材料科学前沿作业.纳米材料在能源中的应用

材料科学前沿作业.纳米材料在能源中的应用
材料科学前沿作业.纳米材料在能源中的应用

重庆理工大学纳米材料在能源中的应用

学院: 材料科学与工程学院

专业: 材料科学与工程

姓名: 谢远奉

学号: 11009030428

2013年10月

纳米材料在能源中的应用

【摘要】纳米技术是当今世界最有前途的决定性技术,文章简要的概述了纳米技术在能源利用方面的应用范围,并展望了纳米技术在这方面的应用前景与发展方向。

【关键词】纳米技术,纳米材料,能源利用,发展前景

【引言】能源和环境是目前人类面临的两大全球问题,人类既要开发能源技术、扩大能源获取途径,同时还要避免引起环境污染。近年来纳米科技越来越热,研究成果也越来越重要。除了可预期的前景,我们的确看到了纳米技术在提高能源利用效率、开拓源泉、改善环境方面具有很多实实在在的应用。

1. 新能源的开发

1.1 对人类而言,绝大部分能源都可以归结为太阳的赐予,本世纪可大量开发的最清洁能源当数太阳能。从太阳能的吸收来看,目前的太阳能电池的光电转化效率并不高,纳米技术的进步将会在提高太阳能吸收效率上起到很大作用,而且将改善不同波长范围内光线的吸收效率,从而使总的吸收效率达到最高,进而促进太阳能光热、光电方面的利用。而与太阳能同性质的电磁波目前广泛分布于地球表面。【1】开发太阳能的设备通过适当改造也是可以用于电磁波能源的利用。这一切都要归功于纳米材料良好的吸收辐射的特性。

1.2 能源问题是一个迫在眉睫的国际性问题。随着石油价格的快速攀升以及传统化石能源表现出的日益严重的高污染高能耗问题,世界各国对新型绿色能源的研究开发也越来越重视。纳米能源材料的研究是其中很重要的一环。炭基纳米材料由于其独特的化学与物理性质在能源材料研究中备受关注。其中如何有效调控材料的结构和性能是重要课题之一。我们利用原料与产物结构的关联性,采用前驱体控制的热反应,利用具有特定化学结构的富碳分子为前驱体通过在不同温度下的化学反应来可控性制备具有特定结构与功能的炭基纳米材料。利用这种方法不仅可以通过改变前驱体的化学结构来调控最终材料的结构,而且可以通过化学途径在材料中引人各种特殊的功能。【2】采用这种方法我们成功制备了多种新型的炭基纳米材料,并考察了这些材料在能源领域,尤其是用于二次锂离子电池、燃料电池、太阳能电池等领域的性能,得到了很好

的实验结果。

1.3 近年来,人类目前所面临的这些能源危机和环境污染问题的日益突出,社会的发展要求开发出高效,无污染的清洁能源,支撑人类生存和发展的能源正从以石油,煤等为主的污染消费型能源转向清洁再生型能源。光电化学技术以其室温深度反应和可直接利用太阳能作为光源来驱动反应等独特性能,而成为一种理想的环境污染治理技术和洁净能源生产技术。其中,半导体纳米材料尤其是Ti02纳米材料由于具有独特的光电化学性能、优异的热稳定性、生物惰性、无毒无害及制作简便等,使得它无论是在太阳能光电转换方面,还是在废物的降解处理方面都有很好的实际应用前景。【3】

2.能源的储存

2.1 氢气作为未来最方便使用的“绿色”能源,其储存目前存在许多问题,如投入高昂、使用危险等。最新研究表明碳纳米材料可以提供一种有效而清洁的储氢方式。在早期的研究中人们发现:某些固体材料可以存储少量的氢(约占其自重的1%~2%),其中有些金属氢化物储氢可达其自重的5%一7%,但需高温环境,使用不便。在研究碳纳米管时研究员发现:由于纳米材料的超活性表面能很好地吸附氢原子,它在常温下也能很好地储氢。【1】经美国能源部计算,碳纳米材料只要能存储其自重6%的氢就可使氢一氧燃料电池动力车具有使用价值(假定两个加氢站间距为500km)。这样可避免使用化石燃料为能源的交通工具向大气中排放有害气体。

2.2 燃料电池是把燃料所具有的化学能连续而直接地转变成电能的装置,是一项高效利用能源而不污染环境的技术。随着世界石化燃料储藏量的不断减少,地球生态环境的日益恶化,燃料电池越来越被重视。实际上燃料电池的历史可追溯到1839年,威廉·格罗夫用氢、氧作实验,证实用燃料电池发电是可能的。但由于发电机的发明,以后人们对燃料电池的研究甚少。直到20世纪60年代,美国用燃料电池为阿波罗等宇宙飞船提供电源。嗣后.燃料电池研制盛行。现在燃料电池已成为最有可能替代内燃机的动力装置。燃料电池驱动汽车的商业化已指日可待。燃料电池用于汽车的最大难点在氢气的贮存。目前采用金属氢化物贮存氢气。虽然比气瓶贮氢安全,且同体积,同重量贮存量大,但仍觉得不够理想。不过这个问题就要被解决了。科学家巳研制出单壁纳米碳管这种贮氢材料。根据理论推算其贮氢能力在10%以上。目前研制出的纳米碳管

贮氢能力达到4%,是金属氢化物贮氢能力的2倍。纳米碳管研制成功使燃料电池驱动汽车的研究向前跨了一大步。随着这一技术的不断完善。其贮氢能力将逐步接近理论值的10%。将来把汽车上的汽油箱改成纳米碳管贮氢箱,则25l的容积贮存的氢可使汽车行驶12O0km。美国克莱斯勒公司于1999年3月展出了试制的燃料电池汽车,并表示要在瑚4年进人商业化生产。从目前燃料电池汽车研究技术的发展情况看,特别是贮氢材料纳米碳瞥的研制成功,20O4年实现商业化生产是完全有可能的。因此在21世纪镍、铜、钴、钙、钨、钕、钐、铂等的消耗量将会有较大幅度地增长。有关部门应尽早做好准备。同时也会向冶金行业提出一些新要求。如研制出高活性纳米金属粉代替价格昂贵的铂催化剂.研制出高活性多孔电极等。【4】燃料电池的应用给有色冶金行业也带了发展机遇。燃料电池发电站还可为炼钢、电解铝等冶金过程提供大电流直流电。冶金行业的自备电厂应考虑采用燃料电池发电。

