实验四 两级阻容耦合放大电路

实验四  两级阻容耦合放大电路
实验四  两级阻容耦合放大电路

实验四两级阻容耦合放大电路

一、实验目的

1.学习两级阻容耦合放大电路静态工作点的调整方法

2.学习两级阻容耦合放大电路电压放大倍数的测量

3.学习放大电路频率特性的测量

二、实验电路原理图

两级阻容耦合放大电路的实验电路如图4-1

图4-1

三、实验内容及步骤:

1.调节静态工作点

首先,将电源电压调节到E C=12V,调节电位器R W1,使Vc1=(6~7)V,调节电位器R W2,使V C2约为(6~7)V。给放大器输入一个频率为1H Z,幅度为1mV的信号。该信号从信号源的正弦波输出端输出,但输出幅度为20mV,经1K电位计衰减到1mV。用示波器分别观察第一级和第二级放大器输出波形。若波形失真,则可少许调节R W1 ,R W2直到使两级放大器输出信号波形都不失真为止。断开输入信号,用数字万用表测量晶体管V T1,V T2的各级电位,将数据记入表4-1中

表4-1

V T1管V T2管

V C1(V) V B1(V) V E1(V) V C2(V) V B2(V) V E2(V)

2.测量电压放大倍数

在不失真的情况下,按表4-2给定的条件,分别测量放大器的第一级和第二级输出电压V O1 ,V O2把数据记入表4-2中(输入信号为f=1H Z,V i=1mV,交流信号)表4-2

R L=∞

接入

R L=5.1K

3.测试放大器幅频特性

测试放大器幅频特性一般采用逐点法(R L=∞,R L=5.1K)

◆保持输入信号在各频率时V i=1mV不变,在R L=∞和R L=5.1K的两种情况

下,改变频率测出相应的输出电压V O,将数据记入表4-3内

◆找出上下限截止频率f H,f L(增益下降到中频增益的0.707倍时所对应的频

率点,在f H,f L两点左右应多测几点,即3分贝点,并求出放大器的带宽,△f= f H—f L)

表4-3

R L=∞R L=5.1K

F(H Z)

V O(V)A V V O(V)A V

20

40

200

400

2K

4K

20K

40K

200K

400K

四、实验设备:

1、实验板

2、示波器

3、信号发生器

4、毫伏表

5、数字万用表

五、实验报告

1.根据实验数据计算两级放大器的电压放大倍数,说明总的电压放大倍数与各级放大倍数的关系以及负载电阻对放大倍数的影响。

2.画出实验电路的幅频特性简图,标出f H,f L。

如发现寄生震荡,可采用以下措施消除:

z重新布线,尽可能走短线

z可在三极管eb间加几p到几百p电容

z信号源与放大器用屏蔽线连接

实验1 阻容耦合放大器的设计与调测 5

第三部分 模拟电子技术基础实验 实验1 阻容耦合放大器的设计与调测 3.1.1实验目的 1.能根据一定的技术指标要求设计出单级放大电路。 2.研究单级低频小信号放大器静态工作点的意义。 3.掌握放大器主要性能指标的测试方法。 4.掌握用射随器提高放大器负载能力的方法。 3.1.2实验原理与设计方法 在晶体管放大器的三种组态中,由于共射极放大器既有电流放大,又有电压放大,所以在以信号放大为目的时,一般用共射放大器。分压式电流负反馈偏置是共射放器广为采用的偏置形式,如图 3.1.1.所示。它的分析计算方法,调整技术和性能的测试方法等,都带有普遍意义,并适用多级放大器。 R u 图 3.1.1单组阻容耦合放大器 电路中Rc 为晶体管的直流负载,其交流负载由Rc 与外接负载R L 组成。由R b1、R b2及R C 组成电流反馈式偏置电路,发射极交流旁路电容C e 是用来消除R e 对信号增益的影响,隔直电容C l 、C 2是将前一级输出的直流电压隔断,以免影响后一级的工作状态,同时将前一级输出的交流信号耦合到后一级。 1.静态工作点 放大器的静态工作点是指当放大器没有信号输入时,晶体管各极的直流电流和直流电压在特性曲线上所决定的点。 静态工作点选择是否合理,将直接影响放大特性的好坏,为使信号得到不失真的放大,放大器的工作点一般选在线性区的中点。但在小信号放大器中,由于输入信号小,运用范围也小,工作点可选低一些,以减少直流功耗。 通常,为了使工作点稳定,应先稳定I CQ ,而I CQ ≈I EQ ,因此,只要稳定了I EQ 也就稳定了I CQ ,如能满足I 1≥I BQ ,V B ≥V BE ,则2 12 b b b CC B R R R V V +=几乎与晶体管的参数无关,可近似值看成 是恒定的。

小信号阻容耦合放大电路设计

郑州科技学院 电子仿真实验报告 题目小信号阻容耦合放大电路设计学生姓名 专业班级 10级电科四班 学号201031099 院(系)电气工程学院 指导教师刘林荫 完成时间 2013年 9 月 15 日

目录 1 设计要求 (1) 2 设计说明 (1) (1)选定电路形式 (1) (2)选用三极管 (1) 3 设置静态工作点并计算元件参数 (1) 4 仿真设计 (2) (1)搭建实验电路 (2) (2)仿真分析 (2) 5.分析研究 (5) (1)问题分析 (5) (2)问题解决: (5)

