量子计算:你不知道的九大问题

量子计算:你不知道的九大问题
量子计算:你不知道的九大问题

量子计算你不知道的地方

量子计算机并不是用来浏览互联网、收发邮件,也不是用来运行常规软件。相反,量子计算机的基础为量子力学。量子力学为物理学的一个分支,该学科创立时间已有100年左右,并对人们的传统看法发起挑战。量子物理学研究对象为很小的事物,如电子和光子等,并试图解决人们此前没能解决的问题。如果你声称量子计算机简直就是以魔法方式运行,这种说法也没有多少夸张之处。在我们面对这些很小的物体时(试想一下,比单个原子还小),科幻小说中描写的时间旅行、瞬间移动(teleportation)等奇特现象也只能说是司空见惯。传统意义上的物理学“规则”在这儿不适用。

这无疑就可开启一些令人心动的可能性,尤其在数学分支优化学科领域就更是如此。顾名思义,优化就是要从一大堆潜在答案中找出最佳者。对于这门特定数学学科领域而言,它致力于解决现实世界中一些可实际感受到的问题。UPS快递卡车如何选择其最佳投递路线?机场该如何合理安排航班才能保持各航班不会延误?

在处理一些优化计算任务上,传统计算机可谓设备简陋。美国南加州大学克希德·马丁量子计算中心科学主任丹尼尔·里达尔(Daniel Lidar)表示,人类验证蛋白质折叠状态会花上大量时间,自然界却能够在数秒或数分钟内完成这种任务,而传统计算机要解决这些问题,则要花上数十亿年的时间去思考。

从某种程度上讲,量子计算也具有了像自然界那样同世界互动的能力。这可能是一种今人感到难以理解的深奥想法。即便如此,这也仅仅是量子计算机的冰山一角。

1、量子计算机依靠量子力学来运行,而量子力学非常“疯狂”。与我们肉眼所看到物体的运动规则相比,量子粒子的运动规则却大为不同。举例来说,量子粒子能够同时存在于两个地方,能够快速前进或后退,甚至能够进行所谓的瞬间移动,也就是物理学家们所说的“量子隧道效应”(qu antum tunneling)。174.139.208.164

这通常是我们在科幻小说中所看到的东西。但在量子世界中,这些现象可谓寻常之极。而科学家们也无法对此给出令人满意的答案。

2、没有人能够真正了解量子计算机的内部会发生什么。

一个被外界所熟知的量子力学理念(也适用于科学的普通法则),就是对某种活动的简单观察,将会改变事情的结果。我们受限于我们所使用工具的准确性,而这一点对于科学家们敏锐的眼光而言尤为适用。一个量子粒子被观察或以其他方式被测量后,则该量子粒子的属性将永远改变。

3、忘掉0和1的数字位——量子计算机使用“量子

位”(qubit),而这种事情足以让人充满“狂野”思想。

就你的个人计算机核心而言,无疑是通过数位来处理——分别代表0和1的数字位,仅此而已。而量子计算机则使用量子位来实现其运行。与数字位一样,量子位能够代表0或1,但其真正神奇之处,还在于它们的第三种状态,即“叠加”状态——它们能够同时代表0或1。

这种神奇的能力也就意味着,同一列量子位能够同时代表大量不同事物。举例来说,如果你组建了两个量子位,则他们能够同时保持四个可能的数值:[0, 0]、[0, 1]、[1, 0]或[1, 1] 174.139.208.165。

4、量子计算机能够解决传统计算机根本无法或难以解决的问题。在解决优化问题时,量子计算机就能够大放光彩。由于一些优化问题过于复杂,如果交由传统计算机来处理,可能会上大量时间,如数十亿年之久。

一个经典例子就是“旅行推销员问题”。想像一下,你眼前的地图上有一大堆城市,并显示出各城市之间的距离。你是一名销售员,正试图找出可走遍每个城市的最短路线。要让传统计算机来解决这个问题,唯一的办法就是记录下每一条可能路线的距离,对它们进行比较后找到最短线路。然而这并不是很“潇洒”的解决方式。

