热电偶校核实验

热电偶校核实验
热电偶校核实验

实验报告

实验名称:热电偶制作与标定

姓名;

学号;

专业:建筑环境与设备工程

班级 ;一班

实验日期;2011年12月

同组人;王尚、陶宁、罗杨、贾东阳、叶志兵、顾磊

热电偶制作与标定实验

一、实验目的

1、学习校验热电偶的方法。

2、学会焊接铜—康铜热电偶的方法,并学会热电偶的标定

3、正确掌握检测热电偶的外观。

4、学会常用热电偶分度表的使用。

二、实验基本原理

1. 热电偶温度计工作原理

测温用的温度计大致可以分为下列五类:膨胀式温度计(如水银温度计)、压力表式温度计(如充氮气温度计)、电阻温度计(如铂电阻温度计),热电偶温度计(如铂铑 10 —铂热电偶、镍铬—镍硅热电偶)、辐射式温度计(如光学高温计)。其中热电偶温度计由于在测温中有较高的准确度,所以在工农业生产和科研工作中都广泛地使用。

热电偶由两种不同性质金属线或合金丝 A 与 B ,连接组成一个闭合回路称之为热电偶,如图 1 所示。 A 、 B 叫做热电极。如果使两个接点 1 、 2 处于不同的温度,回路中就会产生热电势 E ,这一现象称为热电效应,热电偶就是基于这一效应来测量温度的。

(图1)

在图 1 所示的热电偶的闭合回路中所产生的热电势 E AB只与热电偶的两种材料的性质和两端的温度有关,与金属丝的长度、截面大小无关。当热电偶材料一定时,则热电势 E AB就只与热电偶两端温度t和t0有关,即 E AB=(t,t0)如果参考端(又称冷端)的温度t0保持不变,则两端之间热电势 E12的大小就可以用来表示测量端(又称热端)1的温度高低。通常将热电偶的冷端放在装有冰水共存的保温瓶中,使其t0恒温于0℃ 。

2、热电偶的制作

热电偶的测量端与参考端都是由两种金属焊接制成的。为减小传热误差和滞后,焊接

点宜小,其直径应不超过两倍金属丝的直径。焊接的方法可以采用点焊、对焊,如图

2a和b所示。也可以把两个热电偶绞缠在一起再焊,称为绞状点焊,如图 2c 所示,但绞缠圈数不宜超过 2-3 圈。

热电偶的两热电极要很好地绝缘,以防短路。如果热电偶地金属是裸线,通常都

要用绝缘管套在导线上进行绝缘,聚乙烯或聚四氟乙烯都是在常温范围内采用绝缘管

材料。

热电极的极性是这样确定的,测量端失去电子的热电极为正极,得到电子的热

电极为负极。在热电势符号E AB (t,t0 ) 中规定列在首位的是正极,列在第二位的是

负极。如铜—康铜热电偶,正极是铜,负极是康铜;又始铂铑 10 —铂热电偶,正极

是铂铑合金,负极是纯铂

3、热电偶的标定

本实验采用比较法进行标定,.标准铂铑-铂热电偶与被测热电偶捆扎起来,放入管式加热炉中心,为了确保标准热电偶与被测热电偶的测量端的温度尽量相同,加热炉高温区域内放有钻孔的耐高温镍块套。

双极性比较法实验装置如图所示。此方法直接测量标准热电偶与被测热电偶的热电势,通过比较、换算,最后确定被测热电偶的示值。此方法的优点是测量直观,被测热电偶和标准热电偶可以是不同的类型;其缺点是对炉温的稳定性要求较高,为此,本实验附有一套炉温控制器,以稳定的检定炉内的温度,确保在一个温度校验点的测量时间内,检定炉内温度变化不超过±0.5℃。否则将带来较大的测量误差。

三、实验步骤

1.先将热电偶材料上的绝缘漆用零号纱纸擦去,然后将端部扭成铰链状,浸入氯化钠溶液杯中

通电焊接,电压一般不宜过高,大致在 100 伏左右。焊接电压的大小可用调压变压器来调节,直

至出电火花,使两种金属材料的端部焊牢并形成一个小圆球。

2.将焊接完善的热电偶接入标定装置中去(参考图 3)。然后将测量端置于恒温

热源处,此时恒热源中应插一支标准水银温度计,以便读取恒温热源的确切温度,与

此同时读取热电势的 mv 数值。

3.改变恒温热源的温度,并重复实验步骤 2 的工作,使测量端的温度从室温起

每隔一定温度改变一次。总的点数最好不少于 5 ,将每一次的热源温度数值和毫伏

数值记录下来。

四、实验设备

实验设备如图所示:由高温电阻炉、智能温度控制仪、交流供电调压器、UJ33a电位差计、铜一康铜热电偶、高精度温度计等组成。

(图3)

