教案_调频信号的频谱与带宽

教案_调频信号的频谱与带宽
教案_调频信号的频谱与带宽

主题名称:调频信号的频谱与带宽

一、 学情分析

本课程教学班由电信专业两个班级组成,总人数81人。班级的具体情况为:

学习积极性方面:班级约5成的同学学习积极性较高,能够做到对教学内容的预习。约3位左右的同学,学习积极性较差,无法跟上教学进度。

课堂互动方面:班级约3成的同学能够在课堂上与老师形成良好的互动。

学习基础方面:在本课程的先导课程知识基础上,班级约3成的同学在信号与系统等先导课程的基础较为扎实,剩余同学均存在着不同程度的遗忘与不熟悉。班级大部分同学对信号的频谱分析方法有一定的基础,这为本节课内容的讲授提供了方便。

二、 教学目标

掌握调频信号的频谱分析方法,掌握调频信号的带宽。

三、 课程资源

1、 教材:通信原理简明教程(第2版),邬正义 主编;

2、 参考书:通信原理(第6版),樊昌信 主编;

3、 教学课件;

4、 网络例题;

四、 教学内容与过程

1、调频信号分为两类:

① 窄带调频信号; ② 宽带调频信号。

2、窄带调频信号频谱:

将FM 信号一般表示式展开得到

()cos ()cos cos ()sin sin ()FM c f c f c f s t A t K m d A t K m d A t K m d

当满足窄带条件时,有

cos ()1f K m d

sin ()()f f K m d K m d

因此FM 信号的表达式可以化简为

()cos ()sin NBFM c f c s t A t K m d A t

利用傅里叶变换对的性质,可以得到NBFM 信号的频域表达式

()()()()()2NBFM c c f c c c c s A AK M M

3、宽带调频信号带宽:

当不满足窄带条件时,调频信号的时域表达式不能简化,因而给宽带调频的频谱分析带来了困难。为使问题简化,我们只研究单音频调制的情况。

设单音频调制FM 信号

()cos sin FM c f m s t A t m t

利用三角公式展开,有

()cos cos sin sin sin sin FM c f m c f m s t A t m t A t m t

将式中的两个因此分别展开成傅里叶级数

021

cos sin =()2()cos 2f m f n f m n m t J m J m n t

211

sin sin =2()cos 21f m n f m n m t J m n t

其中()n f J m 为第一类n 阶贝塞尔函数。

利用三角公式性质与贝塞尔函数性质,则得到FM 信号的级数展开式

1

()()cos()FM n f c m i s t A J m n t

对上式进行傅里叶变换,即得到FM 信号的频域表达式

()()()()FM n f c m c m S A J m n n

4、调频信号带宽:

卡森公式:2(1)2()FM f m m B m f f f 当1f m 时,卡森公式可以近似为

2FM m B f (NBFM)

当1f m 时,卡森公式可以近似为

2FM B f (WBFM)

五、 教学评价

课堂上的整体教学效果较好,对调频FM 信号的频谱做了推导分析,分别给出了窄带调频信号与宽带调频信号的频谱,并介绍了FM 信号的带宽。实现了先前课程关于信号频谱的知识的串连。

讲课过程中课堂互动良好,同学的积极性也得到了充分的激发,课堂整体氛围良好。

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

09典型信号的频谱分析

实验九 典型信号的频谱分析 一. 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,并能够从信号频谱中读取 所需的信息。 2. 了解信号频谱分析的基本原理和方法,掌握用频谱分析提取测量信号特征的方法。 二. 实验原理 信号频谱分析是采用傅里叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。 图1、时域分析与频域分析的关系 信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。时域信号x(t)的傅氏变换为: dt e t x f X ft j ?+∞ ∞--=π2)()( (1) 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 工程上习惯将计算结果用图形方式表示, 以频率f 为横坐标,X(f)的实部)(f a 和虚部 )(f b 为纵坐标画图,称为时频-虚频谱图; 以频率f 为横坐标,X(f)的幅值)(f A 和相位 )(f ?为纵坐标画图,则称为幅值-相位谱; 以f 为横坐标,A(f) 2为纵坐标画图,则称为 功率谱,如图所示。 频谱是构成信号的各频率分量的集合,它 完整地表示了信号的频率结构,即信号由哪些 谐波组成,各谐波分量的幅值大小及初始相 位,揭示了信号的频率信息。 图2、信号的频谱表示方法