1 设计要求 试设计一个工作点稳定的小信号单元放大电路。要求:|A v|>40,R i>1kΩR o<3kΩ, F L<100Hz,f H>100kHz,电路的V cc=+12V,R L=3kΩ,V i=10mV,R s=600Ω。 2 设计说明 (1)选定电路形式 选用如图5.1.1所示的基极分压式工作点稳定的小信号共射放大单元路。 图5.1.1 共射放大电路 (2)选用三极管 因设计要求f H>100kHz,f H的指标要求较高。一般来说,三极管的f T越大C b’e、C b‘c越小,f H越高。故选定三极管为9013,其I CM=500mA,V(BR)CEO20V,P CM=625mW, f T 150MHz,I CEO 0.1uA,h FE (β)为60200。对于小信号电压放大电路,工程上通常要 求β的数值应大于A v的数值,故取β=60。 3 设置静态工作点并计算元件参数 ICQ<26β/(Ri-rbb’)=1.95mA,取ICQ=1.5mA, Re=(VBQ-VBEQ)/ICQ=(3-0.6)/1.5kΩ=1.6kΩ,Re=1.6kΩ Rb2=βVBQ/(510)I1=(1224) kΩ,取Rb2=20kΩ Rb1=Rb2(Vcc-VBQ)/VBQ=20(12-3)/3=60kΩ,取Rb1=56kΩ. Rbe=rbb’+26β/ICQ=1240Ω RL’=|Av|rbe/β=0.827kΩ. Rc=RLRL’/(RL-RL’)=1.14kΩ,取Rc=1.2kΩ. Cb2=Cb1>(310)/ ω(Rs+rbe)=(2.68.6) μF。取Cb2=Cb1=10μF。

实验一 单级阻容耦合放大电路设计

实验一单级阻容耦合放大电路设计 一、设计任务及目的 设计任务:设计一个分压式偏置的单级的小信号放大器,输入和输出分别用电容和负载隔直流,设计静态工作点,计算电路元件参数,拟定测试方案; (1)在面包板或万能板上安装电路,测量并调试静态工作点。 (2)测量设计好的偏置电压和电流。 (3)测量所设计电路的实际电压放大倍数。 (4)测量所设计电路的实际输入、输出电阻。 设计目的: (1)学习晶体管放大器的实计方法。 (2)研究静态工作点对输出波形影响及静态工作点的调整方法。 (3)掌握静态工作、电压放大倍数、输入电阻、输出电阻的测试方法。 二、设计要求和指标 已知条件:VCC=+12V,信号源Us=10Mv(P-P),内阻Rs=600Ω,负载RL=2KΩ 1、主要技术指标:输入内阻Ri>2kΩ,输出电压Uo≥0.3V,输出电阻Ro<5K. 2、频率响应20Hz-500KHz 3、I CQ=(0.5-2)mA,V BQ=(3~5)V(理论),U BQ>> U BE I CQ=(5-10)I BQ。 三、放大电路的基本原理 下图为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组 成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入 端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输 出信号u ,从而实现了电压放大。 在上图电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算:

1. 理论值设计 根据Ic=Ie,Rbe=Rbb+(1+B )*26/Ie 若取Ic=0.9mA, UBQ=4V ,Rbb=300Ω,放大倍数为100,CC B2 B1B1B U R R R U +≈ 可得RE=4K Ω,RB1=10K Ω,RB2=20K Ω U CE =U CC -I C (R C +R E )=5.7 电压放大倍数: be L C V r R R βA // -= =-38 输入电阻: R i =R B1 // R B2 // r be =3.5K Ω 输出电阻: R O ≈R C 2. (1)、静态工作点的测量 所谓静态工作点的测量,就是用合适的直流毫安表和直流电压表测量晶管的集电极电流Ie 和管压降Vce 。 (2)动态分析 (a )测量电压放大倍数 接入负载2K ,在输入端B 加f=1KHz 正弦波交流信号,调节输入信号幅度,使输出端在示波器频幕上得到一个最大不失真波形,同时测量V o 值 注:vi 是设计要求为10mv ,这个信号时从函数信号发生器生产生的。 (b )输入、输出电阻的测量 为了测量放大器的输入、出电阻,按图2电路在被测放大器的输入端与信号

阻容耦合两级放大电路

模拟电子技术综合实验报告姓名: 学号: 班级: 课程设计名称:阻容耦合两级放大电路 实验室(中心): 电子电工实验室 指导教师 : 设计完成时间: 年月日

级电路) 2、给电路引入电压串联负反馈 (二)要求 1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号频 率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻与频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 二、设计任务 1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻与频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 要求得到的数据: (1)静态工作点; (2)接入负反馈前后电路放大倍数、输入输出电阻; (3)验证F f 1 A ; (4)测试接入负反馈前后两级放大电路的频率特性; (5)测试接入负反馈前后,电路输出开始失真时对应的输入信号幅度。 三、设计方案分析 1.概述 放大电路的前级输出端通过电容接到后级输入端,成为阻容耦合方式。由于电容对滞留的阻抗为无穷大,因而阻容耦合放大电路各极之间的直流通路各不相痛,各级的

静态工作点相互独立,求解或实际调试Q点时可以按单级处理,所以电路的分析,实际与调试简单易行,而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,因此,在分立元件电路中阻容耦合方式的到非常广泛的应用。其优点就是由于电容的隔直作用,各级放大器的静态工作点相互独立,独立估算;电路的分析、设计与调试方便;电容对交流信号几乎不衰减;缺点就是低频特性变差;大电容不易集成。同时,负反馈在电子线路中有着非常广泛的应用,采用负反馈就是以降低放大倍数为代价的,目的就是为了改善放大电路的工作性能,如稳定放大倍数、改变输入与输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。 2.两级阻容耦合及负反馈放大电路系统设计 (1)原理分析: 阻容耦合放大器(图1)就是一种最常见多级放大器其电路。 图1两级阻容耦合及负反馈放大电路 图1就是一个曲型的两级阻容耦合放大电路,有两个共射放大电路组成。对于交流信号,各级之间有着密切的联系,前级的输出电压就就是后级的输入信号,两级放大器的总电压放大倍数等于各级放大倍数的乘积。 四、设计仿真与调试 测量静态工作点 第一级:

两级阻容耦合放大电路

两级阻容耦合放大电路 通常放大电路的输入信号都是很弱的,一般为毫伏或微伏数量级,输入功率常在1mV 以下。为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大,方可在输出获得必要的电压幅值或足够的功率。由几个单级放大电路连接起来的电路称为多级放大电路。在多级放大电路中,每两个单级放大电路之间的连接方式叫耦合;如耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。 阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。本实验采用的是两级阻容耦合放大电路,如图3-1所示。 图3-1 两级阻容耦合放大电路 在晶体管V 1的输出特性曲线中直流负载线与横轴的交点U CEQ1=V CC ,与纵轴的交点(U CE =0时)集电极电流为 = 1 CQ I 3 1 1E E C CC R R R V ++ 静态工作点Q 1位于直流负载线的中部附近,由静态时的集电极电流I CQ1和集-射电压U CEQ1确定。当流过上下偏流电阻的电流足够大时,晶体管V 1的基级偏压为 2 1 1 1 R R V R U CC B += 晶体管V 1的静态发射极电流为

3 1 1 3 1 1 1 1 7.0E E B E E E B EQ R R U R R UB U I +-≈+-= 静态集电极电流近似等于发射极电流,即 11 1 1 EQ BQ EQ CQ I I I I ≈-= 晶体管V 1的静态集电极电压为 11 1 C CQ CC CQ R I V U -= 两级阻容耦合放大电路的总电压放大倍数为 21 u u u A A A = 其中,第一级放大电路的电压放大倍数为 1 1 1 1 1 )1(E be L u R r R A +++'- =ββ 晶体管V1的等效负载电阻为 2 1 1 i C L R R R =' 可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为 ])1(//[//2 2 2 4 3 2 E be i R r R R R β++= 晶体管V 1和V 2的输入电阻分别为 1 1 1 26 )1(300EQ be I r β++≈ 2 2 2 26 )1(300EQ be I r β++= 第二级放大电路的电压放大倍数为 2 2 2 2 2 2 )1(E be L u R r R A ββ++' - = 其中,等效交流负载电阻L C L R R R 2 2 ='。

阻容耦合两级放大电路

模拟电子技术综合实验报告 姓名: 学号: 班级: 课程设计名称:阻容耦合两级放大电路 实验室(中心):电子电工实验室 指导教师: 设计完成时间:年月日

一、设计目的 一、设计目的与要求 (一)目的 1、在multisim中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈 (二)要求 1、在multisim中设计仿真一个阻容耦合两级放大电路,要求信号频率10kHZ (有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻和频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 二、设计任务

1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ (有效值1mv ),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻和频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 要求得到的数据: (1)静态工作点; (2)接入负反馈前后电路放大倍数、输入输出电阻; (3)验证 F f 1 A ; (4)测试接入负反馈前后两级放大电路的频率特性; (5)测试接入负反馈前后,电路输出开始失真时对应的输入信号幅度。 三、设计方案分析 1.概述 放大电路的前级输出端通过电容接到后级输入端,成为阻容耦合方式。由于电容对滞留的阻抗为无穷大,因而阻容耦合放大电路各极之间的直流通路各不相痛,各级的静态工作点相互独立,求解或实际调试Q 点时可以按单级处理,所以电路的分析,实际和调试简单易行,而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,因此,在分立元件电路中阻容耦合方式的到非常广泛的应用。 其优点是由于电容的隔直作用,各级放大器的静态工作点相互独立,独立估算;电路的分析、设计和调试方便;电容对交流信号几乎不衰减;缺点是低频特性变差;大电容不易集成。 同时,负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。 2.两级阻容耦合及负反馈放大电路系统设计 (1)原理分析: 阻容耦合放大器(图1)是一种最常见多级放大器其电路。

阻容耦合电路

电压并联负反馈电路 1.实验电路 2.工作原理 在放大电路中,当输入信号为恒流源或近似恒流源时,若反馈信号取自输出电压O U ,并转换成反馈电流F i ,与输入电流1i 求差后放大,则得到电压并联负反馈放大电路。 3.仿真数据和图形 (蓝线代表输入,黑线代表输出) 测得i U =999.83mv,o U =5.005v 4.实验分析

◆ 电路类型的判别 由电路图可知,输出端与输入端均与反馈点相连,因此为电压并联负反馈。 ◆ 分析计算 电压放大倍数52 1011=-=-==R R u u A F i o uf 2414 .1=i U =1v 50=?=i uf U A U v 由上可知:计算值近似于测量值。 5.电路的特点 若集成运放的od A 与id r 趋于无穷大,则其净输入电压和输入电流均可忽略不计。由此可得 ,0=≈P N u u ,1 F o F R u i - = F i i ≈1 所以 11F o R i u -≈ 由上试表明,一旦1F R 的取值确定,0u 仅仅决定于1i ,故可将电路的输出看成为由电流1i 控制的电压源0u 。在1i 一定的情况下,0u 基本不变,近似为恒压源,因而放大电路的输出电阻趋于零。 6.心得体会 通过本次实验,我更深刻的掌握了负反馈放大电路的基本知识以及集成运放电路的基本原理。理解了负反馈放大电路的反馈类型的判别,而且学会了计算电路中的相关参数。 这次实验我最大的收获是:负反馈放大电路的许多性能之所以会得到一定程度的改善,归根到底是由于放大电路的输出信号部分的或全部的引回到放大电路的输入端,从而可以对输出信号随时加以调整。反馈越深,放大电路性能改善的程度就越明显。