四、热电偶标定

1、热电偶标定前必须进行外观检查、检查焊接点是否光滑、牢固、热电极是否变脆、变色、发黑,严重腐蚀等。

常用热电偶标定点温度表1

2、热电偶标定采用比较法。可按表1中所列温度进行标定。本实验的被标定电偶为铜-康铜热电偶。用被标定热电偶在0-300℃温度区间与标准热电偶相比较,用电位差计测出热电偶的热电势。

3、标定时将热电偶的热端插入炉内150~300mm,该范围内温度均匀,一般读数时要求温度稳定(温度变化小于0.2℃/min),电位差计为0.05级以上。将标准热电偶与被标定热电偶的热端用金属丝绑扎在一起(也可不绑扎);插孔用绝热材料(石棉布)堵严保温(使用小孔时可不堵)。各热电偶的冷端置于冰点槽8中以保持0℃。

4、按电位差计使用说明将各导线接入系统后,依次改变管式电炉的温度设定值,记录热电偶输出毫伏电势,并比较两个热电偶确定。。

四、注意事项

1、实验之前应将加热主体加入适量的水或油。

2、工作环境应无强磁场,温度 0~35℃,相对湿度不大于 85%。

3、注意:采用高精度玻璃温度计测量温度,注意温度测量范围,以免导致温度计损毁。恒温水槽温度低于25℃时,采用 0-25℃范围的标准玻璃温度计;当恒温水槽温度在25~50℃之间时,采用25-50℃范围的标准玻璃温度计。当恒温水槽温度在50~75℃之间时,采用50-75℃范围的标准玻璃温度计。当恒温水槽温度在75~100℃之间时,采用75-100℃范围的标准玻璃温度计。

4、当水槽温度比较高的时候,注意防止烫伤。

5、防止水槽的水溅出影响其他电气设备。

五、实验原始数据及处理:

列表给出热电偶的标定结果,并绘制曲线。

热电偶校准不确定度报告

工作用铂铑10-铂热电偶校准结果的不确定度评定 1、概述 热电偶校准结果的不确定度评估,主要是为确定标准器和电测设备选择的合理性。校准结果不确定度的评估方法和结果为日常校准工作提供参考。 2、校准对象 工作用铂铑10-铂热电偶,校准点分别为419.527℃(锌点),660.323℃(铝点),1084.62℃(铜点)。铂铑10-铂热电偶各校准点的微分热电势为:S 锌=9.64μV/℃,S 铝=10.40μV/℃,S 铜=11.80μV/℃。 3、测量标准及设备 3.1 标准器 标准器为一等标准铂铑10-铂热电偶,主要技术指标如表1 表1 计量标准器技术指标 3.2 电测设备 数字多用表,测量范围(0~100)mV ,分辨力0.1μV ,MPE :±(0.005%读数+0.0035%量程)。 4、测量方法 将一等标准铂铑10-铂热电偶(以下简称标准热电偶)和工作用铂铑10-铂热电偶(以下简称被检热电偶)捆扎后放入管式检定炉,用双极比较法在锌、铝、铜三个温度点进行检定。分别计算算术平均值,最后得到被检热电偶在各温度点的热电势值。 5、测量模型 检定点测量结果的测量模型: )(标被证E E E E t -+= (式1) 式中: t E ——被检热电偶在检定点上的热电动势值,mV ; 证E ——标准热电偶证书上给出的热电动势值,mV ; 被E ——被检热电偶测得的热电动势算术平均值,mV ;

标E ——检定时标准热电偶测得的热电动势算术平均值,mV 。 被E 和标E 是用一台数字多用表同一时间同一条件下测得,故两组测量数据具有相关 性,根据不确定度传播率得到: )()()(2)()()()(322 232222212标被标被标被证,E u c E u c E E r E u c E u c E u c y u c +++= (式2) 式中,灵敏系数: 11=??= 证E E c t 12=??=被 E E c t 1-3=??=标E E c t 相关系数:=),(标被E E r (-1~1) 6、标准不确定度评定 主要不确定度来源:测量重复性、标准器、电测设备、多路开关、参考端、炉温变化及均匀性等影响量。 6.1 测量重复性引入的不确定度分量a u ,用A 类方法进行评定。 因在三个温度点校准时,测量重复性情况大致相同,故对其在任意校准点进行重复性分析,可代表其在其他温度点重复性情况,现以1084.62℃点测量为例分析。 用一等标准热电偶作为标准检定工作用热电偶。由于本检测系统为自动读数,只能按规程测量4次,测得工作偶的五组每组4个重复性试验数据,合并样本标准偏差1p s ,测得标准偶的五组每组4个重复性试验数据,合并样本标准偏差2p s ,数据见表2。 表2

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

热电偶测量误差分析(精)

热电偶测量误差分析 一、热电偶测温基本原理 将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。如图1所示。温度t端为感温端称为测量端,温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0),因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:EAB(t,t0)=EAB(t)-EAB(t0) 式中 EAB(t,t0)-热电偶的热电势; EAB(t)-温度为t时工作端的热电势; EAB(t0)-温度为t0时冷端的热电势。 从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。 要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质: 质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在温度梯度而产生附加电势,从而因热电偶材料不均引入误差。 中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB (t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。 连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。 中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理论依据。 二、各种误差引起的原因及解决方式 2.1 热电偶热电特性不稳定的影响