2.3 普通纸张未来或许可以用做轻型电池。科研人员将由银和碳纳米材料制成的特殊墨水,涂在纸张上,成功制成“纸电池”,为轻型、高效的新型能源存储带来希望之光。利用成熟的纸张技术,将可传导的纸用作集电器和电极,创造出了一种低成本、轻质且高效的能源储备途径。有朝一日,纸电池可能用于手提电脑、手机或太阳能板。这种电池可用来给电动车或混合动力车等提供动力,有助减轻电子产品的重量,延长产品寿命,甚至以后还前,电池重量与寿命一直阻碍电动汽车与货车实现商业化发展。而用于纸电池的纳米材料是很特别的,是直径极小的一维结构,有助将纳米材料制成的墨水紧紧粘在纸张上,令电池和超级电容器非常耐用,纸电容器寿命可长达4万个充电和放电周期。这种纸电池与传统电池相比,在储存能源和充电周期寿命方面的表现一样良好。实验显示,将碳纳米管纸张放人传统充电池,可减少20%重量。【5】

2.4现代牡会和经济的发展及人类对环境的高度关注,迫切需要大功率、高比能的储电能源材料。制备和开发高效储电能源材料不仅具有重要科学意义,而且其有重大应用前景.【6】纳米技术为有效提高电极材料的性能提供了重要的方法。主要以多种超电容材料和锂电池电极材料.开展纳米制备,性能表征与应用研究。锂离子电池正极材料选取LiMn204为对象.充分利用其无污染、安全性好、电压高等特点。【7】以成本低和锰源丰富的Mn02为前驱体.利用高能球磨方法的机械分散和活化作用,进行低温水热合成,以期获得粒度大小在纳米

尺度、分布均匀的LiMn204。利用炭气凝胶可控的孔网络结构和钒氧化合物的高比能量,进行材料复合来改善大电流充放电和循环性能。提高尖晶石犁锂锰氧化物比能量,比电容和高倍充放电能力,以期改善电极材料的高倍率放电性能、循环性能和比能量.

3.能源的节省

3.1纳米技术在纳米尺度由小到大制造物品,这样所需资源少,在制造过程中能源消耗也少,对环境污染小,成本也低。由于纳米技术使产品微型化,可使产品在使用过程节省大量能源。可以预见,纳米技术制造“低能耗,高性能”的机械将会取代现有的“傻大黑粗”的能源消耗严重且效率低下的传统机械,从而把能耗和污染降到最低限度。【1】

3.2日本电气(NEc)和JST.IRI共同开发了用于移动终端的小型燃料电池,采用了纳米技术。燃料电池的能量来自氢和氧的化学反应,并可直接转化为电能。与同样体积的锂离子电池相比,燃料电池产生的电能约大10倍。公司相信,到2005年他们将生产出可供笔记本电脑连续使用数天或可供移动电话连续使用一个月的电池。目前多数移动装置在使用锂电池.NEc 则研制一种小型、大容量燃料电池,这种电池将供下一代移动装置使用。NEC 为燃料电池采用的电极是由纳米技术制造的原料制成的,这是碳纳米管的一种,被称为纳米触角。配备纳米触角电极的燃料电池产生的电能比由活性碳电极组成的燃料电池产生的电能大约多出20%。碳纳米触角拥有更加精细的结构.这使它将电极上的铂微粒分散均匀。这些用作触媒的微粒可使氢的分解更为充分。为了开发移动终端用的小型燃料电池,必须解决一系列技术问题,这包括改善电极性能、提高固态聚合物膜片性能和选择适当的燃料。NEC已解决了第一个难题。NEC开发的燃料电池采用甲醇作燃料,当电池耗尽时则需充入甲醇。【8】

参考文献:

【1】汪东,纳米技术及其应用,青岛海洋大学化学化工学院,2003。

【2】智林杰,结构可控的炭基纳米材料及其在能源领域的应用,国家纳米科学中心,100190。

【3】陈达,TiO<,2>纳米材料及其复合体系在光电化学领域中的应用研究,中国科学技术大学,2008。

【4】徐德新,诸亦新,燃料电池的开发现状与应用前景,2003。

【5】可蔫,新型“纸电池”,开心趣味百科,2010年2期。

【6】Shin J Y.Oh J H.IEEE Transa on Magne,1993。

【7】李学良,储电能源纳米材料的制备及性能研究,合肥工业大学,2007。

【8】杨英惠,纳米技术在移动能源方面的进展,现代材料动态,2002。

材料科学前沿论文

智能材料的结构及应用 学院:班级: 姓名:学号: 摘要:材料的智能化代表了材料科学发展的最新方向,智能材料是一种能通过系统协调材料内部各种功能并对时间、地点和环境作出反应和发挥功能作用的材料。且能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。本文旨在简要介绍智能材料的结构的基础之上,介绍一些它在当今社会不同领域的应用。 关键词:智能材料、结构、应用 材料的发展从之前的单一型、复合型和杂化型,发展为异种材料间的不分界的整体式融合型材料。而近几年所兴起的智能材料更是不同于以往的传统材料,它的仿生系统具有传感、处理和响应功能,而且与机敏材料相比更接近于生命系统。它能够根据外界环境条件的变化程度实现非线性响应从而达到最佳适应的效果。对于智能材料我结合自己听课的内容、书籍及网上资料的查阅写下对智能材料的认识。 智能材料不同于传统的结构材料和功能材料,它模糊了两者之间的界限并加上了信息科学的内容,实现了结构功能化功能智能化。一般来说智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。即: (1)基体材料:基体材料担负着承载的作用,一般宜选用轻质材料。一般基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征。其次也可选用金属材料,以轻质有色合金为主。 (2)敏感材料:敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、PH值等)。常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。 (3)驱动材料:因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。常用有效驱动材料如形状记忆材料、压电材料、电流变体和磁致伸缩材料等。可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用,这也是智能材料设计时可采用的一种思路。 (4)其它功能材料:包括导电材料、磁性材料、光纤和半导体材料等。