电子专业技术实验报告阻容耦合放大电路

电子技术实验报告阻容耦合放大电路

————————————————————————————————作者:————————————————————————————————日期:

学生实验报告 系别电子工程系课程名称电子技术实验 班级实验名称阻容耦合放大电路 姓名实验时间2011年 3 月16 日 学号指导教师 报告内容 一、实验目的和任务 1.学习放大电路频率特性的测量方法; 2. 观察电路元件参数对放大电路频率特性的影响; 3.进一步熟练掌握和运用放大电路主要性能参数(如静态工作点参数、放大倍数、输入电阻、输出电阻)的测试方法; 4.巩固多级放大电路的有关理论知识。 二、实验原理介绍 本实验采用的电路如图3-1所示。 1.中频段的电压放大倍数 在图3-1电路中的中频段,耦合电容和旁路电容可以当作交流短路,三极管的电容效应可以忽略不计。此时,考虑后级放大电路对前级放大电路所构成的负载效应时,也 R作为前级放大电路的负载,则前级放大电路的电压放就是将后级放大电路的输入电阻 2i

大倍数为 ef be i c i O u R r R R U U A )1() //(121 111ββ++-== (3-1) 其中,2i R 是后级放大电路的输入电阻,222212////be B B i r R R R =,后级放大倍数为 be l c O O u r R R U U A )//(2212β-== (3-2) 全电路的电压放大倍数为 211 1u u O O i O i O um A A U U U U U U A === (3-3) 2.低频段和高频段的电压放大倍数 在低频段和高频段,放大电路的电压放大倍数是一个复数,它是频率的函数,其模值与相角都随频率变化。 (1)单级放大电路在低频段和高频段的电压放大倍数 在低频段,三极管的电容效应可以忽略不计,但是耦合电容和旁路电容的容抗较大,它们的交流压降不能忽略。电压放大倍数用下式表示: f f j A L um UL -= ? 1A (3-4) 其中,L f 是放大电路的下限频率。 在高频段,耦合电容和旁路电容的阻抗非常小,它们的交流压降很小,可以忽略,可作交流短路处理,但三极管的电容效应对电路性能的影响则必须考虑。电压放大倍数可用下式表示: H Um UH f f j A += ? 1A (3-5) 其中,H f 是放大电路的上限频率。 (2)多级放大电路在低频段和高频段的电压放大倍数 多级放大电路的电压放大倍数等于各级放大电路电压放大倍数的乘积: ??=? ? ? ? 321u A A A A u u u (3-6)

小信号阻容耦合放大电路设计

郑州科技学院 《Multisim10电子仿真实验与设计》报告 题目小信号阻容耦合放大电路设计 学生姓名杨春城 专业班级 10级电子科学与技术二班 学号201031051 院(系)电气工程学院 指导教师刘林阴 完成时间2013年09月09日

目录 1小信号阻容耦合放大电路设计 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3设计说明 (1) 1.4设计静态工作点并计算元件参数 (2) 2 仿真设计 (2) 2.1搭建实验电路 (2) 2.2仿真分析 (3) 3分析研究 (6) 3.1问题分析 (6) 3.2放大电路动态性能指标的检测 (7) 4总结 (9)

1小信号阻容耦合放大电路设计 1.1设计目的 通过小信号阻容耦合放大电路仿真设计来讨论单元电路的一般分析、设计、元器件选取与调试的思路、流程、技巧和方法。 1.2设计要求 试设计一个工作点稳定的小信号单元放大电路。要求: |Av|>40,Ri>1k,Ro>3k?,fL<100Hz,fH>100kHz,电路的 Vcc=+12V,Rl=3k?,Vi=10Mv,Rs=600?. 1.3设计说明 1、选定电路形式 选用如图5.1.1所示的基极分压式工作点稳定的小信号共射放大单元电路。 图5.1.1 共射放大电路

2、选用三极管 因设计要求f H>100kHz,f H的指标要求较高。一般来说,三极管的f T越大C b’e、C b‘c越小,f H越高。故选定三极管为9013,其I CM=500mA,V(BR)CEO20V,P CM=625mW,f T150MHz,I CEO0.1uA,h FE(β)为60200。对于小信号电压放大电路,工程上通常要求β的数值应大于A v的数值,故取β=60。 1.4设计静态工作点并计算元件参数 ICQ<26β/(Ri-rbb’)=1.95mA,取ICQ=1.5mA, Re=(VBQ-VBEQ)/ICQ=(3-0.6)/1.5k ?=1.6k ?,Re=1.6k ? Rb2=βVBQ/(510)I1=(1224) k ?,取Rb2=20k ? Rb1=Rb2(Vcc-VBQ)/VBQ=20(12-3)/3=60k ?,取Rb1=56k ?. Rbe=rbb’+26β/ICQ=1240 ?,RL’=|Av|rbe/β=0.827k ? Rc=RLRL’/(RL-RL’)=1.14k ?,取Rc=1.2k ?. Cb2=Cb1>(310)/ ω(Rs+rbe)=(2.68.6) μF。取Cb2=Cb1=10μF。 Ce>(13)/[ ω(Re//(RS+rbe)/ β)]=(53~159) μF,取Ce=100μF。 2 仿真设计 2.1搭建实验电路 在Multisim 10电路实验窗口,按上述设计参数搭建小信号共射放大电路,如图5.1.2所示。