热电偶的制作和标定

热电偶的制作和标定 一、实验目的: 1、熟悉热电偶测温原理。 2、了解自制专用热电偶的制作方法。 3、了解热电偶的标定方法。 二、实验原理: 温差热电偶(简称热电偶)是目前接触式测温中应用最为广泛的温度传感器。它具有结构简单、制造方便、测量范围宽、精确度高、热惯性小、输出为电信号便于远传或信号转换等优点。此外,它不仅可用于测量各种流体的温度而且还可用于快速及动态温度的测量。热电偶工作原理如下: 1、温差电势:温差电势是由于导体或半导体两端温度不同而产生的一种电动势。由于导体两端温度不同,则两端电子的能量也不同。温度越高电子能量越大,能量较大的电子会向能量较小的电子处跑,这就会形成一个由高温端向低温端的静电场。静电场又阻止电子继续向低温端迁移,最后达到一动平衡状态。温差电势的方向是由低温端向高温端,数值与两端温差大小有关。 2、接触电势:当两种不同的金属导体或半导体A 和B 相互接触时,由于其内部电子密度不同,因此从导体A 向导体B 扩散的电子数,要比从导体B 向导体A 扩散的电子数多,结果导体A 失去电子而带正电,导体B 因得到电子而带负电。这样,在导体A 、B 的接触面上形成一电位差。这一电位差一旦形成就对扩散起阻止作用,最后达到某种动平衡状态。平衡后的这一电位差即称为接触电势,其数值取决于两种不同导体的性质和接触点的温度。 由上可知,热电偶具有下述特点: (1)热电偶回路热电势的大小,只与组成电偶的导体材料及两端温度有关,而与热电偶的长度、粗细无关。 (2)只有用不同性质的导体或半导体才能组成热电偶,相同材料不会产生热电势。 (3)只有当热电偶两端正温度不同,热电偶的两根材料不同时才能有热电势产生。 (4)材料确定后,热电势的大小只与热电偶的温度有关。 为简化热电偶测量系统,热电偶冷端不采用冰瓶,而将其置于室温中,室温t f 用水银温度计较准确地测得。热电偶热端则设置在管式电炉中。这时测得的热电势不能直接从分度表查取热端炉内的温度,而应该根据下式,先计算出热端温度相对于冷端温度为0℃时的热电势值E(t,0)。 )0,(),()0,(f f t E t t E t E += 式中,),(f t t E ——表示热端为t ℃,冷端为t f ℃时的热电势,即实测值;)0,(f t E 表示热端为t f ℃,冷端为0℃时该对热电偶的热电势。该值可 根据t f 从指导书附表中查得。然后用)0,(t E 从分度表中查得热端温度t 。如图表示出上述确

热电偶实验报告

热电偶实验报告 报告类别:正常迟交补交其他 报告分加减分扣分系数成绩 姓名联系电话学号 年级学院专业 实验日期周星期 实验题目 热电偶标定实验 实验目的 ?了解热电偶温度计的测温原理 实验原理及内容(包括基本原理阐述、主要计算公式、有关电路、光路及实验装置 示意图) 1、两种不同成份的导体A、B(称为热电极)两端接合成回路,当A、 B两个接合点的温度T、T。不同时,在回路中就会产生电动势, 这种现象称为热电效应,而这种电动势称为热电势。热电偶就是 利用这种原理进行温度测量的,其中,直接用作测量介质温度的 一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿 端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所 产生的热电势。 2、由一种材料组成的闭合回路,电路中都不会产生热电动势。 3、在热电偶中插入第三种(或多种)均质材料,只要所插入材料的两端温度相同,均不会 有附加热电动势发生。 4、在两种不同材料组成的热电偶回路中,接点温度分别为t和t0,热电动势E AB(t,t0)等 于热电偶在连接点温度为(t,t n)和(t n,t0)时相应的热电动势E AB(t,t n)和E AB(t n,t0)之和,即 E AB(t,t0)= E AB(t,t n)+ E AB(t n,t0) 5、如果两种导体A和B分别与第三种导体C组合成热电偶AC和BC的热电动势已知,则可 求出这两种导体A、B组合成热电偶AB的热电动势为 E AB(t,t0)=E AC(t,t0)-E BC(t,t0)