我们还记得,量子位可同时代表一个以上的事物。这也就意味着一台量子计算机能够同一时间尝试无数个可能的路线,并能够在数秒钟内向你返回最短路线的答案,而不用花上地质学纪年意义上的时间。

5、一些人认为量子计算机正在平行宇宙中运行计算。

没有人能够确认让一个量子位同时代表一个以上事物的机制。它是奇异量子的天性,并颠覆了人们此前对于事情的理解。只是我们不理解,并不意味着事情没有发生。科学家们对于这种可能性有各种各样的见解。我们最能够接受的是多宇宙理论,即理论物理学声称存在着多重(很可能是数量无限)平行宇宙。

在这种模式中,正解决旅行推销员问题的量子计算机,其实很可能在平行宇宙中运行计算,并追踪在其他宇宙中的潜在线路,目的是大幅减少解决此问题所需计算时间。

6、你的个人电脑能够像超级昂贵的量子计算机那样做很多事情。

考虑到量子计算机能够找到解决问题的最优化方案,它也依赖你每天所

使用电脑中的一些基础数学工具。这通常是指已经过优化的基础算术。增加一堆数字并不比将它们加起来高明多少,将数字相乘并不比将他们简单做乘法高明多少。在此类例子中,你的个人电脑效率将与量子计算机一样具有高效率。

7、随着量子计算机易用性加强以及售价降低,它将给数据加密带来变革。

除解决一些优化问题外,量子计算机将使我们当前有关加密和数据安全的理念得以彻底颠覆。今后任何两个人之间的通话联系,所使用加密技术实际上将无法破解。

8、量子计算机必须在保持极端低温下才能正常运行。

开氏(Kelvin)温标,或者所说的“绝对零度”,也是可测量的最冷温度。根据动力学理论,当温度在绝对零度时,单个原子的动能为零,原子停止运动后,它们也就停止产生热能。美国D-Wave公司所生产量子计算机,其内部温度保持在0.02°K,相当于华氏温标-460°F。

9、量子计算机运算速度之快远超乎你的想像。

美国阿姆赫斯特大学教授凯瑟琳·麦克杰奥奇(Catherine McGeoch)对量子计算机和传统计算机运行速度进行了对比。让这两种设备分别处理同一任务后,麦克杰奥奇得出结论称,量子计算机的运行速度为传统计算机的“数千倍”。

量子计算:你不知道的九大问题

量子计算你不知道的地方 量子计算机并不是用来浏览互联网、收发邮件,也不是用来运行常规软件。相反,量子计算机的基础为量子力学。量子力学为物理学的一个分支,该学科创立时间已有100年左右,并对人们的传统看法发起挑战。量子物理学研究对象为很小的事物,如电子和光子等,并试图解决人们此前没能解决的问题。如果你声称量子计算机简直就是以魔法方式运行,这种说法也没有多少夸张之处。在我们面对这些很小的物体时(试想一下,比单个原子还小),科幻小说中描写的时间旅行、瞬间移动(teleportation)等奇特现象也只能说是司空见惯。传统意义上的物理学“规则”在这儿不适用。 这无疑就可开启一些令人心动的可能性,尤其在数学分支优化学科领域就更是如此。顾名思义,优化就是要从一大堆潜在答案中找出最佳者。对于这门特定数学学科领域而言,它致力于解决现实世界中一些可实际感受到的问题。UPS快递卡车如何选择其最佳投递路线?机场该如何合理安排航班才能保持各航班不会延误? 在处理一些优化计算任务上,传统计算机可谓设备简陋。美国南加州大学克希德·马丁量子计算中心科学主任丹尼尔·里达尔(Daniel Lidar)表示,人类验证蛋白质折叠状态会花上大量时间,自然界却能够在数秒或数分钟内完成这种任务,而传统计算机要解决这些问题,则要花上数十亿年的时间去思考。