三. 实验内容 1. 白噪声信号幅值谱特性 2. 正弦波信号幅值谱特性 3. 方波信号幅值谱特性 4. 三角波信号幅值谱特性 5. 正弦波信号+白噪声信号幅值谱特性 四. 实验仪器和设备 1. 计算机1台 2. DRVI快速可重组虚拟仪器平台1套 3. 打印机1台 五. 实验步骤 1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI 采集仪主卡检测”或“网络在线注册”进行软件注册。 2.在DRVI软件平台的地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择 “典型信号频谱分析”,建立实验环境。 图5 典型信号的频谱分析实验环境 下面是该实验的装配图和信号流图,图中的线上的数字为连接软件芯片的软件总线数据线号,6017、6018为两个被驱动的信号发生器的名字。 图6 典型信号的频谱分析实验装配图

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并 能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

信号的频谱分析及MATLAB实现

信号的频谱分析及MATLAB 实现(实例) 摘自:张登奇,杨慧银.信号的频谱分析及MATLAB 实现[J].湖南理工学院学报(自然科学版),2010,(03) 摘 要:DFT 是在时域和频域上都已离散的傅里叶变换,适于数值计算且有快速算法,是利用计算机实现信号频谱分析的常用数学工具。文章介绍了利用DFT 分析信号频谱的基本流程,重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施,实例列举了MATLAB 环境下频谱分析的实现程序。通过与理论分析的对比,解释了利用DFT 分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应,并提出了相应的改进方法。 关键词:MATLAB ;频谱分析;离散傅里叶变换;频谱混叠;频谱泄漏;栅栏效应 3 分析实例 对信号进行频谱分析时,由于信号不同,傅里叶分析的频率单位也可能不同,频率轴有不同的定标方式。为了便于对不同信号的傅里叶分析进行对比,这里统一采用无纲量的归一化频率单位,即模拟频率对采样频率归一化;模拟角频率对采样角频率归一化;数字频率对2π归一化;DFT 的k 值对总点数归一化。同时,为了便于与理论值进行对比,理解误差的形成和大小,这里以确定信号的幅度谱分析为例进行分析说明。假设信号为:)()(t u e t x t -=,分析过程:首先利用CTFT 公式计算其模拟频谱的理论值;然后对其进行等间隔理想采样,得到)(n x 序列,利用DTFT 公式计算采样序列的数字连续频谱理论值,通过与模拟频谱的理论值对比,理解混叠误差形成的原因及减小误差的措施;接下来是对)(n x 序列进行加窗处理,得到有限长加窗序列)(n xw ,再次利用DTFT 公式计算加窗后序列)(n xw 的数字连续频谱,并与加窗前)(n x 的数字连续频谱进行对比,理解截断误差形成的原因及减小误差的措施;最后是对加窗序列进行DFT 运算,得到加窗后序列)(n xw 的DFT 值,它是对)(n xw 数字连续频谱进行等间隔采样的采样值,通过对比,理解栅栏效应及DFT 点数对栅栏效应的影响。利用MATLAB 实现上述分析过程的程序如下: clc;close all;clear; %CTFT 程序,以x(t)=exp(-t) t>=0 为例 %利用数值运算计算并绘制连续信号波形 L=4, %定义信号波形显示时间长度 fs=4,T=1/fs; %定义采样频率和采样周期 t_num=linspace(0,L,100);%取若干时点,点数决定作图精度 xt_num=exp(-1*t_num);%计算信号在各时点的数值 subplot(3,2,1);plot(t_num,xt_num),%绘信号波形 xlabel('时间(秒)'),ylabel('x(t)'),%加标签 grid,title('(a) 信号时域波形'),%加网格和标题 %利用符号运算和数值运算计算连续信号幅度谱的理论值 syms t W %定义时间和角频率符号对象 xt=exp(-1*t)*heaviside(t),%连续信号解析式 XW=fourier(xt,t,W),%用完整调用格式计算其傅氏变换 %在0两边取若干归一化频点,点数决定作图精度 w1=[linspace(-0.5,0,50),linspace(0,1.5,150)];

应用MATLAB对信号进行频谱分析

数字信号处理课程设计报告书 2011年7 月 1日 课题名称 应用MATLAB 对信号进行频谱分析 姓 名 张炜玮 学 号 20086377 院、系、部 电气系 专 业 电子信息工程 指导教师 刘鑫淼 ※※※※※※※※※ ※※ ※※ ※※ ※※ ※※※※※ ※※ 2008级数字信号处理课程设计