主要实验仪器(包括名称、型号或规格) 一支热电偶、一个电压表、一个恒温水浴箱、一支温度计、一个装有冰水混合物的仪器、一根导线 主要操作步骤(包括实验的关键步骤及注意事项) 将需要标定的热电偶的补偿端两个接头其中一个与导线一端的两个接头其中一个相连接,将导线另一端插入装有冰水混合物的仪器,将电压表的两端分别接在热电偶和导线的另一个接头上。现在调节恒温水浴箱的温度使其稳定下来后将热电偶的工作端和温度计的工作端相接触后放入恒温水浴箱读数,同时记录下电压表的五个读数。记录完毕后改变恒温水浴箱的温度重复上述工作,记录下六组恒温水浴箱在不同温度下电压表的五次读数。 实验数据记录(要求列表,将整理后的原始数据填入表内,特别注意标明单位和测量数据的有效位数,并将教师签过的原始数据单附在此页) 温度0C 数据处理及实验结果(包括平均值、不确定度的计算公式、过程及最后的实验结果。实验作图一律要求坐标纸) 第一次: ?L1== 1==mv ?lim=S1=?lim=0mv L1= 查表得:?T1= 与温度计测得的温度相差℃ 第二次:?L2=+*2+*2)/5= 2= ?lim=?32=

实验六 热电偶的制作与标定

实验六热电偶的制作与标定 一. 目的 了解热电偶温度计的工作原理,学会焊接铜—康铜热电偶的方法,并学会热电偶的标定。 二. 热电偶温度计原理、焊接及标定 1. 热电偶温度计工作原理 测温用的温度计大致可以分为下列五类:膨胀式温度计(如水银温度计)、压力表式温度计(如充氮气温度计)、电阻温度计(如铂电阻温度计),热电偶温度计(如铂铑 10 —铂热电偶、镍铬—镍硅热电偶)、辐射式温度计(如光学高温计)。其中热电偶温度计由于在测温中有较高的准确度,所以在工农业生产和科研工作中都广泛地使用。 由两种不同性质金属线或合金丝 A 与 B ,连接组成一个闭合回路称之为热电偶,如图 1 所示。 A 、 B 叫做热电极。如果使两个接点 1 、 2 处于不同的温度,回路中就会产生热电势 E ,这一现象称为热电效应,热电偶就是基于这一效应来测量温度的。

在图 1 所示的热电偶的闭合回路中所产生的热电势 E AB只与热电偶的两种材料的性质和两端的温度有关,与金属丝的长度、截面大小无关。当热电偶材料一定时,则热电势 E AB就只与热电偶两端温度 t 和 t0有关,即 E AB=( t,t0)。如果参考端(又称冷端)的温度 t0保持不变,则两端之间热电势 E 12 的大小就可以用来表示测量端(又称热端)1的温度高低。通常将热电偶的冷端放在装有冰水共存的保温瓶中,使其t0恒温于0℃ 。 2. 热电偶的焊接 热电偶的测量端与参考端都是由两种金属焊接制成的。为减小传热误差和滞后,焊接点宜小,其直径应不超过两倍金属丝的直径。焊接的方法可以采用点焊、对焊,如图 2a和b所示。也可以把两个热电偶绞缠在一起再焊,称为绞状点焊,如图 2c 所示,但绞缠圈数不宜超过 2-3 圈。 a b c 图 2 热电偶的热接点 热电偶的两热电极要很好地绝缘,以防短路。如果热电偶地金属是裸线,通常都要用绝缘管套在导线上进行绝缘,聚乙烯或聚四氟乙烯都是在常温范围内采用绝缘管材料。

热电偶测量原理

热电偶测量原理 摘要:温度,无论是在工业还是农业生产过程中都属于很普遍又很重要的指标。测量温度信号使用各种类型的温度传感器实现,如热电偶(TC)、热电阻(RTD)、热敏电阻(NTC)等。本文主要介绍热电偶测量原理及其类型,以及对热电偶选取的简单介绍。 一、何为热电偶 两种不同材料的导体或半导体(通常称为热点极)两端接合(接合点A与B)形成回路时候,当两端的接合点T A≠T B时,在回路中就会产生电动势,通过温度差变化引起电动势的变化称为热电效应,该电动势又被称为热电势,如图 1所示。由于该热电势是由两种不同的导体材料产生的,又称之为热电偶。由热电偶的定义可以发现,热电偶可将温度直接转化电信号,使得测量可以很容易简单的进行。 图 1 热电效应原理 二、热电偶类型 对于热电偶热电势的产生需要达到如下条件: 1.两种不同材料的导体或半导体; 2.温度差的产生,即TA≠TB; 改变T A(称之为测量端,也叫热端)结点温度时,保持T B(称之为参考端,也叫冷端)处于一恒温状态,就能通过热电势与温度关系得出该两种材料所形成的热电偶分度表,由于热电势指的是E AB(T A,T B),两端接合点温度差所对应的电势差有关,而温度差相同但温度段不同时对应的信号大小也是不一致的,例如0~50℃和50~100℃的温度差相同,但信号大小却是不相同,为了准确测量温度信号就必须把其中一头的温度固定下来,通常分度表的T B一般为0℃。所以从理论上讲,任何两种导体都可以配制为热电偶,但得到的并不全是满足测量需求的,如测温精度、测温范围、测温瞬变程度等。在多年的时间测试了许多种热电材料组合的热电特性,经过百多年的发展已经对产品的规格及性能都已标准化。目前常用的热电偶类型有8种,S、R、B、E、T、J、K、N。其中S、R、B属于贵金属材料热电偶;E、T、J、K、N属于廉金属材料热电偶。对于热电偶类型所选用的材料均可在网上找到对应资料。 对于不同型号类型热电偶拥有自己所测量的最优温度区间,将在后续选取中进一步介绍。 三、热电偶测量原理 四个热电偶基本经验定律: 1.均质导体定律:由同一种均质材料两端焊接组成闭合回路时,无论导体两端及其截面温度如何分布,均不产生接触电势,而温差电势相互抵消,总电势为零; 2.中间导体定律:在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路的总电势没有影响;