材料科学与工程前沿中期论文

稀土材料 姓名:牛刚学号:S2******* 稀土被称为工业“味精”,在材料的结构与功能改性方面具有非常重要的意义。稀土元素的4f轨道电子数目是稀土元素之间最明显的差异,正是4f轨道电子数目的差异引发了稀土材料之间的性能差异。纳米材料由于具有表面效应、小尺寸效应和宏观量子隧道效应等具有与其他材料完全不同的许多优良性能。 我国稀土产品主要应用于冶金机械、石油化工和玻璃陶瓷等传统领域,但功能材料在高新技术产业中的应用近年来备受关注,稀土在磁性材料、储氢材料、发光材料、催化材料等领域的应用增长迅速,其应用份额从1990年的13%增长到了2002年的30%。稀土功能材料在高新技术中的应用从70年代开始进入了高速发展阶段,应用和产业化开发的速度愈来愈快,一般以5年左右的周期出现一个震动世界的新成果,并迅速形成了高新技术产业。 1稀土磁性材料 1.1稀土永磁材料稀土永磁材料经历了3个阶段的发展,20世纪60年代发明了RECo5型第一代稀土永磁材料;70年代出现了RE2Co17型第二代稀土永磁材料,其磁能积有了较大提高,特别是温度稳定性好,但由于主要原料是Sm和Co,成本高,一般用于军工等特殊领域;第三代稀土永磁REFeB发明于80年代,是当今磁能积最高的永磁材料。近年来全世界NdFeB产量年均增长率达到25%,2003年我国NdFeB磁体的产量达到15000t左右,位居世界第一。但我国稀土永磁制备技术和磁体性能方面与国外比较还有不少差距,多数厂家的产品因磁体性能较低、一致性难以满足高档用户的要求,因此价格仅为国际市场的1/3~1/2,经济效益不尽人意。随着烧结NdFeB磁体应用领域的不断扩大,对其性能提出了越来越高的要求。因此,近几年来,国内外掀起了一股研发高性能烧结NdFeB磁体的热潮。西方国家大部分采用快冷厚带工艺制备高性能烧结NdFeB磁体。用该工艺生产的磁体磁能积高,性能稳定。国内许多单位都在加速开发此新工艺,北京有色金属研究总院稀土材料国家工程研究中心在国家科技部十五科技攻关项目的支持下,已经开发出了具有自主知识产权的快冷厚带制备工艺,并与设备厂家合作设计制造了一台300kg甩带炉,试运行效果良好,产品已基本达到国外用户要求,近年内将实现规模化生产。近年来,稀土永磁材料的研发主要集中在以下几个方面:(1)制备工艺和设备的改进; (2)通过掺杂Co,Al和稀土Tb等提高矫顽力和改善温度稳定性;(3)通过纳米双相耦合技术提高永磁材料的性能;(4)稀土永磁薄膜材料和新型稀土永磁材料的开发。 据全国稀土永磁材料协作网预测,“十五”期间我国烧结NdFeB磁体总产量将达到50,000t,销售总额达到150亿元。到2010年中国烧结NdFeB磁体产量将达到7万吨,占全球75%,销售额将达到260亿元。在未来10年内,我国将成为世界稀土永磁材料的制造中心。 1.2磁致伸缩材料磁致伸缩材料是在偏磁场和交变磁场同时作用下,发生同频率的机械形变的一种材料。与压电陶瓷(PZT)和传统的磁致伸缩材料Ni,Co相比,稀土超磁致

精选-机械工程前沿论文

机械工程前沿研究与优化设计 摘要: 本论文指出了现代机械工程科学前沿的显著特征:一方面,它与信息技术、材料科学、生命科学和管理科学相交叉;另一方面,它在创造性地解决机械工程关键科学问题的过程中得到发展。机械优化设计为机械设计提供了一种重要的科学设计方法,使得在解决复杂设计问题时,能从众多的设计方案中寻到尽可能完美的或最适宜的设计方案,这是现代科学技术发展的必然结果。简述了遗传算法和蚁群算法的基本概要,并列举了其目前的应用现状。关键词: 机械工程学科前沿优化设计遗传算法蚁群算法 机械工程是一门与机械和动力生产有关的工程学科,它以有关的自然科学和技术科学为理论基础,结合生产实践中的技术经验,研究和解决在开发、设计、制造、安装、运用和修理各种机械中的全部理论和实际问题。 机械工程学科包含以下几个方面机械制造及其自动化机械电子工程机械设计及理论 车辆工程和仿生技术。机械工程的服务领域广阔而多面,凡是使用机械、工具,以至能源和材料生产的部门,无不需要机械工程的服务。概括说来,现代机械工程有五大服务领域:研制和提供能量转换机械;研制和提供用以生产各种产品的机械;研制和提供从事各种服务的机械;研制和提供家庭和个人生活中应用的机械;研制和提供各种机械武器。 1 机械工程的发展趋势 机械的发展经历了从制造简单工具到制造由多个零件、部件组成的现代机械的漫长过程。机械工程以增加生产、提高劳动生产率、提高生产的经济性为目标来研制和发展新的机械产品。随着世界的进步、国家的需求和学科的发展,机械工程科学的发展出现了以下显著特点和趋势:一方面,高技术领域如光电子、微纳系统、航空航天、生物医学、重大工程等的发展,要求机械与制造科学向这些领域提供更多更好的新理论、新方法和新技术,因而出现和发展着微纳制造、仿生及生物制造、微电子制造等制造科学新领域;另一方面,随着机械与制造科学与信息科学、生命科学、材料科学、管理科学、纳米科学技术的交叉,除了推动着机构学、摩擦学、动力学、结构强度学、传动学和设计学的发展外,还产生和发展着仿生机械学、纳米摩擦学、制造信息学、制造管理学等新的交叉科学。在未来的时代,新产品的研制将以降低资源消耗,发展洁净的再生能源,治理、减轻以至消除环境污染作为超经济的目标任务。

《自然》《科学》一周(7.9-7.15)材料科学前沿要闻

1. 用于高产率环境稳定单分子层器件的金属纳米粒子接触 材料名称:金属纳米粒子 研究团队:瑞士 IBM 苏黎世实验室 Gabriel Puebla-Hellmann 研究组 原标题:Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices 想要实现用于电子应用、光发射或感测的分子的固有功能,需要与这些分子的可靠电接触。自组装的由单层(SAM)组成的夹层结构是有利于技术应用的,但是需要非破坏性的顶部接触制造方法。已有的各种方法,包含从直接金属蒸发到聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)或石墨烯夹层到金属转移印刷。然而,在不损害薄膜完整性、内在功能或大规模制造兼容性的情况下,尚不可能制造基于 SAM 的器件。Puebla-Hellmann 等人开发了一种基于 SAM 的器件的顶部接触方法,通过利用金属纳米粒子可以为各个分子提供可靠的电接触这一事实,同时解决了所有问题。该制造步骤首先包括将一层金属纳米颗粒直接共形和非破坏性地沉积在 SAM 上(其本身横向约束在介电基质中的圆形孔内,直径范围为 60 纳米至 70 微米),然后通过直接金属蒸发对顶部接触进行加固。该方法能够制造数千个相同的、环境稳定的金属-分子-金属器件。SAM 组成的系统变化表明,固有的分子特性不受纳米颗粒层和后来的顶部金属化的影响。Puebla-Hellmann 等人提出的这一概念通常针对配有两个锚定基团的密集分子层,并为分子化合物大规模整合到固态器件提供了一条途径(可以缩小到单分子水平)。(Nature DOI: 10.1038/s41586-018-0275-z)