应用MATLAB对信号进行频谱分析 20086377 张炜玮 一、设计目的 用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 二、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 三、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: X(k)=DFT[x(n)]= kn N W N n n x ∑ - = 1 ) ( ,k=0,1,...,N-1 N j e N Wπ2- = 逆变换:x(n) =IDFT[X(k)]= kn N W k X N n N - ∑ - = 1 ) ( 1 ,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 四、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t);

典型函数的频谱

典型函数的频谱(矩形窗函数, 汉宁窗函数,直线,阶跃函数,δ函数,方波,三角波等),如图13~18所示。 050100150200250 0.511.52矩形窗函数的时域波形图 050 100150 100 200 300 矩形窗函数频域波形图 频率 幅值 图13 50 100 150 200 250 300 00.20.40.60.81δ函数的时域波形图 050 100150 0.511.5 2δ函数的频域波形图 频率 幅值 图 14

00.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 00.5 1 方波的时域波形图 050 100150 50 100 150 方波的频域波形图 频率 幅值 图 15 50 100 150 200 250 300 00.20.40.60.81汉宁窗函数的时域波形图 050 100150 50 100 150 汉宁窗函数频域波形图 频率 幅值 图 16

050100150200250300 0.511.52阶跃函数的时域波形图 050 100150 100 200 300 阶跃函数的频域波形图 频率 幅值 图 17 00.020.040.060.080.10.120.140.160.180.2 -1 -0.500.51三角波的时域波形图 050 100150 204060 80三角波的频域波形图 频率 幅值 图18 此部分MA TLAB 代码如下: t=0:0.001:0.2; N=256; FS=300; w=boxcar(N); %产生信号 figure; plot(w);title('矩形窗函数的时域波形图'); axis([0,260,0,2]);grid on;

噪声中正弦信号的经典法频谱分析

实验报告 一、实验名称 噪声中正弦信号的经典法频谱分析 二、实验目的 通过对噪声中正弦信号的经典法频谱分析,来理解和掌握经典谱估计的知识,以及学会应用经典谱估计的方法。 三、基本原理 1.周期图法:又称直接法。把随机信号)(n x 的N 点观察数据)(n x N 视为一能量有限信号,直接取)(n x N 的傅里叶变换,得)(jw N e X ,然后再取其幅值的平方,并除以N ,作为对)(n x 真 实的功率谱)(jw e P 的估计,以)(?jw PER e P 表示用周期图法估计出的功率谱,则2)(1)(?w X N w P n PER =。 2.自相关法:又称为间接法功BT 法。先由)(n x N 估计出自相关函数)(?m r ,然后对)(?m r 求傅里叶变换得到)(n x N 的功率谱,记之为)(?w P BT ,并以此作为对)(w P 的估计,即1,)(?)(?-≤=--=∑N M e m r w P jwm M M m BT 。 3.Bartlett 法:对L 个具有相同的均值μ和方差2σ的独立随机变量1X ,2X ,…,L X ,新随机变量L X X X X L /)(21+++= 的均值也是μ,但方差是L /2σ,减小了L 倍。由此得 到改善)(?w P PER 方差特性的一个有效方法。它将采样数据)(n x N 分成L 段,每段的长度都是M ,即N=LM ,第i 段数据加矩形窗后,变为L i e n x M w x M n jwn i N I PER ≤≤=∑-=-1,)(1)(?2 10 。把)(?w P PER 对应相加,再取平均,得到平均周期图2 1110 )(1)(?1)(∑∑∑==-=-==L i L i M n jwn i N i PER PER e n x ML w P L w P 。 4.Welch 法:它是对Bartlett 法的改进。改进之一是,在对)(n x N 分段时,可允许每一段的数据有部分的交叠。改进之二是,每一段的数据窗口可以不是矩形窗口,例如使用汉宁窗或汉明窗,记之为)(2n d 。这样可以改善由于矩形窗边瓣较大所产生的谱失真。然后按Bartlett