热电偶标定规程

热电偶标定规程

目录 1.0目的 (2) 2.0范围 (2) 3.0参考 (2) 4.0安全 (2) 5.0定义 (2) 6.0责任 (2) 7.0热电偶 (3) 7.1概述 (3) 7.1.1结构 (3) 7.1.2外套材料 (3) 7.2技术标准 (3) 7.3外观检查 (4) 7.4校验 (4) 7.4.1检查仪器与设备 (4) 7.4.2校验方法 (4) 7.4.3冷端非0℃值时,应按下式计算: (5) 7.5使用和维护 (6) 8.0附录 (6)

1.0目的 制定本规程的目的在于为本规程的最终用户提供明确的内容和步骤,确保仪表维护检修人员在执行任务时能够在没有监督或很少监督的情况下,按照赛科规定的标准,以安全有效可靠的方式履行自身的职责。 2.0范围 本规程适用于: 热电偶 3.0参考 本规程参考了以下文件: 电偶使用说明书 4.0安全 在执行规程时,你若确认出未知的HSE风险,向你的直接主管进行汇报。 为了确保检修人员以及仪表设备本体的安全,在执行相关操作之前必须了解和参考以下的安全提示: 1.禁止在爆炸性环境中打开处于带电工作状态的热电偶的接线盖 2.无论是在安装、维护或者使用的时候都要考虑到环境状况对热电偶的影响因素。 3.在有毒有害场所执行任务的人员,应事先了解相关的材料安全数据表。 5.0定义 6.0责任 本规程仅适用于具有专业知识的仪表维护人员的操作。 1.ES仪表工程师、主管和技术员应确保本规程在工作中得以贯彻和执行。 2.仪表维修人员应根据实际情况,就安全和技术上的任何疑问及时与其直接主管人进 行沟通。 3.任务完毕后把完成的签过字的规程或检修记录返回给主管用于审核及归档。

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电偶标定实验报告

热电偶的制作与标定试验 指导老师:徐之平 学生:代国岭 学号:102270028 专业:工程热物理

热电偶的制作与标定试验 一、实验目的 1.了解热电偶温度计的测温原理 2.学会热电偶温度计的制作与矫正方法 3.掌握电位差计的原理和使用方法 二、实验仪器 P21588型数字毫伏表、SY821型转换开关、RTS-00B制冷恒温槽、HTS-300B标准油槽、实验热电偶 三、实验原理 热电偶工作原理如图:

两种不同成份的导体A、B(称为热电偶丝材或热电极)两端接合成回路,当A、B两个接合点的温度T、T0不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: (1)热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;(2)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; (3)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 四、实验记录及处理 1.热电偶的制作 按实验要求,截取两根适当长度的电偶丝,消除两端的氧化膜,套上绝缘套管,用钢丝钳将两根偶丝的端部胶合在一起。微微加热,立即蘸取少许硼砂,再在热源上加热,使硼砂均匀地覆盖住胶合头,防止偶丝高温焊接时氧化。 交流弧焊法:将隔离变压器输出电压调至30V左右,以碳棒为一极,胶合头为一极,用绝缘良好的夹子夹住,使两极相碰,电弧产生的瞬间高温使胶合头熔焊在一起,形成光滑的焊珠。 刚焊接的热电偶存在内应力,金相结构不符合要求,使用过程中会导致温差电势不稳定,结果重显性差。精密测量用的热电偶必须进行严格的热处理,消除内应力。 2.热电偶的校正 将热电偶的两端分别插入盛有少许硅油的玻管中,然后将一支玻管(冷端)插入盛有冰水的保温瓶中,另一支玻管(热端)插入恒温水浴中。调节恒温水浴的温度,在室温至800C 之间均匀地取六个不同温度的点,用电位差计分别测出各温度点的电动势。 实验数据记录 拟合曲线如下