两级阻容耦合负反馈放大电路 教学设计

两级阻容耦合负反馈放大电路 教学目标 1.掌握放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标 的影响; 2.掌握两级阻容耦合负反馈放大电路的装配(设计、布线、制板、安装、 焊接、调试)技能; 3.熟悉模拟电子技术技能训练中常用电子测量仪器的综合使用技能。 工作任务 掌握两级阻容耦合负反馈放大电路的装配与调试技能。 实训器材 表5-2-2 工具、材料、仪器 工具、仪器材料 双踪示波器一台连接导线若干 函数信号发生器一台焊锡丝若干 指针式万用表或数字式万用表一台元器件见表5-2-1 晶体管毫伏表一台 电烙铁45W、镊子、尖嘴钳各一把 直流稳压电源一台 实践操作 基础知识 基础知识 (一)工作原理 1.反馈的基本概念 图5-2-1 反馈放大电路方框图 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。 图5-2-2为两级阻容耦合负反馈放大实训电路

图5-2-2 两级阻容耦合负反馈放大电路实训电路图 2.主要性能指标如下: (二)电路元器件明细表 技能训练1.按图5-2-2所示电路在多孔印制电路板上正确插装、焊接各元器件及电路连接线。 2.检查各元器件装配、连线无误后,接通+12V电源。调试、测试电路的静态工作点,测量开环电压放大倍数。 3.测量闭合放大电压放大倍数 4.测试负反馈对电路非线性失真改善效果。 (1)调试、测量两级阻容耦合负反馈放大电路的静态工作点(开环状态) ①按最大不失真输出为依据进行调试: 表5-2-3 电路最大不失真输出时输入、输出波形 输入波形观察记录双踪示波器各挡位、波形参数 时间挡位: 幅度挡位: 峰峰值: 输出波形观察记录双踪示波器各挡位、波形参数

两级阻容耦合级间电压串联负反馈放大电路设计

课程设计题目:两级阻容耦合级间电压串联负反馈放 大电路设计 课程:高频电子线路课程设计 学生姓名:刘奋奕 学号:11101072021 院系:物理与机电工程学院 专业班级:11电子信息科学与技术(2)班 指导教师姓名及职称:周永明教授 洪远泉实验师 两级阻容耦合级间电压串联负反馈放大电路设计 1.概述 放大电路的前级输出端通过电容接到后级输入端,成为阻容耦合方式。由于电容对滞留的阻抗为无穷大,因而阻容耦合放大电路各极之间的直流通路各不相痛,各级的静态工作点相互独立,求解或实际调试Q点时可以按单级处理,所以电路的分析,实际和调试简单易行,而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,因此,在分立元件电路中阻容耦合方式的到非常广泛的应用。 其优点是由于电容的隔直作用,各级放大器的静态工作点相互独立,独立估算;电路的分析、设计和调试方便;电容对交流信号几乎不衰减;缺点是低频特性变差;大电容不易集成。 同时,负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价

的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。 2.两级阻容耦合及负反馈放大电路系统设计 2.1原理分析 阻容耦合放大器是多级放大器中最常见的一种,其电路如图1所示。 图1阻容耦合整体原理图 图1是一个曲型的两级阻容耦合放大电路,有两个共射放大电路组成。由于耦合电容 1C 、2C 、C 5的隔直流作用,各级之间的直流工作状态是完全独立的,因此可分别单独调整。 但是,对于交流信号,各级之间有着密切的联系,前级的输出电压就是后级的输入信号,因此两级放大器的总电压放大倍数等于各级放大倍数的乘积u2u1u A A A ?=,同时后级的输入阻抗也就是前级的负载。为了减少电路损耗,第一级的静态工作点应选择的低一些,这样I C1电流的适当减小,就可以减少电路损耗。第二级的静态工作点选择的高一些,放大电路

三种耦合方式下放大电路交流负载线的特性

三种耦合方式下放大电路交流负载线的特性摘要:通过对常见的阻容耦合、变压器耦合及直接耦合方式下共发射极放大电路交流负载线特性的研究,给出了三种耦合方式下放大电路交流负载线的共同形式,以及常见三种耦合方式下共发射极放大电路交流负载线的具体形式,阐述了这三种耦合方式下放大电路交流负载线的相同和不同之处,以及三种耦合方式直流负载线方程与交流负载线方程的关系。 0 引言 图解法在用于放大电路分析时,由于其形象直观而常用于放大电路静态工作点及波形失真问题的分析。 其中,交流负载线则用于估算最大不失真输出电压。但是,目前高等院校电子线路教材并没有给出交流负载线方程的形式及其推导过程,只给出交流负载线的斜率和画法。因此,在一些文献中采用戴维南定理或叠加定理等方法推导和讨论了共射极阻容耦合放大电路或直接耦合放大电路的交流负载线方程,但是对变压器耦合放大电路并未作推导和讨论。 本文对反映放大电路输出特性的阻容耦合、变压器耦合以及直接耦合方式下共发射极接法放大电路的交流负载线进行了分析和研究,给出了这三种耦合方式下共发射极放大电路交流负载线的特性,并对变压器耦合放大电路的交流负载线方程进行了推导。 1 交流负载线及其方程形式 放大电路在交流信号源和直流信号电源共同作用时,晶体管管压降△uce 和集电极电流△i c 通过交流等效负载R'L 所表现出的关系△ic= f ( △uce ) 描述了交流信号输入后动态工作点移动的轨迹,这一直线我们将其称之为交流负载线。 由文献[ 8] 知,阻容耦合、变压器耦合及直接耦合方式共射极放大电路的交流通路输出端均为如图1 所示的形式。其输出端交流电压、电流关系为: 对阻容耦合及直接耦合而言,集电极负载是Rc 和RL 的并联值,即R' L = Rc//RL 。对变压器耦合而言,集电极负载是R'L = n2RL ,n 为变压器变比。 将交流量、直流量和总的瞬时量之间的关系△i c=I c+ i c,△uce= Uce+ uce 代入式( 1) 得: 式( 2) 代表了通过Q 点,斜率为- 1/ R'L 的直线,即为放大电路交流负载线方程。该方程在纵轴上的截距为I c + Uce/ R'L ,在横轴上的截距为Uce + I cR'L 。若设V'= Uce + I cR' L ,则其在纵轴和横轴上的截距也可分别表示为V'/ R'L 及V',这与直流负载线在纵轴和横轴上的截距表现形式完全相同。