习题1绘制典型信号及其频谱图

习题一 绘制典型信号及其频谱图 电子工程学院202班 单边指数信号的理论表达式为 figure(4); 调整,将a 分别等于1、5、10等值,观察时域波形和频域波形。由于波形 较多,现不失代表性地将a=1和a=5时的各个波形图列表如下进行对比, 其 他a 值的情况类似可推知。 单边指数信号 信号 名称 单边 时间函数f t 频谱函数F ■ 指数 脉冲 Ee% t a 对提供的MATLAB 程序作了一些说明性的补充, MATLAB 程序为 %单边指数信号 clc; close all ; clear all ; E=1; a=1; %调整a 的值,观察不同a 的值对信号波形和频谱的影响 t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); figure(1); plot(t,f);xlabel( 't' );ylabel( 'f(t)' );title( '信号时域图像’); figure(2); plot(w,abs(F));xlabel( '\omega' 特性'); figure (3); plot(w,20*log10(abs(F)));xlabel( );ylabel( '|F(\omega)|' ); ti tle( '幅频 '\omega' );ylabel( '|F(\omega)| in dB' );title( 幅频特性/dB'); plot(w,a ngle(F)*57.29577951);xlabel( )/ (°)' );title( '相频特性’); '\omega' );ylabel( '\phi(\omega

典型信号的频谱

典型非周期信号的频谱分析 任何一个信号都可以用余弦信号叠加而成,cos(w)=0.5(e^-jw+e^jw),可以知道,频谱必须是关于虚周对称,根据频谱还原信号的时候,可以只看正半实轴,幅值加倍即可。 1,窗信号 t 解答:频谱为:(j )Sa()2 F A ωτ ωτ=?,式中:Sa(x)=sinx/x 是采样函数,其幅值频谱图如右 上图所示: 窗口信号的尺度伸缩情况: 2,滞后窗信号 t 0ω τ A 2) 2(2ωF τ π τπ-0 ω τ A ) (ωF τ π 2τπ 2- )2(t f t A 4τ4 τ- )(21t f t τ-τ0 )(t f t 2τ 2τ-0 ω τA 2 1 )2 1(21ωF τ π 4τ π 4- ω ω F (j ω)

解析:根据滞后定理:j 1(j )(j )e T F F ωωω-=j Sa()e 2 T A ωωτ τ-=?,其幅值频谱图右上图所 示。显然和窗口信号的是一样的,但是相位频谱图存在滞后 3,Sa 信号 根据对称性,可以直接得到Sa 信号的频谱,为窗形频谱 4.三角信号 解答:根据频域卷积性质:2 (j )4Sa ()F ωω= ,频谱如如右图所示。 4,冲击信号 解答:()()1j t F j t e dt ωωδ∞ --∞ = =? ,也就是说,δ(t )中包含了所有的频率分量, 而各频率 分量的频谱密度都相等。显然, 信号δ(t )实际上是无法实现的。 5,直流信号 解答:这个直接积分是积不出来的,需要用逆变换 t 2 2 t

()1f t =---->2()πδω 6,单边指数信号 解答: ()()j t F j f t e dt ωω∞ --∞ =? t j t e e dt αω∞-- =?? ()0()j t e j αωαω∞ -+=-+1j αω = +arctan j e ωα -= 因此频谱为: 7,符号信号 分析:双边指数信号0α→当时: ()()f t Sgn t →,因为双边指数信号的频谱为22 2()F j j ωωαω-=+因此得到符号信号的频谱为2 (0)0(0) j ωωω-??→≠??=? ) (ω?ω 2 π-2 π() F j ωω o 1 α

典型信号频谱分析

实验一典型信号频谱分析 一.实验要求 1.在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。 2.了解信号频谱分析的基本方法及仪器设备。 二.实验原理提示 1.典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本实验利用labVIEW虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2.频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时-频关系转换分析傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f为频率。用傅立叶变换将信号变换到频率域,其数学表达式为: 式中Cn画出信号的幅值谱曲线,从信号幅值谱判断信号特征。 本实验利用labVIEW平台上搭建的频谱分析仪来对信号进行频谱分析。由虚拟信号发生器产生一个典型波形的电压信号,用频谱分析仪对该信号进行频谱分析,得到频谱特性数据。分析结果用图形在计算机上显示出来,也可以通过打印机打印出来。