科学技术发展史论文

成都理大学 科学技术史论文题目:世界科技发展史回顾与未来科技发展展望 彭静 201206020228 核自学院 指导老师:周世祥

世界科技发展史回顾与未来科技发展展望 科学技术发展史是人类认识自然、改造自然的历史,也是人类文明史的重要组成部分。今天,当人类豪迈地飞往宇宙空间,当机器人问世,当高清晰度数字化彩电进入日常家庭生活,当克隆羊多利诞生惊动整个世界之时,大家是否会感受到,人类经历了一个多么漫长而伟大的科学技术发展历程。 一.古代科技发展概况 大约在公元前4000年以前,人类由石器时代跨入青铜器时代,并逐渐产生了语言和文字。在于自然界的长期斗争中,人类不断推动着生产工具和生产技术的进步,与此同时,人类对自然界的认识也不断丰富,科学技术的萌芽不断成长起来。 世界文明发端于中国,埃及,印度和巴比伦四大文明古国。中国古代科学技术十分辉煌,但主要在技术领域。中国的四大发明对世界文明产生巨大影响。古代中国科技文明的主要支桂有天文学、数学、医药学、农学四大学科和陶瓷、丝织、建筑三大技术,及世界闻名的造纸、印刷术、火药、指南针四大发明。四大发明:造纸、印刷术、火药、指南针。 生活在尼罗河和两河流域的古埃及和巴比伦人在天文学,数学等方面创造了杰出的成就,埃及金字塔名垂史册,印度数学为世界数学发展史大侠光辉的一页。 古希腊是科学精神的发源地,古希腊人创造了辉煌夺目的科学奇迹,在人类历史上第一次形成了独具特色的理性自然观,为近代科学的诞生奠定了基础。在人类历史上第一次形成了独具特色的的理性自然观,为近代科学的诞生奠定了基础。毕达哥拉斯,希波克拉底,以及百科全书式的学者亚里士多德都是那一时期的解除代表人物。公元前3世纪,进入希腊化时期的古希腊获得更大的发展,出现了欧几里得,阿基米德和托勒密三位杰出的科学家,使得古代科学攀上三座高峰。 公元最初的500多年中,欧洲的科学技术持续衰落,5世纪后进入黑暗的年代,并且延续了1000多年,科学一度成为宗教的婢女。但是科学精神在14世纪发出自己的呐喊,近代实验科学的始祖逻辑尔-培根像一颗新星,点亮了欧洲的天空。 在整个古代,技术发展的水平不高,科学也没有达到系统的程度,不同地域的人民之间还未建立起长期稳定的经济、文化联系, 但许多古代的科学技术成果, 如阳历和阴历, 节气、月、星期和其它时间单位的划分, 恒星天区的划分和名称,数学的基础知识和十进制记数法、印度——阿拉伯数字、轮车技术、杠杆技术、造纸术、印刷术等等,都已深深镶入了整个人类文明大厦的基础。 古代自然科学的发展还停留在描述现象,总结经验的阶段,个学科的分野并不明确,因而具有实用性,经验性和双重性,但它给近代科学的发展准备了充分的条件。 2.近现代科学技术的发展

《自然》《科学》一周(10.8-10.14)材料科学前沿要闻

1. 由熵驱动的手性单壁碳纳米管的稳定性 材料名称:单壁碳纳米管(SWCNT) 研究团队:法国艾克斯马赛大学 Christophe Bichara 研究组 原标题:Entropy-driven stability of chiral single-walled carbon nanotubes 单壁碳纳米管是空心圆柱的,其可以在边界处催化剂的作用下,通过碳结合而生长达到厘米级长度。其表现出半导体或金属特性,取决于生长过程中形成的手性指数。Magnin 等人为了支持选择性合成,开发了一个热力学模型,该模型将管-催化剂的界面能量、温度与碳纳米管手性联系了起来。并表明了纳米管可以生长手性,因为它们的纳米尺寸边缘的结构熵,从而解释了实验观察到的手性分布的温度演变。通过界面能量考虑催化剂的化学性质,Magnin 等人构建了结构图谱和相图,用于指导催化剂和实验参数的理性选择,以实现更好的选择性。 (Science DOI: https://https://www.360docs.net/doc/0b299950.html,/10.1126/science.aat6228)

2. 亚微米级结构的钙钛矿发光二极管 材料名称:钙钛矿发光二极管 研究团队:西北工业大学黄维和南京工业大学王建浦研究组 原标题:Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures 发光二极管(LED)能够将电转换为光,广泛用于现代社会中如照明、平板显示器、医疗设备和许多其他情况。通常,LED 的效率受到非辐射复合(电荷载流子由此重新组合而不释放光子)和光陷的限制。在诸如有机 LED 的平面 LED 中,从发射器产生的光的大约 70%至 80%被捕获在装置中,为提高效率留下了很大的机会。研究人员们用了许多方法,包括使用衍射光栅、低折射率网格和屈曲图案,来提取被陷在 LED 中的光。然而,这些方法通常涉及复杂的制造工艺并且可能使发光光谱和出光方向发生改变。Cao 等人展示了高效和高亮度电致发光的溶液加工的钙钛矿,其自发形成亚微米级结构,可以有效地从器件中提取光并保持与波长和视角无关的电致发光。这种钙钛矿仅需要在钙钛矿前体溶液中引入氨基酸添加剂便可形成。此外,添加剂可有效钝化钙钛矿表面缺陷并减少非辐射复合。钙钛矿 LED 具有峰值 20.7%的外量子效率(电流密度为 18 mA·cm-2),能量转换效率为 12%(在 100 mA·cm-2的高电流密度下),该值与性能最佳的有机 LED 相接近。 (Nature DOI: https://https://www.360docs.net/doc/0b299950.html,/10.1038/s41586-018-0576-2)