从某种程度上讲,量子计算也具有了像自然界那样同世界互动的能力。这可能是一种今人感到难以理解的深奥想法。即便如此,这也仅仅是量子计算机的冰山一角。 1、量子计算机依靠量子力学来运行,而量子力学非常“疯狂”。与我们肉眼所看到物体的运动规则相比,量子粒子的运动规则却大为不同。举例来说,量子粒子能够同时存在于两个地方,能够快速前进或后退,甚至能够进行所谓的瞬间移动,也就是物理学家们所说的“量子隧道效应”(qu antum tunneling)。174.139.208.164 这通常是我们在科幻小说中所看到的东西。但在量子世界中,这些现象可谓寻常之极。而科学家们也无法对此给出令人满意的答案。

量子信息与量子计算课程论文

半导体量子点的电子自旋相干和自旋操控 摘要:现在各国科学家都在努力希望实现量子计算机,而量子计算机需要一些重要的量子性质,其一是“量子相干性”。该文介绍了量子相干性,并简略介绍了半导体量子点中的电子的自旋相干性,简要探讨半导体量子点的电子自旋操控的方法 关键词:量子点自旋相干自旋调控 一﹑量子相干性 量子相干性,或者说“态之间的关联性”。其一是爱因斯坦和其合作者在1935年根据假想实验作出的一个预言。这个假想实验时这样的:高能加速器中,由能量生成的一个电子和一个正电子朝着相反的方向飞行,在没有人观测时,两者都处于向右和向左自旋的叠加态而进行观测时,如果观测到电子处于向右自旋的状态,那么正电子就一定处于向左自旋的状态。这是因为,正电子和电子本是通过能量无中生有而来,必须遵守守恒定律。这也就是说,“电子向右自旋”和“正电子向左自旋”的状态是相关联的,称作“量子相干性”。这种相干性只有用量子理论才能说明。 要在量子计算机中实现高效率的并行运算,就要用到量子相干性。彼此有关的量子比特串列,会作为一个整体动作。因此,只要对一个量子比特进行处理,影响就会立即传送到串列中多余的量子比特。这一特点,正是量子计算机能够进行高速运算的关键。 二﹑半导体量子点中的电子的自旋相干性

半导体中的电子电荷相干态已经由超快脉冲激光光谱进行了广 泛的研究。强的激光脉冲在半导体中产生了大量的电子和空穴,它们的动力学过程大致可分成3 个阶段: (1) 无碰撞或相干阶段。在这个阶段内,电子和空穴与光场之间产生了一个相干的耦合振荡,导致 了材料极化强度的振荡,类似于二能级系统的拉比跳跃。 (2) 位相弛豫阶段。在这个阶段内,电子和空穴都失去了它们的位相相干性,类 似于二能级系统的退相弛豫。 (3) 准热平衡阶段。由于电子- 声子相互作用,电子和空穴将能量传递给声子(晶格) ,它们分别弛豫到导 带和价带的顶部,形成准平衡状态。利用不同延迟时间的泵- 探束瞬态吸收光谱可以测量半导体中的退相弛豫时间。图1 是GaAs 三个激发载流子浓度下瞬态差分透射系数ΔT作为延迟时间的函数。 由图1 可见,有两个衰减过程;一个是快过程,另一个是慢过程。前者对应于位相弛豫,后者对应于准热平衡弛豫。实验测得GaAs中 的位相弛豫时间分别为30 ,19 ,13fs ,对应于由小到大三个载流子 浓度。这个位相弛豫时间是较小的,主要是由电子的谷间散射引起的。