心电信号的频谱分析-FFT分析

课程设计任务书 (指导教师填写) 课程设计名称微机应用技术课程设计学生姓名专业班级设计题目心电信号的频谱分析-FFT分析 一、课程设计目的 1.了解心电信号的特点; 2.熟悉MATLAB程序设计方法; 3.理解频谱分析的作用和相关概念; 二、设计内容、技术条件和要求 1.采样点数N=1000,采样频率f=360HZ 和100HZ; 2.利用Matlab软件对心电信号进行时域分析(包括均值,方差,标准差,峰峰值,极大值和极小值)和频域分析(FFT),其中涉及的参数根据需要自主选择; 三、时间进度安排 第1周:查阅资料; 第2周:实现设计内容 第3周:整理资料,撰写课程设计任务书 四、主要参考文献 参考《模拟电子技术》、《Matlab信号处理与应用》和《医学仪器》教材

指导教师签字:年月日

目录 摘要······································错误!未定义书签。引言······································错误!未定义书签。 一、心电信号的特点·····················错误!未定义书签。 二、MATLAB软件介绍·················错误!未定义书签。 三、心电信号的分析方法 (6) 3.1时域分析 (6) 3.2频域分析 (6) 3.3 FFT分析 (7) 四、心电信号的Matlab实现 (9) 4.1 Matlab编程实现 (9) 4.2 Matlab时域分析结果 (10) 4.3 Matlab频域分析结果...................错误!未定义书签。心得体会. (12) 参考文献 (13)

使用示波器进行信号的频谱分析(FFT分析)

检查波形的频率成分能够揭示出在普通的示波器图形中难以察觉的重要信息。例如,在标准的波形图上(图1)可能看不出波形的失真或对称性方面的问题。但是只要看一下波形的频率成分(图2)那些问题就很明显了。 在过去,观察波形的 频率成分需要有频谱分 析仪,还要掌握仪器的使 用技能。现在,对于深入 的频率分析依然需要这 样。但是,很多基本的频 率分析可以用泰克公司 TDS3000这样的数字荧光示波器(DPO)来做。 为了能够观察波形的频率成分,泰克TDS3000系列具有模块化的FFT(傅立叶变换)能力。FFT实际上显示的是波形的频率成分。这本应用笔记将介绍TDS3000系列FFT频率图的基本知识,频率图的含义和使用方法。 波形的基本构成 要了解FFT频率图,就要首先了解波形及其基本构成。波形又区分为周期性波形和非周期性波形。为了简单起见,我们先从周期性波形开始。 周期性波形基础。周期性波形是按照一定的时间间隔或周期多次

重复出现的波形。正弦波、方波和三角波都是常见的周期性波形。 按照傅立叶的理论,所有的周期性波形都是由一组特定的正弦波组成的。其中的基本正弦波也叫基波,其频率与该波形的频率相同。例如,1千赫兹方波的基本正弦波的频率也是1千赫兹。同样,1千赫兹三角波的基本正弦波的频率也是1千赫兹。从本质上说,基波是波形中最重要的频率成分,它决定了波形的频率或重复周期。 在所有的非正弦周期性波形中,与基本成分同时存在的还有谐波。谐波是频率为基波频率整倍数的正弦波。例如,1千赫兹方波的三次谐波是3千赫兹的正弦波,而五次谐波为5千赫兹的正弦波,依此类推直至无限。 除了具有特定的频 率之外,周期性波形的基 波和谐波还具有特定的 振幅和相位关系。通过这 些关系将基波和谐波叠 加在一起,就形成了特定 的波形。这一点在图3中 有进一步的说明,图中显 示了一个方波的前五个频率成分相加在一起。 注意图3中合成的波形并不是一个准确的方波。这是由于所加入的谐波还不够多。若再加入更高次的谐波,所得波形的过渡会更陡峭波角更直,波顶和波底则更平坦。

信号频谱表

典型周期信号的频谱 时间函数 ))((+∞<<-∞t t f 频谱函数)(ωj F t j e 0ω )(20ωωπδ- )cos(0t ω )]()([00ωωδωωδπ-++ )sin(0t ω )] ()([00ωωδωωδπ--+j ∑+∞ -∞ =-= n T nT t t )()(δδ +∞ -∞ =Ω-Ωn n )(ωδ T π 2= Ω 一般周期信号)21)(∑+∞-∞ =Ω=n t jn n e A t f 式中, ?+-Ω-=22 )(2T T t jn n dt e t f T A ∑+∞ -∞ =Ω-n n n A )(ωδπ T π 2=Ω 典型周期信号的频谱 时间函数)(t f 频谱函数)(ωj F )(t δ 1 单位直流信号1 )(2ωπδ )(t u ω ωπδj 1)(+ )sgn(t ωj 2 )(t u e at -)(为大于零的实数a a j +ω1 )(t u te at -)(为大于零的实数a 2 )(1 a j +ω )(t G τ )2 ( ωτ τSa