道路材料工程学科前沿综述

道路材料工程学科前沿综述 摘要:近年来,道路材料工程学科各个领域取得了一系列突破性进展,为公路建设提供了大量的理论方法。本文针对当前道路材料工程发展现状,综述了其重要进展,并对我国该学科的发展趋势进行了展望。 关键词:道路材料工程;前沿;综述 0 引言 道路材料工程是一门与材料和道路有关的学科,它以材料科学和道路工程理论为基础,采用材料分析、测试等手段来研究材料,旨在研究和解决工程建养中遇到的相关技术问题。 道路材料工程学研究内容包括水泥路面材料开发、改性及施工工艺研究,沥青路面材料开发、改性及施工工艺研究,土质加固及半刚性路面基层材料研究。 回顾历史,道路工程每一项技术的出现,首先在材料方面有所突破。如路基土的改良与稳定技术,沥青、水泥材料的改性研究等都与材料科学有关。由此可见,道路材料学科的不断发展尤为重要[1]。 1 道路材料工程学科各方向的发展 1.1 路面结构与材料的发展 公路建设的蓬勃发展对路面的使用性能提出了更高的要求,而路面材料的适用性、组成设计等对路面的使用性能起着决定性的作用。 1.1.1 沥青路面与材料 (1)沥青路面材料 沥青路面成为主导路面结构形式的原因在于其表面平整、行车舒适、减振性良好,但若材料组成、施工工艺不当,面层也会出现车辙、低温开裂等不良现象。 近年来,为提高沥青路面的使用性能,从沥青材料性能的改善着手,相继出现了乳化沥青、改性沥青。从材料必须满足环境的角度出发,一些学者开始研发全温度域改性沥青及混合料流变特性与路用性能评价方法,进一步提出改性沥青质量控制技术。从环保角度出发,很多人员对废橡胶粉改性沥青、废塑料改性沥青、硅藻土改性沥青等开始进行深入研究。 (2)环保型道路材料

材料化学论文

材料化学论文题高温超导材料研 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧( YBCO和铋锶钙铜氧(BSCCO)钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林?昂尼斯意外地发现,将汞冷却到-268.98 ° C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林?昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A15型超导体和三元系超导体,如Nb s Sn V s Ga Nb s Ge,其中Nb s Ge超导体的临界转变温度(TJ值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuG g 导体,已高于液氮温度(77K) ,高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCu0,再后来又有人将Ca掺人其中,得到Bis尤aCuOg导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了「系高温超导体,将超导临界温度提高到当时公认的最高记录125&瑞士苏黎世的希林等 发现在HgBaCaCi超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K) 以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO) 和二硼化镁(MgB2)。氧化物高温超导材料是以铜氧化物为组分的具有钙钛矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂

2017研究前沿_化学与材料科学

2017 研究前沿 中国科学院科技战略咨询研究院 中国科学院文献情报中心 科睿唯安 七、化学与材料科学 1. 热点前沿及重点热点前沿解读 1.1 化学与材料科学 Top 10 热点前沿发展态势 化学与材料科学领域Top10热点前沿主要分布在太阳能电池、有机合成、纳米技术、超级电容器、自由基聚合、上转换发光等领域。与2013-2016 年相比,2017年 Top10热点前沿既有延续又有发展。在太阳能电池领域,关于钙钛矿太阳能电池和聚合物太阳能电池的研究连年入选热点前沿或新兴前沿。在今年的Top10热点前沿中,聚合物太阳能电池延续了去年对非富勒烯受体(小分子和聚合物)的关注,钙钛矿太阳能电池则侧重空穴传输材料研究。在有机合成领域,碳氢键的活化反应也是连年入选,往年侧重在钌、铑等贵金属的催化转化,今年是非贵金属钴的催化转化,另外今年还突出了间位碳氢键的活化。在纳米技术领域,不仅继续有具体的前沿研究入选,而且首次出现宏观的研究概念――纳米组装学。在超级电容器领域,基于纳米孔碳电极(2014年)、纳米二氧化锰电极材料(2016年)的超级电容器曾经入选热点前沿或新兴前沿,今年入选的是基于NiCo2S4电极材料的超级电容器。在自由基聚合领域,继2014年入选新兴前沿后,光引发的聚合反应今年成为热点前沿。在上转换发光领域,“三重态-三重态湮灭上转换”入选热点前沿。

1.2 重点热点前沿——三价钴催化的碳氢键活化反应 传统的合成化学基于活性官能团的相互转化,通常需要繁琐的预官能团化步骤。而碳氢键的直接化学转化可以避免这一过程,大大提高反应的原子经济性和步骤经济性,因而受到广泛关注并取得蓬勃发展。近十年来,过渡金属催化的碳氢键直接官能团化反应已成为重要的合成工具,特别是贵金属(铑、钌、铱、铂、金、银等)催化成果显著。然而,高昂的成本以及对环境可能造成的不利影响限制了贵金属催化的大规模应用。因此,越来越多的研究人员将目光转向储量丰富、成本低廉的第一行过渡金属(锰、铁、钴、镍、铜等)。这点在《研究前沿》系列报告中也得以体现:在2013年和2014年的报告中,“钌、铑催化的碳氢键活化反应”进入化学领域Top10热点前沿,本年度则是“钴催化的碳氢键活化反应”入选。钴催化的碳氢键活化反应可分为低价钴(CoⅡ)催化和高价钴(CoⅢ)催化两类。本研究前沿是高价钴催化的碳氢键活化反应。2013年,日本东京大学金井求(Motomu Kanai)教授和川岛茂裕(Shigehiro Kawashima)博士报道了Cp*CoⅢ(Cp*= 五甲基环戊二烯)络合物催化的2-苯基吡啶碳氢键活化直接加成到亚胺、烯酮上的反应。此后,研究人员不断扩大Cp*Co Ⅲ催化剂的应用围并研究其催化机理。与其替代对象Cp*RhⅢ相比,Cp*CoⅢ不仅可用于前者催化的反应,而且由于反应活性差异,导致可能采取不同的反应路线从而生成不同的产物。 如表31所示,在本研究前沿中,德国、日本、美国、国以及中国等国家或地区发表了多篇核心论文。日本东京大学、德国哥廷根大学、明斯特大学、美国耶鲁大学、国基础科学研究院等研究机构在该领域做出了突出贡献。大学、大学、中科院化物所等研究机构的工作也比较突出。