晶体管两级耦合放大电路设计-

2014级《模拟电子技术》课程设计说明书 晶体管放大电路 院、部:电气与信息工程学院 学生姓名: 学号: 指导教师:张松华职称副教授 专业: 班级: 完成时间:

摘要 放大器是能把输入信号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成,在通讯、广播、雷达、电视、自动控制等装置中都离不开放大器。放大器已经在这个高度发达的社会中,成了我们生活中不可缺少的一部分。 通常放大电路的输入信号是很微弱的,一般为毫伏或微伏数量级,因此应用中经常需要把几个单级放大电路连接起来,使信号逐级得到放大,方可在输出获得必要的电压幅值。由几个单级放大电路连接起来的电路称为多级放大电路,多级放大电路中,每两个单级放大电路之间的连接方式叫耦合,如果耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。 课题设计了一个两级放大电路,为了尽可能保证不失真放大并且兼顾放大电路稳定性的要求,两级放大电路采用阻容耦合方式进行了设计,然后采用Multisim软件对所设计的两级阻容耦合放大电路进行了仿真,仿真结果符合设计要求,然后利用AD软件制出PCD图,再完成实物制作和调试,调试结果表明,所设计的两级阻容耦合放大电路负载增益为61.33,空载增益为72.58,基本达到设计要求。 关键词:晶体管;放大电路;阻容耦合;通频带;增益

目录 1 绪论 (1) 1.1 阻容耦合电路介绍 (1) 1.2 设计要求 (1) 2 设计原理及参数设定 (2) 2.1电源设计 (2) 2.1.1电源变压器设计 (2) 2.1.2整流电路设计 (2) 2.1.3滤波电路设计 (3) 2.1.4 稳压电路设计 (4) 2.2 放大电路设计 (5) 2.2.1 第一级放大电路设计 (5) 2.2.2第二级放大电路设计 (7) 3 电路仿真和分析 (9) 3.1空载调试 (9) 3.2 负载调试 (10) 4 电路制作与调试 (11) 4.1 电路制作 (11) 4.2 调试与分析 (11) 4.2.1 直流稳压电源的调试 (11) 4.2.2放大电路的调试 (11) 结束语 (13) 参考文献 (14) 致谢 (15) 附录A 原理图 (16) 附录B PCB图 (17) 附录C 实物图 (18) 附录D 元器件清单 (19)

两级阻容耦合放大电路

两级阻容耦合放大电路 通常放大电路的输入信号都是很弱的,一般为毫伏或微伏数量级,输入功率常在 1mV 以下。为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大, 方可在输出获得必要的电压幅值或足够的功率。 由几个单级放大电路连接起来的电路称为多 级放大电路。在多级放大电路中, 每两个单级放大电路之间的连接方式叫耦合; 如耦合电路 是采用电阻、电容进行耦合,则叫做“阻容耦合” 。 阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。本实验采用 的是两级阻容耦 合放大电路,如图 3-1所示。 图3-1两级阻容耦合放大电路 在晶体管 V i 的输出特性曲线中直流负载线与横轴的交点 U CEQI =V CC ,与纵轴的交点 (U CE =0时)集电极电流为 I V CC I CQ 1 二 R Ci * R E1 + R E 3 静态工作点 Q i 位于直流负载线的中部附近,由静态时的集电极电流 I CQI 和集-射电压 U CEQ1确定。当流过上下偏流电阻的电流足够大时,晶体管 V i 的基级偏压为 R V CC U B1 R 2 晶体管V 1的静态发射极电流为 vcc 12V R1 RC1 5.1kD C2 * 1UF-P0L V2 RE1 24 OD RE 3 + 75 □□ CE1 ^47uF-POL XUL-M RC2 5.1k0 STXJ 丄 C 1 2N39D-J 2阳gm

U BI - UB U BI - 0.7 静态集电极电流近似等于发射极电流,即 晶体管V 1的静态集电极电压为 两级阻容耦合放大电路的总电压放大倍数为 其中,第一级放大电路的电压放大倍数为 1 R 1 E (1 ) R E 1 r be2 (1 2 ) R E 2 EQ 1 R E 1 R E 3 R E1 R E 3 I CQ 1 EQ 1 BQ 1 I EQ 1 CQ 1 V CC I CQ 1 R C 1 A u 1 A u2 其中,等效交流负载电阻 R L2 o L 晶体管V1的等效负载电阻为 R i2 可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为 R i2 二 R 3 // R 4 //[ r be2 (1 2 )R E2 ] 晶体管V 1和 V 的输入电阻分别为 r be1 300 (1 r be 2 300 (1 2 ) 26 I EQ 1 26 I EQ 2 第二级放大电路的电压放大倍数为 A u?二 R C 1