)(0t Sa ω )(0 20 ωωπ ωG )()sin(0t u t ω 2 2 0000)]()([2ω ωωωωδωωδπ -+ +--j )()cos(0t u t ω 2 200 00)]()([2 ω ωωωωδωωδπ -+ -++j t j e 0ω )(20ωωπδ- )(t tu 2 '1 )(ωωπδ- j )()sin(0t u t e at ω- )0(>a 2 2 00 )(ωωω++a j )()cos(0t u t e at ω- )0(>a 20 2 00)(ωωω+++a j a j | |t a e -双边指数信号 )0(>a 2 22a a +ω t 1 )sgn(ωπj - ||t 2 2 ω-

典型信号的频谱分析实验指导书

X ( f ) = + x (t )e j 2 ft dt 实验九 典型信号的频谱分析 一. 二. 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,并能够从信号频谱中读取 所需的信息。 2. 了解信号频谱分析的基本原理和方法,掌握用频谱分析提取测量信号特征的方法。 实验原理 信号频谱分析是采用傅里叶变换将时域信号 x(t)变换为频域信号 X(f),从而帮助人们从另一 个角度来了解信号的特征。 图 1、时域分析与频域分析的关系 信号频谱 X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰 富的信息。时域信号 x(t)的傅氏变换为: + 式中 X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 工程上习惯将计算结果用图形方式表示, 以频率f 为横坐标,X(f)的实部 a ( f ) 和虚部 b ( f ) 为纵坐标画图,称为时频-虚频谱图; 以频率f 为横坐标,X(f)的幅值 A ( f ) 和相位 ∏ ( f ) 为纵坐标画图,则称为幅值-相位谱; 以f 为横坐标,A(f) 2为纵坐标画图,则称为功 率谱,如图所示。 频谱是构成信号的各频率分量的集合,它 完整地表示了信号的频率结构,即信号由哪些 (1) 谐波组成,各谐波分量的幅值大小及初始相 位,揭示了信号的频率信息。 图 2、信号的频谱表示方法

三. 四. 实验内容 1. 白噪声信号幅值谱特性 2. 正弦波信号幅值谱特性 3. 方波信号幅值谱特性 4. 三角波信号幅值谱特性 5. 正弦波信号+白噪声信号幅值谱特性 实验仪器和设备 1. 计算机 2. DRVI 快速可重组虚拟仪器平台 3. 打印机 1 台 1 套 1 台 五. 实验步骤 1. 运行 DRVI 主程序,点击 DRVI 快捷工具条上的"联机注册"图标,选择其中的“DRVI 采集仪主卡检测”或“网络在线注册”进行软件注册。 2. 在DRVI 软件平台的地址信息栏中输入WEB 版实验指导书的地址,在实验目录中选择“典 型信号频谱分析”,建立实验环境。 图 5 典型信号的频谱分析实验环境 下面是该实验的装配图和信号流图,图中的线上的数字为连接软件芯片的软件总线数据线 号,6017、6018 为两个被驱动的信号发生器的名字。 图 6 典型信号的频谱分析实验装配图

语音信号的采集与频谱分析(附代码)

《信号与系统》大作业 语音信号的采集与频谱分析 ——基于Matlab的语音信号处理 学生姓名: 学号: 专业班级:电子工程学院卓越班 指导老师: 2015年6月22日

摘要 本设计用苹果手机自带的录音设备采集了原始语音,并导入了电脑转成wav格式,然后用MATLAB和Adobe audition对其进行时域分析。 接着利用傅里叶变换进行了频域分析,绘制频谱图,再录制一段加上歌曲的伴奏的语音与原唱进行了对比分析,得出了我与歌星在频域上的差别。 本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别, 最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。再次试听回放效果,得出结论。 关键词:语音、FFT、频谱图、噪声、滤波器

Abstract This design is based on the general function of Matlab and Adobe edition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment. First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too. After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain. Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design. Through this design,I can deepen my comprehension of principles of audio signals and I have learnt how to deal with it.Through met with much hindrance,I improved my skills finally. Keywords: audio signal、TTT、noise、filter

相关文档
最新文档