材料科学前沿思考题1

1.航空器发展对材料的要求有哪些? 答:耐高温、高比强、抗疲劳、耐腐蚀、长寿命和低成本。 2.什么是自然资源,属性是什么?自然资源分为哪几类? 答:(1)人类可以直接从自然界获得并用于生产和生活的物质。(2)属性包括:自然+经济。(3)可分为三类:无穷——空气、风、太阳能;可再生——生物体、水、土壤;非再生,矿物、化石燃料。 3.环境的定义是什么?环境污染的实质是什么?对人类而言环境的作用有哪些? 答:(1)环境是人类周围一切物质、能量和信息的总和。 (2)人类索取超过资源再生+排放废弃物数量超过环境自净能力。 (3)首先,生存的基本条件——物质基础;其次,环境对废物消纳及转化,保证延续;第三,提供精神享受。 4.什么是资源保护?如何提高资源效率减轻环境污染? (1)广义——在维护生态系统及其综合体中,对资源采取的平衡行动;狭义——对资源综合利用,提高资源效率。(2)1》通过技术革新,提高生产效率,减少废物排放;2》保护资源,加强资源综合利用,特别是废弃物的回收。 5.什么是金属间化合物,金属间化合物的特点是什么? 答:指两种金属或金属与类金属组成的具有整数化学计量比的化合物。 特点:密度低、屈服强度随温度升高而提高、比刚度高、熔点高、高温强度好、抗氧化性能优良等。 6.金属间化合物分为哪几类,各自的特点是什么? 答:分类及特点:①正常价化合物:符合化合物原子价规律。键特点: 电子转移和共用电子对。a.金属倾向与345副族元素形成化合物,b.金属正电性越强, B族负电性越强,越易形成,越稳定。 ②电子化合物:a.不符合原子价规则,成分不定b.结构由e浓度决定,超点阵结构。c.金属键。 ③间隙化合物:AR大过渡族金属元素和AR小的C、N、B等元素组成;高熔点;高硬度。 ④复杂化合物:更复杂结构的间隙化合物——渗碳体及碳化物。 7.二元Ti3Al合金的缺点有哪些,其发展思路是什么? 答:缺点:室温断裂韧性、冲击韧性低、O相合金的抗氧化问题、高Nb合金抗氧化性差。发展思路:在Ti-Al-Nb 的基础上,加β相稳定元素,增加塑性第二相,改善室温塑性和加工性能。 8.金属间化合物结构材料脆性原因?其韧化方法有哪些? 答:脆性原因:①结构特性:电负性、结构复杂性②滑移特征:独立滑移系③晶界特征:杂质偏聚④环境影响:氢脆⑤应力状态:缺口敏感性。韧化方法:①偏离化学计量比;②合金化:微合金化法、宏合金化;③改变晶粒形态:细化晶粒、择优取向;④微结构控制:组织优化;制备多相合金、改进制备工艺。 9.Ti3Al(α2)基合金中加入β相稳定元素的目的是什么?不同β相稳定元素含量分别对应什么相组成? 答:通过添加β相稳定元素(如Nb和Mo),增加塑性的第二相,使Ti3Al基合金的室温塑性和加工性能得到改善。 ①第一代β稳定元素含量在10%~14%,显微组织为α2(DO19)+β;②β稳定元素含量在14%~17%之间,该合金具有更高的拉伸强度和蠕变抗力,显微组织取决于热处理,主要为α2、β和O相(第一代O相合金)O相(基于Ti2AlNb,正交结构,可看作α2的畸变结构;③β稳定元素含量在23%以上,如GE公司研制的Ti-24.5Al-23.5Nb和Ti-22Al-27Nb 合金,显微组织为O+β,这类以O相为基的合金比α2合金和超α2合金有更高的高温屈服强度、蠕变抗力和断裂韧性,已经成为近期研究的重点(第二代O相合金)。 10.什么是高温合金?高温合金的服役条件是什么?高温合金的强化方法有哪些?以Ni基高温合金的强化为例讲述高温合金强化原理。 答:高温合金又称热强合金、耐热合金或超合金(Superalloys),是指以Fe、Ni、Co为基,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。服役条件(航空发动机热端部件):①600~1100℃②氧化和燃气腐蚀环境③复杂应力(蠕变,高、低周疲劳,热疲劳等)④长期可靠工作。强化方法:组织:γ/ γ’共格组织,基体:γ,强化相:γ’①固溶强化:γ ②第二相强化:γ’ ③晶界强化:微量元素晶界偏聚④工艺强化:定向或单晶。 借助Mo来提高/ 晶格错配度,增加晶格界面应力场,阻止位错运动,减小合金最小蠕变速率。在蠕变过程中形成稠密的界面位错网络,这些位错网络在稳定的蠕变阶段可以有效阻止相中的滑移位错进入相。提高了Mo 元素的含量,增大了合金高温蠕变过程中TCP相析出的倾向,增加Ru元素降低这一倾向,提高合金稳定性。11.组织工程学的三大要素是什么?对细胞载体材料-支架材料的具体要求是什么? 答:三大要素:①细胞载体材料-支架材料;②细胞的分离和培养;③细胞生长因子。对支架材料的具体要求有:1.多孔且需要高的孔隙率;2.内部均匀分布和相互联通的孔结构;3. 支架材料易于加工成不同的厚度和形状;4. 良好的相容性和一定的机械强度;5. 可以通过生物降解最终消失。

