007年11月30日、12月8日完成168h试运行,正式投入商业营运。 二、热工自动化系统的逻辑优化 1、FSSS的逻辑优化 1.1 在等离子模式下且等离子均启弧成功,判定为“等离子启弧成功”。 1.2 对煤层运行的判断要考虑到直吹式制粉系统的特点,从磨煤机运行、给煤机运行、煤仓下煤到磨煤机出粉需要一个时间过程,以煤粉A层为例说明判断A 层有火的逻辑:A磨煤机和A给煤机已运行240秒且A层3/4有火。由此,“有火记忆”逻辑为“任一油层或任一煤层运行”。 1.3 对“失去全部燃料”逻辑变更为“等离子启弧成功”闭锁该保护,通过“有火记忆”来确认的,所以,“失去全部燃料”是在任一油层或任一煤层运行且无“等离子启弧成功”信号的情况下才发出的。当运行人员切除等离子模式或由一个等离子启弧失败的情况下,“失去全部燃料”就回归到常规模式。“失去全部燃料”逻辑简图如下所示:

1.4 对“失去全部火焰”逻辑也变更为“等离子启弧成功”闭锁该保护,通过“有火记忆”来确认的,所以,“失去全部燃料”是在任一油层或任一煤层运行且无“等离子启弧成功”信号的情况下才发出的。当运行人员切除等离子模式或由一个等离子启弧失败的情况下,“失去全部火焰”就回归到常规模式。“失去全部火焰”逻辑简图如下所示: 1.5 针对“汽机跳闸”逻辑,考虑到汽轮机跳闸时,在低负荷阶段可以采用停机不停炉的运行方式,维持锅炉最低负荷运行。蒸汽经汽轮机旁路系统进入凝汽器,待故障原因消除后机组又可以热态启动。所以增加负荷大于35%时汽机跳闸才触发MFT。当然“汽机跳闸”取自两个高压主汽门全关行程接点的串接信号,一旦一个行程开关不动作等故障发生就会引起该保护的拒动。 1.6 在炉膛吹扫条件中,增加了以下允许条件:燃烧器摆角在水平位;SOFA挡板全关;燃油母管进、回油快关阀全关;火检冷却风母管压力正常;全部等离子不运行。 2、辅机保护的逻辑优化 2.1 原设计上凝泵电机下轴承温度没有进保护逻辑,现该点温度进保护逻辑,其

上汽660mw超超临界汽轮机DEH温度准则

1DEH温度准则 (1)X准则 一方面,为了提高机组的经济性,应尽可能快的启动;另一方面,蒸汽参数及汽轮机热应力必须保持在规定值内,以延长汽轮机使用寿命。运行状态改变时,进入汽轮机的蒸汽参数及传热量也会相应改变。为了限制汽轮机的热应力,汽轮机应力评估TSE使用可调整的温度准则——X准则判断机组是否能够接受运行方式的改变,并将判断后的结果作为允许条件送到汽轮机启动顺控子组SGC,以决定汽轮机是否能够进行相应的操作。其中,X1准则和X2准则用于判断是否允许打开主汽门对主调门进行暖阀;X4、X5和X6准则用于判断是否允许打开主调门并冲转至360r/mim进行低速暖机;X7A和X7B准则用于判断在360 r/mim时汽轮机暖机程度是否合适、是否允许继续升速至3000r/mim;X8准则用于判断在3000r/mim时汽轮机暖机程度是否合适、是否允许汽轮机并网。 a)X1准则 X1准则是在冷态启动时使主蒸汽温度高于汽轮机阀体温度,避免汽轮机阀体被主蒸汽冷却。即在打开汽轮机主汽门对主调门暖阀时,主蒸汽温度要比主调门阀体温度高一定值。而在极热态启动时,允许主蒸汽温度低于主调门阀体温度。 X1准则为:θMS>θmCV + X1 式中, θMS为锅炉侧过热器出口的主蒸汽温度,由A、B侧主蒸汽管道蒸汽温度4 个测点小选得出;θmCV为汽轮机主调门阀体50%深度(中心点)温度,由主调门A、主调门B阀体温度大选得出;X1为允许的最低温差。

θmCV=0,θMS>100; θmCV=550,θMS>530; θmCV=600,θMS>530; b)X2准则 X2准则是为确保主蒸汽的饱和温度低于汽轮机主调门阀体温度一定值,避免主汽门打开后,主调门温升过快。冷态启动时,如果汽轮机主调门阀体的温度低于主蒸汽的饱和温度,打开主汽门后,主蒸汽与主调门接触,将以凝结放热的方式加热主调门阀体。由于凝结放热的放热系数很大,主调门阀体内表面的温度很快上升到主蒸汽的饱和温度。如果阀体内部温度过低,就会在阀体内部产生很大的热应力。所以要使主蒸汽的饱和温度低于主调门阀体内部温度。 X2 准则为:θSatSt<θmCV + X2 式中,θSatSt为主蒸汽的饱和温度,通过汽轮机前主蒸汽压力计算得到。汽轮机前主蒸汽压力由A、B侧主蒸汽管道蒸汽压力4个测点大选得出;X2为允许的最高温差,是θmCV 对应的允许上限温差Δθu perm mCV的1.3倍,即:X2=1.3×Δθu perm mCV。

600MW超临界机组低压加热器水位控制系统设计

目录 一摘要 (2) 二关键字 (3) 三设计要求 (4) 四低压加热器系统相关介绍 (6) 4.1 低压加热器 (6) 4.2 低加控制系统 (10) 五设计思路 (14) 六低加控制系统框图 (15) 七主要仪表选型 (16) 7.1 变送器 (16) 7.2 控制器 (17) 7.3 执行器 (19) 7.4 显示器 (19) 八附图 (20) 九总结 (24) 十致谢 (25) 十一参考文献 (26)

教师批阅:一摘要 现在大中型汽轮机都采用抽气回热循环,采取在不同 压力下从汽轮机中抽取一部分已部分做功的蒸汽引至会惹加 热器中加热给水,提高水的温度,减少了汽轮机排往凝汽器 中的蒸汽量,降低了能源损失,提高了热力系统的循环效率。 本次设计任务是完成对600MW超临界机组低压加热器水位控制 系统设计。本设计根据低压加热器水位控制相关要求,结合热工 控制仪表相关知识对低压加热器水位控制系统进行设计,基本达 到了设计任务书相关要求。

教师批阅:二关键词 低压加热器控制系统水位测量

教师批阅:三设计要求 600MW超临界机组低压加热器水位控制系统设计 课题内容与要求 1.针对机组运行要求,利用所学知识,设计低压加热器水位控 制系统的总体方案。内容包括:合理选择传感器、变送器、 调节器和执行器等。并根据自己方案编写主要模块的组态, 实现对低压加热器水位的控制。该控制系统要求的功能: 1)维持低压加热器水位为要求值,并实现保护调节功 能; 2)能显示低压加热器水位测量值; 3)能记录低压加热器水位测量值; 4)能显示和记录执行器阀位值; 5)可在线设置或修改参数和组态,实现控制功能。 2.设计内容: 1)选择传感器,执行器、调节器等,设计总体方案; 2)画出系统框图及接线图; 3)设计调节器组态; 4)设计模拟量输出/输入通道; 5)画出控制系统SAMA图; 6)撰写设计说明书,要求字迹清楚,图表规范。 已知技术条件与参数 系统误差:满足控制指标要求 使用环境:温度:传感器-30℃~+80℃, 变送器执行器:-30℃~+80℃,

相关文档
最新文档