热电偶定标实验

图7-1 热电偶结构图 热电偶定标实验 一、实验目的 1.了解热电偶的工作原理; 2.学会对热电偶定标; 3.应用热电偶测温。 二、实验仪器 灵敏数字电压表,保温杯,电加热罐,温度计等 三、实验原理 早在19世纪初,人们就发现两种不同的金属组成的回路中(如图7-1所示),如果在两个接头端存在温度差,则回路中就会产生电 流。这种现象就称为温差电现象,这两种不同 金属组成的电路称为热电偶。产生电流的电动 势称为温差电动势。温差电动势的产生机制, 限于篇幅,在此不再多讲。但从实用的角度出 发,热电偶的一些特点和性质我们却是应该掌 握的: 1.一般来说,任意两种不同的金属组成的回路都可以构成一对热电偶。只要两个接头端有 温度差,回路中就有温差电动势,进而会产生温 差电流。(利用这一特点,我们就可以把非电量的温度转化为可以用仪表检测的电学量。) 2.各种不同的热电偶都有其特定的温差电动势的变化曲线。换言之,只要确定了组成热电偶的金属材料,则其温差电动势的变化规律就是一定的,与热电偶的体积、导线长短等因素无关。(由于有这一特点,实际应用时热电偶的测温探头就可以做得很小,因而探头的热容量也就很小,测温就非常灵敏。) 3.由于各种不同热电偶的温度特性不同,故不同的热电偶有其不同的适用温度范围。根据不同的测温环境,使用者可以查找有关资料,选择合适的热电偶进行测温。 4.一对热电偶所产生的温差电动势一般都很小,只有零点几至数十毫伏。须用很灵敏的检流装置才能检验出来。但若把大量的热电偶串联起来,组成温差电堆,其产生的温差电动势和温差电流就有明显的实用价值。特别是用某些半导体材料组成的热电偶,有些地方已把它用来制成热转换效率较高的温差电堆发电装置。

热电偶传感器习题及答案

第九章热电偶传感器 一、单项选择题 1)正常人的体温为37C,则此时的华氏温度约为______,热力学温度约为______。 A. 32F,100K B. 99F,236K C .99F,310K D. 37F,310K 2)_____的数值越大,热电偶的输出热电势就越大。 A. 热端直径 B. 热端和冷端的温度 C. 热端和冷端的温差 D. 热电极的电导率 3)测量钢水的温度,最好选择______热电偶;测量钢退火炉的温度,最好选择_____热电偶;测量汽轮机高压蒸气(200C左右)的温度,且希望灵敏度高一些,选择______热电偶为宜。 A. R B. B C. S D. K E .E 4)测量CPU散热片的温度应选用______型的热电偶;测量锅炉烟道中的烟气温度,应选用______型的热电偶;测量100m深的岩石钻孔中的温度,应选用______型的热电偶。 A. 普通 B.铠装 C. 薄膜 D. 热电堆 5)在热电偶测温回路中经常使用补偿导线的最主要的目的是______。 A. 补偿热电偶冷端热电势的损失 B. 起冷端温度补偿作用 C. 将热电偶冷端延长到远离高温区的地方 D. 提高灵敏度 二、分析与问答 1、简述热电偶与热电阻的测量原理的异同。 2、设一热电偶工作时产生的热电动势可表示为E AB (t , t ),其中A、B、t、t 各代表什么意义? t 在实际应用时常应为多少? 3、用热电偶测温时,为什么要进行冷端补偿?冷端补偿的方法有哪几种? 三、计算题 1、用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时 的热电动势为,求被测的温度大小? 2、用一K型热电偶测钢水温度,形式如图示。已知A、B分别为镍铬、镍硅材料 制成,A`、B`为延长导线。问: 1)满足哪些条件时,此热电偶才能正常工作? 2)A、B开路是否影响装置正常工作?原因? 3)采用A`、B`的好处? 4)若已知t 01=t 02 =40℃,电压表示数为,则钢水温度为多少? 5)此种测温方法的理论依据是什么? 3、试说明下面各图中分别是测量哪些被测温度量? 习题答案:

实验一 热电偶制作、校验及其静态特性测试实验(修改)

实验一热电偶制作、校验及其静态特性测试实验 一、实验目的 1、掌握热电偶测温原理和温度测量系统组成,学习热电偶测温技术,提高学生的实验技能和动手能力; 2、了解热电偶的制作原理,学习热电偶的焊接方法; 3、掌握电位差计的工作原理及使用方法; 4、了解模拟式显示仪表及数字式显示仪表校验方法,从而能较全面的了解与使用显示仪表; 5、掌握工业热电偶比较式校验的实验方法; 6、掌握热电偶的静态特性测试方法及数据处理技术。 二、实验内容 1、根据热电偶的测温原理,利用实验室提供的热电偶丝等材料制作热电偶,每组制作2支; 2、对选用的显示仪表和电位差计进行校正; 3、采用双极比较法设计热电偶校验系统电路,并对自己制作的热电偶进行校验; 4、测定在校验温度点的热电偶电势,绘制被校热电偶的静态关系曲线; 5、设计单点测温线路、温差测温线路、串联和并联测温线路,画出你所设计的测温线路,简述设计的测温线路的特点和用途,并进行实际的测试。 三、实验原理 使用中的热电偶由于长期受高温作用和介质的侵蚀,其热电特性会发生变化,为了保证测温的准确和可靠,热电偶应定期进行检定,若检定结果其热电势分度表的偏差超过允许的数值时,则该热电偶应引入修正值使用。如热电偶已腐蚀变质或已烧断,则应修理或更换后再行检定。 工业热电偶的检定方法有双极比较法,同名极法等多种,本实验采用双极比