土木工程学科前沿论文

土木工程发展前景 07工程管理张清0704060365 南京理工大学泰州科技学院土木 摘要:目前我们的土木工程变为好多的系统专业,系统专业的改进和渐渐的单一精确是我们适应与世界发展的必要,可是依据现在的世界人口是我们是人才和技术的竞争,转而想一下,要是再过几个世纪人口逐渐的减少,我们的专业是不是还是很手欢迎呢!也许有人会说:“那个时候我们是要限量的口子制人口的。”或是我们可以把我们的知识放在电脑里存放啊!美曰:时代的前进和我们的命运是否由自己来安排。我们的土木工程专业有几人可以认的是什么?有几人可以说出是什么? 关键词:发展历史前景新技术 Abstract: at present, our system of civil engineering specialty, to a lot of improvement and professional gradually to the single accurate is our world and the necessary, but according to the development of the world's population is now our talents and technology is the competition, to think about, if again after centuries of population, we are still very popular professional hand! Maybe someone will say: "that we want to measure to control population." cut Or we can put our knowledge on the computer! Beauty: advanced and our destiny is by himself to arrange. Our civil engineering specialty several people can recognize what? Some people can say what it is? Keywords: new technology development history prospects 土木工程发展历史 要了解土木工程的前景,我们先来看看土木工程的发展历史,他已经有悠远的历史了,总的来说分为三个阶段。 人们在早期只能依靠泥土、木料及其它天然材料从事营造活动,后来出现了砖和瓦这种人工建筑材料,使人类第一次冲破了天然建筑材料的束缚。中国在公元前十一世纪的西周初期制造出瓦。最早的砖出现在公元前五世纪至公元前三世纪战国时的墓室中。砖和瓦具有比土更优越的力学性能,可以就地取材,而又易于加工制作。 砖和瓦的出现使人们开始广泛地、大量地修建房屋和城防工程等。由此土木工程技术得到了飞速的发展。直至18~ 19世纪,在长达两千多年时间里,砖和

材料学科前沿讲座总结

材料学科前沿讲座总结 生物医用高分子 一.引言 生物医用功能材料即医用仿生材料,又称为生物医用材料。这类材料是用于与生命系统接触并发生相互作用,能够对细胞、组织和器官进行诊断治疗、替换修复或诱导再生的天然或人工合成的特殊功能材料。随着化学工业的发展和医学科学的进步,生物医用功能材料的应用越来越广泛。从高分子医疗器械到具有人体功能的人工器官,从整形材料到现代医疗仪器设备,几乎涉及到医学的各个领域,都有使用医用高分子材料的例子。医用高分子材料所用的材料种类已由最初的几种,发展到现在的几十种,其制品种类已有上千种。 目前,生物医用功能材料应用很广泛,几乎涉及到医学的各个领域。其大致可分为机体外使用与机体内使用两大类。机体外用的材料主要是制备医疗用品,如输液袋、输液管、注射器等。由于这些高分子材料成本低、使用方便,现已大量使用。机体内用材料又可分为外科用和内科用两类。外科方面有人工器官、医用黏合剂、整形材料等。内科用的主要是高分子药物。所谓高分子药物,就是具有药效的低分子与高分子载体相结合的药物,它具有长效、稳定的特点。 二.发展历史 生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚酯心血管材料,从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,有目的地开发所需要的高分子材料。

目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。 三.基本性能要求 1. 力学性能稳定 在使用期限内,针对不同的用途,材料的尺寸稳定性、耐磨性、耐疲劳度、强度、模量等应适当。比如,用超高分子量聚乙烯材料做人工关节时,应该用模量高、耐疲劳强度好、耐磨性好的材料。 2. 化学性能稳定 作为生物材料,化学性能必须稳定,对人体的血液、体液等无影响,不形成血栓等不良影响。人体是一个相当复杂的环境,血液在正常环境下呈现微碱性,胃液呈酸性,且体液与血液中含有大量的钾、钠、镁离子,含有多种生物酶、蛋白质、人体的环境易引起聚合物的降解、交联及氧化反应;生物酶会引起聚合物的解聚;体液会引起高分子材料中的添加剂析出;血液中的脂类、类固醇以及脂肪等会引起聚合物的溶胀,使得材料的强度降低。例如聚氨酯中含有的酰胺基极易水解,在体内会降解而失去强度,经过嵌段改性后,化学稳定性提高。 3. 与人体的组织相容性好 医用材料必须与人体的组织相容性好,不会引起炎症或其他排异反应材料,所引起的宿主反应应该能够控制在一定可以接受的范围之内。一些含有对人体有毒有害的基团是不能用作生物医用功能材料的,如有些添加剂对人体有害或有些残留单体对人体有不良影响等,这都应该引起极度的警惕。有些添加剂会随时间的变化,从材料内部逐渐迁移到表面与体液和组织发生作用,引起各种急性和慢性的反应。

纳米材料论文

纳米材料的特性与应用 摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力。 关键词:纳米材料特性应用 1. 纳米发展简史 1959年,着名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。 1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.什么是纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。 一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 3. 纳米材料的特性 广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3.1表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。 3.2小尺寸效应

《自然》《科学》一周(9.10-9.16)材料科学前沿要闻

1. 效率达 17.3%的溶液加工的有机串联太阳能电池 材料名称:有机光伏电池 研究团队:中国南开大学陈永胜研究组 原标题:Organic and solution-processed tandem solar cells with 17.3% efficiency 虽然有机光伏电池(OPV)具有许多优点,但它们的性能仍然远远落后于其他光伏平台。其中一个最根本的原因是有机材料的电荷迁移率低,导致有源层厚度和光吸收效率受到限制。在 Meng 等人的研究中,在半经验模型分析的指导下,使用串联电池策略来克服这些问题,并利用有机材料的高度多样性和易于调谐的带结构,创造了 17.29%的功率转换效率。实现了双端整体溶液加工的串联OPV。(Science DOI: 10.1126/science.aat2612)

2. 3D 打印分层液晶聚合物结构 材料名称:液晶聚合物 研究团队:瑞士联邦理工学院André r. Studart研究组 原标题:Three-dimensional printing of hierarchical liquid-crystal-polymer structures 当诸如飞机、车辆和生物医学植入物等需要坚硬的轻质材料时,通常会使用纤维增强聚合物结构。虽然它们具有非常高的刚度和强度,但是这种轻质材料需要能量和劳动密集的制造工艺,且通常易出现脆性断裂并且难以成形和再循环。这与轻质生物材料(例如骨、丝和木材)形成了鲜明对比,这些生物材料能够通过定向自组装形成具有突出机械性能的复杂的、分层结构的形状,并且能够循环融入到环境中。Gantenbein 等人展示了一种三维(3D)打印方法,来生成具有分层结构、复杂几何形状和前所未有的刚度和韧性的可回收轻质结构。它们的特性源于在熔融原料材料的挤出过程中液晶聚合物分子自组装成高度有向域。Gantenbein 等人通过使印刷路径与分子域定向,能够根据预期的机械应力增强聚合物结构,从而使刚度、强度和韧性超过最先进的 3D 打印聚合物一个数量级,能够与最高性能的轻质复合材料相媲美。将 3D 打印的自上而下的成形自由度与聚合物取向中自下而上的分子控制相结合的这一能力,开辟了在没有当前典型制造工艺限制的情况下自由设计和实现结构的可能性。(Nature DOI: 10.1038/s41586-018-0474-7)