量子计算机的发展现状与趋势_王建锋

高教论坛 量子计算机的发展现状与趋势 王建锋 (郑州大学体育学院体育教育系,河南郑州450000) 量子信息科学引入后,重新对计算、信息编码与处理进行了诠释。作为一门高效处理信息的学科,量子信息体现了科技的进步。该 学科融入了多个学科,包括信息科学、 物理学,以及材料学。因此,与传统的计算相比,也具有更强大的生命力。可以看出,自从应用量子 信息科学后,使计算机的更加安全,并且提高了通信的质量。 尽管量子计算机尚在初步发展阶段,但是该学科具有很大的发展潜力。因此,对量子计算机的发展现状与趋势进行探讨非常有必要。 1量子计算机的发展现状1.1研究概况(1)拓扑量子计算。 拓扑量子计算方案由一位数学物理学家提出。根据拓扑量子不受扰动的特点,完成量子计算机的构造。在此基础上,进行容错量子的计算。当前,该计算已经引起了国内外的重视。世界上很多大学已经开始了理论与实验方面的研究。在进行拓扑量子计算时,每个子都有几下几个特点。第一,有很多准例子,分为不同的类型,其作用是进行信息的初始化。第二,当每个子进行交换时,只要满足辫群规 则,就能实现拓扑量子门。 然后,完成信息的处理。第三,在拓扑量子计算中,不用考虑环境影响的因素。所以,保证了处理的准确性。当前,美国已经根据相关研究,成功建立了基本的量子位。 (2)单向量子计算。 单向量子是一种新的途径。该计算采用了量子的纠缠态、经典通信,以及局域操作,来传递非局域作用,继而实现等价的非局域哈密顿量功能。所以,成功建立了一种高度纠缠的状态。该状态被称为图态。利用相邻的量子比特进行LOCC过程,可以完成出发端量子比特的逻辑门操作。根据以上原理,有助于完成电路的设计。可以看出,如何高效的转换量子比特数目图态是其模型计算的难点。 (3)绝热量子计算。 绝热量子计算的核心思想是:依靠绝热演化的性能,来等效实现量子玄正的变换。当表现为绝对零度时,系统则处于初始状态。此时,如果不存在能级交叉的现象,那么在理论上来将,系统就会保持基态。但是,在系统演化前后,基态就存在玄正变换的关系。在这种情况下,则可以根据绝热的过程,来实现量子计算。以上方案既有优点,也有缺陷。其优点在于保证系统处于基态。其缺陷为能隙缩小,延长了绝热演化的时间。针对以上问题,采用量子仿真技术就可以解决。该技术的应用,促进了科技的快速发展。 1.2实验进展(1)量子点体系。 量子点体系是在微加工方法的基础上,利用半导体二维电子气,然后成功研制出单电子晶体管。该体系符合量子力学规律,代表了未来量子计算机发展的方向。近年来,国际上多个单位通过研究,在这方面取得了很大进展。研究表明,当半导体量子点具备一定条件后,就可以作为量子芯片。尽管如此,量子芯片在应用的过程中,还存在很大的问题,比如受到周边环境影响较大。鉴于此,在未来的研究中,必须加大力度。 (2)超导量子电路。 该量子计算的核心是Josephson。根据不同的表征量子比特,将其分为三个类型,分贝是电荷、相位,以及磁通。研究表明,该量子电路的特点包括以下两个方面。一方面,利用量子电路结构,能够完成 电路的设计、制定。同时,也可以完成对磁通信号的调整、控制。另一 方面,根据当前的微电子制造工艺,提高了该量子电路的拓展性。 (3)离子阱体系。离子阱体系诞生后,首先实现了量子计算。当前,经过不断的研究,该体系已经在实验方面,取得了很大的进展,其水平非常高。近年来,主要的研究方向为:提高量子操控的单元技术、体系的拓展 等。 调查显示,美国已经启动了相关的计划,预计能够取得更大的研究成果。 2量子计算机的发展趋势近年来,美国实施了研究量子芯片的计划。该计划是时候,不仅推动了量子计算机的研究,而且加大了竞争。随着半导体芯片的快速发展,其晶体管的尺寸也不断减少。目前,与单位流感病毒的大小差不多。其次,晶体管的数目也逐渐减少,量子效应不断增强。在传统模式下,能够达到控制电子的物理极限。当单位晶体管只能容纳一个电子时,也必然满足量子学的规律。可以看出,芯片在发展的过程中,很大程度上依赖于新一代的量子力学计算芯片。随着半导体 微电子技术被突破后,就出现了量子芯片。 美国竞争力计划推行后,代表了量子芯片的实际应用。由于量子芯片与国家安全、产业安全息息相关,美国相关负责人已经将芯片科技提到重要战略位置。受美国的影响,日本、欧共体等也启动了相关的计划,引发了新的计算机技术竞争。目前,在新的发展形势下,给我国电子个工业也带来了机遇和挑战。因此,我们必须抓住机遇,稳步推行量子调控计划。只有这样,才能在未来不受制于人,实现信息技术的革新。调查显示,近年来,通过不懈的努力,我国已经加快了量子信息技术的发展,并取得了很大成绩。表现为:在多光子纠缠、量子密码技术方面,取得了很大的进展和突破。但是,与西方国家相比,我国的研究基础还很薄弱,缺乏原创性的成果,总体水平还不高。特别是在量子计算机学科主流方向上,与西方国家存在很大的差距。鉴于此,我国需要迫切开展更富有挑战性的量子计算机计划,同时不断壮大科研队伍,保证技术方面的支撑。只有加强基础建设,才能实现新一轮的突破,在国际竞争中抢占制高点。 随着社会、经济的快速发展,量子计算机以强大的计算能力,得到了广泛的应用。可以看出,在未来的发展中,量子计算机必然在世界领域内,占有一席之地。尽管如此,该体系在运作的过程中,依然存在很多问题。因此,世界各国需要加大研究的力度,不断创新技术,完善体系,以此来获得更大的研究成果。 参考文献 [1]邹奕成,毛杰.量子计算机的发展[J].科教导刊:电子版,2016(24):131-131.[2]刘超,梁丽,徐亮.计算机的发展趋势分析[J].产业与科技论坛,2013,12(2):91-92.[3]潘斌辉,孔外平.量子计算机的发展现状与趋势[J].中国科学院院刊,2010,25(5):4-8.[4]马宏源,李伟.量子计算机的研究与发展[J].北京电力高等专科学校学报:社会科学版,2010,27. 作者简介:王建锋(1974-),男,汉族,籍贯:河南省登封市大金店镇金东村,学士学位,讲师,研究方向:计算机。 摘要:与传统的计算工具相比,量子计算机更加先进。应用该工具后,在处理数据上发挥了更强大的功能,解决了以往比较困难的 数学问题。基于此, 引起了世界各国的重视。本文结合实际的工作经验,对量子计算机的发展现状进行了分析。然后,提出了在未来的时代中,量子计算机的发展趋势。 关键词:量子计算机;发展;现状;趋势;分析57··

