材料结构与力学性能知识点总结

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仅供参考,自我感觉价值不大

一、解释下列名词

滞弹性:在外加载荷作用下,应变落后于应力现象。

静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。

弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

比例极限:应力—应变曲线上符合线性关系的最高应力。

二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?

答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。

三、什么是包辛格效应,如何解释,它有什么实际意义?

答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。

实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。

一、解释下列名词:

(1)应力状态软性系数——材料最大且盈利与最大正赢利的比值,记为α。

(2)缺口效应——缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。

(3)缺口敏感度——金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。

(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。

(5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬

度。

(6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。

(7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。

(8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。

(9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。

二、说明下列力学性能指标的意义

(1)σbc——材料的抗压强度

(2)σbb——材料的抗弯强度

(3)τs——材料的扭转屈服点

(4)τb——材料的抗扭强度

(5)σbn——材料的抗拉强度

(6)NSR——材料的缺口敏感度

(7)HBS——压头为淬火钢球的材料的布氏硬度

(8)HBW——压头为硬质合金球的材料的布氏硬度

(9)HRA——材料的洛氏硬度

(10)HRB——材料的洛氏硬度

(11)HRC——材料的洛氏硬度

(12)HV——材料的维氏硬度

(13)HK——材料的努氏硬度

(14)HS——材料的肖氏硬度

(15)HL——材料的里氏硬度

三、缺口冲击韧性试验能评定那些材料的低温脆性?那些材料不能用此方法检验和评定?

答案:缺口冲击韧性试验能评定的材料是低、中强度的体心立方金属以及Bb,Zn,这些材料的冲击韧性对温度是很敏感的。对高强度钢、铝合金和钛合金以及面心立方金属、陶瓷材料等不能用此方法检验和评定。

四、在评定材料的缺口敏感应时,什么情况下宜选用缺口静拉伸试验?什么情况下宜选用缺口偏斜拉伸?什么情况下则选用缺口静弯试验?

答案:缺口静拉伸试验主要用于比较淬火低中温回火的各种高强度钢,各种高强度钢在屈服强度小于1200MPa时,其缺口强度均随着材料屈服强度的提高而升高;但在屈服强度超过1200MPa以上时,则表现出不同的特性,有的开始降低,有的还呈上升趋势。

缺口偏斜拉伸试验就是在更苛刻的应力状态和试验条件下,来检验与对比不同材料或不同工艺所表现出的性能差异。

缺口试样的静弯试验则用来评定或比较结构钢的缺口敏感度和裂纹敏感度。

一、解释下列名词

(1)冲击韧度——材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。

(2)冲击吸收功——冲击弯曲试验中试样变形和断裂所消耗的功

(3)低温脆性——体心立方晶体金属及其合金或某些密派六方晶体金属及其合金在试验温度低于某一温度时,材料由韧性状态转变为脆性状态的现象。

(4)韧脆转变温度——材料呈现低温脆性的临界转变温度。

(5)韧性温度储备——材料使用温度和韧脆转变温度的差值,保证材料的低温服役行为。

二、说明下列力学性能指标的意义

(1)AK——材料的冲击吸收功

AKV (CVN) 和AKU——V型缺口和U型缺口试样测得的冲击吸收功(2)FATT50——结晶区占整个端口面积50%是的温度定义的韧脆转变温度

(3)NDT——以低阶能开始上升的温度定义的韧脆转变温度

(4)FTE——以低阶能和高阶能平均值对应的温度定义的韧脆转变温度

(5)FTP——高阶能对应的温度

三、J积分的主要优点是什么?为什么用这种方法测定低中强度材料的断裂韧性要比一般的KIC 测定方法其试样尺寸要小很多?

答案:J积分有一个突出的优点就是可以用来测定低中强度材料的KIC。

对平面应变的断裂韧性KIC,测定时要求裂纹一开始起裂,立即达到全而失稳扩展,并要求沿裂纹全长,除试样两侗表面极小地带外,全部达到平面应变状态。而JIC的测定,不一定要求试样完全满足平面应变条件,试验时,只在裂纹前沿中间地段首先起裂,然后有较长的亚临界稳定扩展的过程,这样只需很小的试验厚度,即只在中心起裂的部分满足平面应变要求,而韧带尺寸范围可以大而积的屈服,甚至全面屈服。因此.作为试样的起裂点.仍然是平面应变的断裂韧度,这时JIC的是材料的性质。当试样裂纹继续扩展时,进入平面应力的稳定扩展阶段,此时的J不再单独是材料的性质,还与试样尺寸有关。

四、如何提高陶瓷材料的热冲击抗力?

答案:在工程应用中,陶瓷构件的失效分析是十分重要的,如果材料的失效,主要是热震断裂,例如对高强、微密的精细陶宠,则裂纹的萌生起主导作用,为了防止热震失效提高热震断裂抗力,应当致力于提高材料的强度,并降低它的弹性模量和膨胀系数。若导致热震失效的主要因素是热震损坏,这时裂纹的扩展起主要作用,这时应当设法提高它的断裂韧性,降低它的强度。

一、解释下列名词

(1)低应力脆断:在屈服应力以下发生的断裂。

(2)张开型裂纹:拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展。

(3)应力强度因子:表示应力场的强弱程度。

(4)小范围屈服:塑性尺寸较裂纹尺寸及净截面尺寸为小,小一个数量级以上的屈服。

(5)有效屈服应力:发生屈服时的应力

相关文档
最新文档