材料科学结课论文

材料科学结课论文 题目:多种材料在核反应冷却中的应用 学生姓名:孙天麒 学号: 114263050118 专业班级:14 自动化

2015年6月13日星期六 核反应堆冷却材料(nuclear reactor coolant material)其在人工控制核反应进行时起着至关重要的任务。核反应堆冷却材料也就是流经堆活性区带走核裂变热量的核反应堆材料,在工程上我们也称其为核反应堆冷却剂或核反应堆载热剂,其主要作用也可对比火电中的高温高压水。主要作用是及时将高温导出,一是为了保护设备免遭高温损坏,二则是将热能导出后加以利用(这部分热能也是核电和火电发电时的主要收益能量)。 冷却材料在核反应中充当的是一种换热介质,并且需要时刻循环流动而对冷却材料的要求与反应堆类型密切相关,但所有的冷却材料应满足下列基本要求:热容大、热导率高、粘度小、熔点低、沸点高。而常用的反应堆冷却材料有气体、液体、熔融金属3种形态下面我们来分别了解下这三种材料 气体材料:主要包括空气、氦气、二氧化碳气等。但是由于空气的换热性能差,高温时氧、氮活性较大,因此一般情况下只用于低功率密度的研究用反应堆内;氦气具有高的热导率和化学惰性,是一种比较理想的气态冷却材料,但其价格较贵,限制了它的应用;二氧化碳应用较广,主要原因是它的安全性好、成本低、与其他材料相容性好,例如在最近比较热门的石墨反应堆中就存在着比较好的应用。 液态冷却材料:对于液态冷却材料这里我们主要讨论轻水和重水,众所周知水的比热容较大且价格相对廉价因而其成为反应堆的液态冷却材料也不足为奇。那么由轻水所构成的反应堆我们称之为轻水堆,轻水堆虽然做为一种技术含量相对较低的反应堆但是其使用范围与使用周期却是最长的,并且它也处在不断的创

前沿材料科学结课论文

对前沿材料世界的认识及思考

摘要:上一个世纪,人类的认识向外延伸到了外层宇宙,向内深入到了物质结构的更微观层次,引发了物理学一场大革命。这场革命推动了包括化学、生命科学在内的整个自然科学和应用技术的伟大变革,为材料科学和技术进步提供了新的知识基础和活力。材料科学的根本任务是揭示材料组分、结构与性质的内在关系,设计、合成并制备出具有优良使用性能的材料。进入21世纪,回顾一下材料学的主要进展,估计未来的可能发展趋势,是非常必要和很有意义的。 关键词:材料科学现状发展趋势传统材料新材料挑战 一、传统材料的发展现状和地位 传统材料是生产工艺已经成熟而又大规模工业化生产的一类材料,如钢铁、铜、铝、橡胶、塑料、玻璃和水泥等金属、高分子和非金属无机化合物,这类材料量大面广,占材料生产总量的90%以上。在世界范围内,上个世纪末20~30年间传统材料的产量、生产技术水平和质量,超过以前数百年,成为人类经济生活的支柱。但能耗大,资源浪费严重,环境污染等问题已成为制约传统材料发展的瓶颈,因此改进传统材料的合成、加工技术,控制微观组织结构,提高使用性能,降低成本和环境污染的任务十分迫切、繁重。 二、新材料及其发展趋势 新材料又称先进材料。它不以生产规模,而以优异性能、高质量、高稳定性取胜的高知识、高技术密集形为特点。新材料有结构材料和功能材料之分,前者主要利用它的力学性能,而后者以其各种物理、化学效应为主。当前新材料的发展方向有高性能化、高功能化、高智能化和复合化、极限化、仿生化、环境友好化几方面。 1.金属材料:金属材料,特别是钢、铜、铝等,仍是21世纪的主要结构材料和电能传输材料。金属材料已有成熟的生产工艺,相当多的配套设施和工业规模生产,价格低廉、性能可靠,已成为涉及面广、市场需求大的基础材料。金属材料虽然今后会部分被高分子材料、陶瓷材料及复合材料所代替,由于它有比高分子材料高得多的弹性模量,比陶瓷高得多的韧性和良好的导电性能,在相当长的时期内改变不了它在材料中的主导地位,即使在高技术产业中也不例外。随着航天航空和其它尖端技术的飞跃的发展,在改善和提升传统材料品质的同时,金属功能材料、非平衡态金属,特别是高比强、高模量、耐高温、抗氧化,抗腐蚀、耐磨损合金和金属基复合材料会有快速的发展,如金属超导材料、钛及其合金、铝基增强复合材料,金属间化合物、形状记忆合金和纳米晶块体材料等。 2.先进陶瓷材料:陶瓷是人类最早使用的人造材料,质地坚硬、耐磨损、抗腐蚀、膨胀系数低,可经受1400—1600℃的高温,比金属间化合物有更高的比强度和比刚度,是很好的高温结构材料;部分陶瓷还具有压电、铁电,半导体、湿敏和气敏等特殊功能,广泛用于电子、计算机、激光、核反应、宇航等现代尖端科学技术领域。近20年来,通过多种增韧手段和原始粉末超细化、纳米化技术,在消除陶瓷本征脆性的研究方面取得了重大突破;传统的落后制备成型工艺已逐渐被先进的注射成型技术、高温热等静压和微波烧结等技术所替代;在反应动力学、表面特征、相平衡、烧结机理等基础研究方面也取得了相当的进展。主要趋势是根据使用性能要求对陶瓷结构作一定程度的剪裁和设计,实现陶瓷结构纳米化和组分的复相结构,包括纤维或晶须增韧和有机、无机复合等。 3.高分子材料:高分子材料是指分子量从几百到几万,由可加聚或缩聚链条状官能团构成的有机化合物。上世纪90年代,世界的高分子材料年产量超过1亿吨,其中塑料8000一9000万吨,合成橡胶700—800万吨,合成纤维1000万吨;仅塑料的产量以体积计算就相当于5.6亿吨钢的体积,是发展最为迅速的材料之一。这些材料品种繁多,并且正以每年10%的速率递增。高分子材料80%以上作为包装、建筑、交通运输和纺织行业的结构材料和原料。功能高分子材料所占比例相对较低,主要有离子交换树脂、催化剂、固化酶,用于印刷、电子工业、集成电路、微细加工的感光树脂,用于薄膜电磁、静电复印及全息记录的电功能

相关文档
最新文档