较法进行检定。其方法是用高一级的标准热电偶与被检偶的工作端处在同一温度下,比较它们的热电势值,然后求出被检偶对分度表的偏差,然后根据表1判断被检偶是否合格,这种方法设备简单、操作方便,一次可检定多支热电偶,常受人们欢迎。采用此法检定时,将被检偶与标准偶捆绑扎在一块,工作端插入管状电炉中间的热电势值与分度表上对应点数据进行比较,求出被检热电偶的偏差值,对于镍铬-镍硅热电偶,通常在400℃,600℃,800℃,1000℃四个整百分数上进行检定。 表1 各种常用热电偶对应分度表的允许偏差 附注:表中t为工作端温度,允许以℃或以实际温度的百分数表示时,两者中采用数值较大的一个值,本试验按II等级计算。 本实验标准热电偶采用铠装镍铬-镍硅热电偶,被检偶采用的自制镍铬-镍硅热电偶,通过鉴定同时获得这种热电偶的静态特性(即热电偶与温度的对应关系)。我国标准热电偶传递表见附录I。 四、实验装置及设备 1、标准镍铬—镍硅热电偶(分度号K) 1支 附标准偶检定证书一份

热电偶标定实验

热电偶标定实验 一、概述: 温差热电偶(简称热电偶)是目前温度测量中应用最广泛的温度传感元件之一,是以热电效应为基础的测温仪表。它用热电偶作为传感器,把被测的温度信号转换成电势信号,经连接导线再配以测量毫伏级电压信号的显示仪表来实现温度的测量。 热电偶测温的优点是结构简单、制作方便、价格低廉、测温范围宽、热惯性小、准确度较高、输出的温差电信号便于远距离传送、实现集中控制和自动测试。流体、固体及其表面温度均可用它来测量,所以在工业生产和科学研究、空调与燃气工程中应用广泛。 二、实验目的 1.学习使用毫伏表测定温差电动势及热电偶工作原理。 2.掌握热电偶定标曲线的绘制规则。 3.学习用热电偶设计温度计 4.学习用直线拟合方法处理实验数据。 三、实验原理 1、温差电现象。导体中存在着与热现象有关的非静电力和电动势,称为温差电动势,依其产生的机理不同而有两种具体形式。 一种称为汤姆孙电动势。金属导线两端如果温度不同,高温端的自由电子好像气体分子一样向低温端扩散,并在低温端堆积起来,从而在导线内形成电场。由电子热扩散不平衡建立的电场反过来又阻碍不平衡热扩散的进行,最终达到动态平衡,使导线两端形成一稳定的电势差。若把两种金属导线两端连接起来,并把接点置于不同温度中,使两种不同材料的金属连接成闭合回路,因两个汤姆孙电势不相等,两段导线中即形成恒定电流。回路中相应的电动势称为汤姆孙电动势。温差越大,汤姆孙电动势也越大。 另一种称为珀耳帖(J.C.A.Peltier,1785——1845)电动势。两种不同金属连接起来,由于接触面两侧金属内自由电子浓度不同,电子将从浓度大的一侧向浓度小的一侧扩散,在接触面间形成电场,从而在两种金属间形成电位差。显然,两种金属连成回路,并把接点置于相同温度中,两接触面间将建立相等而相反的电动势,因而也形不成恒定电流。只有两接点温度不同,两个珀耳帖电动势不等,才会形成电动势。而且温差越大,形成的电动势也越大。 总之,两种电动势尽管产生的机理不同,但最后在闭合回路中形成的电动势,除与材料有关外,惟一地决定于两个接点的温度差,所以统称为温差电动势。上述两种金属A、B 两端彼此焊接并将接点置于不同温度下的回路(见图1),称为温差电偶。使用时常把一个接点置于某一恒定温度,称为参考点;另一接点作为测温点。 温差电偶中形成的温差电动势与温差的关系通常用幂函数表示,在常温范围内,要求

热电偶插入深度和响应时间

热电偶测温元件要与被测对象达到热平衡,因此,在测温时需要保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。为了提高测量精度,减少测量误差,延长热电偶使用寿命,要求使用者不仅应具备仪表方面的操作技能,而且还应具有物理、化学及材料等多方面知识。 热电偶插入深度的影响:热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些(约为直径的15—20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10-15倍)。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。 热电偶响应时间的影响:而热响应时间主要取决于传感器的结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1秒钟,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。测温元件热响应误差可通过下式确定[1]。Δθ=Δθ0exp(-t/τ) (2—1) 式中t—测量时间S,Δθ—在t 时