阻容耦合多级放大电路二

阻容耦合多级放大电路二 稳压管的限流电阻,通过月,提供。正常工作所需的稳定电流,是采用NPN -PNP管混合式直接耦台电路。这种电路利用NPN型品体管和PNP型晶体管电源极吐相反的特点,将前缎较高的集电极电压转移到后级的箭子和负载电阻上去,输出电压有较大的变化范围。 引起零点漂移的主要原因是晶钽电容体管的参数、口和“。。随温度的变化,另外还有电源电压的波动,电路参数变化等。由于上述原因,兀沧是交流放大电路还是直流放人电路,静态工作苣都不是绝对不变,而是移动的。在交流放大电路中有隔直电容,静态工作点变化量不能传递到下一级。在直流放大电路中,因为是直接耦合,静态工作氧的缓慢变化量同需要放大的直流信号棍在一起迸级传递,并被放大,因而直流放大电路即使没有输入信号,输出端的电压也不会稳定在初始值,而是随间和温度的变化不断变化。 因此零点漂移问题足直接耦合放大电路的一个突出问题。由于零点漂穆是逐级传递的,井被逐级放大。囡此放大电路级数愈多,放大倍数愈高,在输出端的零点漂移现象也愈严重。尤其第一级放大电路的漂移『n压对整个放大电路的影响最大。为了衡量零点漂移的程度,通常将输出端的漂移电压折算到输入端,以便同输人电雎信号比较,即硅然当输^信号吒与漂移电压在个数量级时,那么输人信号将被漂移信号所淹没,在放大电路的输出端真假信号混杂在一起,将无法分辨。例如,TAJC226K016RNJ当温度变化1℃时放大电路的“,=10lLV,当环境温度变化z5℃时,漂移量达0 25 mV,如果输人信号在毫伏级以下,那么放大电路将无法正常工作。只有当q>>Ⅱ。时,放大电路才能正常工作。 由此见,克服零点漂移是直流放大电路矍解央的主要问题。除采用稳压电源并对晶体管和电阻进行老化处理和筛选外,最常用的方法是采用差动式放人电路。山于篮动放大电路有良好的抑制零点漂移性能因此枉接批台多级放大电路中得到了广泛应川,成为集成运救的主要组成巾元。基本工作原理圈为基本差动放大电路,从结构上看,电蹄两边完全对称。不但对应的电阻元件参数相等川J且品体管的特陛也相同。电路有两个输入端有两个输出端,输出电压当温度升高时,由于两管特性一致,集电极电流同时增加,表明这种电路对零点漂移有根强的抑制作用。基十梢州的源固,该『n路对于由电源电压波动、元件参数变化等原斟所引起的漂移也同样有良好的抑制作用。 静态、动态分析由'J-差动放大电路巾和‘所组成的单级放大电路是对称的,对电源来|兑并联工作,静态分析时l-I挂单僻AVX放大电路处理。有信号输人时,放大电路的徽变等效电路如图2. 24所示。阿2 24放大电路的微变辱效电路堆本燕动放大电路是靠电路的对称肚来抑制零点漂移的实际},完全对称的理想情况并不存在,因此单靠电路的对称性来抑制

二级阻容耦合放大电路

二级阻容耦合放大电路 一、实验目的 1.进一步掌握直流电压及正弦信号的测试方法; 2.掌握如何合理设置静态工作点; 3.掌握两级放大电路的测量方法。 二、实验仪器 名称型号数量 双踪示波器1台 函数发生器EE1641B 1台 数字电表1台 实验板两级阻容耦合放大器1块 三、工作原理说明 1、电路的组成 NPN型三极管T担负着放大作用,它具有能量转换和电流控制的能力,当微弱的输入信号ui使二极管基极电流i B产生微小变化时,就会使集电极电流i C产生较大的变化。它是放大电路的核心。 V CC是集电极直流电源,为信号的功率放大提供能量。 Rc是集电极负载电阻,集电极电流ic通过Rc,从而将电流的变化转换为集电极电压的变化,然后传送到放大电路的输出端。 基极偏置电阻Rb的作用是,一方面为三极管的发射结提供正向偏置电压;同时给三极管提供一个静态基极电流Ib。 C1、C2是耦合隔直流电容 为了使三极管工作在放大区,还必须使发射结正向偏置,集电结反向偏置,为此,Vcc、Rc和Rb等元件的参数应与电路中三极管的输入、输出特性有适当的配合关系。 由于单级放大电路的电压放大倍数有限,往往不能满足工程实际的需要,因此常由若干个单级放大电路组成多级放大器。组成多级放大器时,要合理选择单级放大电路和级间耦合方式。常用的级间耦合方式及特点见表1。 因阻容耦合式电路简单,性能稳定,故本实验采用此耦合方式,实验原理图见实图1。 四、实验内容

4.测量两级放大器的频率特性,并绘出频率特性曲线。 实图 1 两级阻容耦合放大器 五、实验报告要求 1.认真记录测试数据,正确描绘曲线; 2.根据测试数据和计算结果,分析、总结多级放大器的工作性能; 3.回答思考题。

电子技术实验3-阻容耦合放大器(葛楚雄)