热电偶标定

热电偶的标定 一、实验目的 1、加深对温差电现象的理解; 2、了解热电偶测温的基本原理和方法; 3、了解热电偶定标基本方法。 二、实验仪器 铜――康铜热电偶、YJ-RZ-4A 数字智能化热学综合实验仪、保温杯、数字万用表等。 三、实验原理 1、温差电效应 在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。其优点是不仅使测量方便、迅速,而且可提高测量精密度。温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。本实验是研究一给定温差电偶的温差电动势与温度的关系。 如果用A 、B 两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。 图1 2、热电偶 两种不同金属串接在一起,其两端可以和仪器相连进行测温(图2)的元件称为温差电 偶,也叫热电偶。温差电偶的温差电动势与二接头温度之间的关系比较复杂,但是在较小温差范围内可以近似认为温差电动势E t 与温度差)(0t t -成正比,即 )(0t t c E t -= (1) 图 2 A 金属:铜 B 金属:康铜 t 0 0t >

式中t为热端的温度,t 为冷端的温度,c称为温差系数(或称温差电偶常量)单位为? V μ℃1-,它表示二接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即 c =(k/e)ln(n A 0/n B ) (2) 式中k为玻耳兹曼常量,e为电子电量,n A 0和n B 为两种金属单位体积内的自由电子数目。 如图3所示,温差电偶与测量仪器有两种连接方式: (a)金属B的两端分别和金属A焊接,测量仪器M插入A线中间(或者插入B线之间); (b)A、B的一端焊接,另一端和测量仪器连接。 图3 在使用温差电偶时,总要将温差电偶接入电势差计或数字电压表,这样除了构成温差电偶的两种金属外,必将有第三种金属接入温差电偶电路中,理论上可以证明,在A、B两种金属之间插入任何一种金属C,只要维持它和A、B的联接点在同一个温度,这个闭合电路中的温差电动势总是和只由A、B两种金属组成的温差电偶中的温差电动势一样。 温差电偶的测温范围可以从4.2K(-268.95℃)的深低温直至2800℃的高温。必须注意,不同的温差电偶所能测量的温度范围各不相同。 3、热电偶的定标 热电偶定标的方法有两种。 (1)比较法:即用被校热电偶与一标准组分的热电偶去测同一温度,测得一组数据,其中被校热电偶测得的热电势即由标准热电偶所测的热电势所校准,在被校热电偶的使用范围内改变不同的温度,进行逐点校准,就可得到被校热电偶的一条校准曲线。 (2)固定点法:这是利用几种合适的纯物质在一定气压下(一般是标准大气压),将这些纯物质的沸点或熔点温度作为已知温度,测出热电偶在这些温度下对应的电动势,从而得到电动势――温度关系曲线,这就是所求的校准曲线。 本实验采用固定点法、且连接方法参照图3中的(a)对热电偶进行定标。 实验中的铜――康铜热电偶分为了“热电偶热端”和“热点偶冷端”两部分,它们都是由受热管和两股材料分别为铜和康铜的导线组成,如图4所示,其中,铜导线外部是红色绝缘层,康铜导线外部是黑色绝缘层,且两股导线在受热管中焊接在一起,但和外部的受热管绝缘,受热管的作用只是让其内部的两导线焊接端良好受热。

温度传感器实验报告

温度传感器实验 姓名学号 一、目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、仪器 温度传感器实验模块 热电偶(K 型、E 型) CSY2001B 型传感器系统综合实验台(以下简称主机) 温控电加热炉 连接电缆 万用表:VC9804A,附表笔及测温探头 万用表:VC9806,附表笔 三、原理 (1)热电偶测温原理 由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

图1中T 为热端,To 为冷端,热电势 本实验中选用两种热电偶镍铬—镍硅(K 分度)和镍铬—铜镍(E 分度)。 (2)热电偶标定 以K 分度热电偶作为标准热电偶来校准E 分度热电偶,被校热电偶热电势与标准热电偶热电势的误差为 式中:——被校热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶分度表上标定温度的热电势值。

——被校热电偶标定温度下分度表上的热电势值。 ——标准热电偶的微分热电势。 (3)热电偶冷端补偿 热电偶冷端温度不为0℃时,需对所测热电势值进行修正,修正公式为: E(T,To)=E(T,t1)+E(T1,T0) 即:实际电动势=测量所得电势+温度修正电势 (4)铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在0℃≤T≤650℃时, 式中:——铂热电阻T℃时的电阻值 ——铂热电阻在0℃时的电阻值 A——系数(=3.96847×10-31/℃) B——系数(=-5.847×10-71/℃2) 将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。 (5)PN结温敏二极管 半导体PN 结具有良好的温度线性,根据PN 结特性表达公式 可知,当一个PN 结制成后,其反向饱和电流基本上只与温度有关,温度每升高一度,PN 结正向压降就下降2mv,利用PN 结的这一特性可以测得温度的变化。 (6)热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件。它呈负温度特性,灵敏度高,可以测量小于0.01℃的温差变化。图2为金属铂热电阻与热敏电阻温度曲线的比较。

相关文档
最新文档