学生实验报告 系别电子信息学院课程名称电子技术实验 班级10通信A班实验名称实验三阻容耦合放大器姓名葛楚雄实验时间2012.3.7 学号2010010101019 指导教师文毅 报告内容 一、试验目的 1. 学习放大电路频率特性的测量方法; 2.观察电路元件参数对放大电路频率特性的影响; 3.进一步熟练掌握和运用放大电路主要性能参数; 4.巩固多级放大电路的有关理论知识。 二、实验仪器 直流稳压源 1台双踪示波器 1台 函数信号发生器 1台万用表 1台 三、实验原理 1.中频段的电压放大倍数 前级放大电路的电压放大倍数为

f be i c o r R R e 11211i 1U1R )1() //(U U A ββ++-== (3-1) Ri2是后记放大电路的输入电阻 222212////R be b b i r R R = 后级放大电路的放大倍数 2212)//(A be L c o o u r R R U U β- ==(3-2) 其中, Lf L L R R R //=' 全电路的电压倍数为 2 111m A U u o i o o i o u A A U U U U U U ===(3-3) 2.低频段和高频段的电压放大倍数 在低频段和高频段,放大电路电压放大倍数是一个复数,他是频率的函数,其模值与相角都随频率而变化。 (1)单机放大电路在低频段和高频段的电压放大倍数 在低频段,三极管的电容效应可以忽略不计;但耦合电容和旁路电容和电抗较大,他 们的交流压降不能忽略。电压放大倍数用下式表示。 f jf A L Um u /1A L -= (3-4) 其中,fl 是放大电路的下限频率。 在高频段,耦合电容和旁路电容的阻抗非常小,他们的交流压降很小,可以忽略,可作短路处理;但三极管的电容效应对电路性能的影响则必须考虑。电压放大倍数可用下式表示: H H /1A f jf A Um u += (3-5) 其中, f H 是放大电路的上限频率。 (2)多级放大电路在低频段和高频段的电压放大倍数 多级放大电路的电压放大倍数等于各级放大电路电压放大倍数的乘积:

电子线路 单级阻容耦合放大器 实验报告

单级阻容耦合放大器 1.实验目的 了解单级共射放大电路的原理,联系设计放大器电路,掌握放大器的放大倍数的测量方法。 2.实验器材 “单级共射放大电路”电路模板,直流稳压电源,信号发生器、模拟示波器,导线若干。 3.实验原理 3.1三极管 半导体三极管也称为晶体三极管,它最主要的功能是电流放大和开关作用。三极管具有三个电极,二极管是由一个PN 结构成的,而三极管由两个PN 结构成,共用的一个电极成为三极管的基极(用字母b 表示)。其他的两个电极成为集电极(用字母c 表示)和发射极(用字母e 表示)。由于不同的组合方式,形成了一种是NPN 型的三极管,另一种是PNP 型的三极管。 三极管的电路符号有两种:有一个箭头的电极是发射极,箭头朝外的是NPN 型三极管,而箭头朝内的是PNP 型。 图表 1PN 结 三极管3个电极的电流I E 、I B 、I C 之间的关系为: C B E I I I += 公式 1 三极管的结构使I C 远大于I B ,令: B C I I = β 公式 2 Β称为三极管的直流电流放大倍数,当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。集电极电流随基

极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。 2.2电路原理 - + 图表 2实验电路图 (1)如图表2所示,本实验中的共发射极放大电路采用电容耦合方式,电路 中电容的作用是隔离放大器的直流电源对信号源与负载的影响,并将输入的交流信号引入放大器,将输出的交流信号输送到负载上。 输入信号为零时,三极管所处的状态称为放大器的静态工作点,由CE C B I I I 、、可以确定电路的静态工作点,并用符号CEQ CQ BQ I I I 、、来表示电路的静态工作点。根据电容阻直流、通交流的特点和节点电位法,可得放大器静态时输出端的电压为: c CQ CC CEQ BQ BQ b CC BQ R I V V I I R V I -==-=β7.0 公式 3 根据叠加原理可得放大器输入端的信号为: i BEQ BE V υυ+= 公式 4 即在静态工作点电压上叠加输入的交流信号。 集电极电阻R C 的作用是用集电极电流的变化,实现对直流电源V CC 能量转化的控制,达到用输入电压V i 的变化来控制输出电压V 0变化的目的,实现小信号输入、大信号输出的电压放大作用。 (2)当放大器接有负载R L 时,R L 和R C 是并联的关系,并联后总电阻为:

含负反馈的两级阻容耦合放大电路设计

含负反馈的两级阻容耦合放大电路设计 一实验目的: 1.学习利用Electronics Workbench Multisim电子线路仿真软件构建自己的虚拟实验室。 2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。 3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。 4.加深对负反馈放大电路放大特性的理解。 5.研究负反馈对放大电路各项性能指标的影响。 二主要仪器设备: 1. 虚拟实验设备 ?操作系统为Windows XP的计算机 1台 ?Electronics Workbench Multisim 8.x~9.x电子线路仿真软件 1套. 2. 实际工程实验设备 ?模拟实验箱 1台 ?函数信号发生器 1台 ?示波器 1台 ?数字万用表 1台 三实验原理及实验电路 通常放大电路的放大倍数都是很微弱的,一般为毫伏或微伏数量级.为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大.因此构成多极放大电路.级间的连接方式叫耦合,如耦合电路是采用电阻,电容耦合的叫阻容耦合放大电路.本试验采用的就是两极阻容耦合放大电路,如图1-1所示.其中两极之间是通过耦合电容C2及偏置电阻连接,由于电容隔直作用,所以两极放大电路的静态工作点可以单独调试测定. 两极阻容耦合放大电路的电压放大倍数 Au= Au1*Au2 从表面看,通过对多个单级放大电路的适当级联,可以实现任意倍数的放大。似乎放大电路已经没有什么可以研究的了。但是,问题并不是这么简单。首先静态工作点与放大倍数是互相影响的,其次,放大倍数与输出电阻也可能互相影响,第三,输入电阻与放大倍数也可能互相影响.在电路中引入负反馈,可以解决这个问题。如电路图所示. 负反馈对放大电路性能主要有五个方面的影响: 1.降低放大倍数 2.提高放大倍数的稳定性 3.改善波形失真

相关文档
最新文档