《关于量子通信》非连续文本阅读练习及答案

阅读下面的文字,完成7~9题。 材料一: 日前,中国科学院在京召开新闻发布会对外宣布,“墨子号”量子科学实验卫星提前并圆满实现全部既定科学目标,为我国在未来继续引领世界量子通信研究奠定了坚实的基础。 通信安全是国家信息安全和人类经济社会生活的基本需求。千百年来,人们对于通信安全的追求从未停止。然而,基于计算复杂性的传统加密技术,在原理上存着着被破译的可能性,随着数学和计算能力的不断提升,经典密码被破译的可能性与日俱增。中国科学技术大学潘建伟教授说:“通过量子通信可以解决这个问题,把量子物理与信息技术相结合,用一种革命性的方式对信息进行编码、存储、传输和操纵,从而在确保信息安全、提高运算速度、提升测量精度等方面突破经典信息技术的瓶颈。” 量子通信主要研究内容包括量子密钥分发和量子隐形传态。量于密钥分发通过量子 态的传输,使遥远两地的用户可以共享无条件安全的密钥,利用该密钥对信息进行一次 一密的严格加密。这是目前人类唯一已知的不可窃听、不可破译的无条件安全的通信方式,量子通信的另一重要内客量子隐形传态,是利用量子纠缠特性,将物质的未知量子 态精确传递到遥远地点,而不用传递物质本身,通过隐形传输实现信息传递。(摘 编自吴月辉《“墨子号”,抢占量子科技创新制高点),《人民日报》2017年8月10日) 材料二: 潘建伟的导师安东·蔡林格说,潘建伟的团队在量子互联网的发展方面冲到了领先地位。量子互联网是由卫星和地面设备构成的能够在全球范围分享量子信息的网络。这将使不可破解的全球加密通信成为可能,同时也使我们可以开展一些新的控制远距离量子联系的实验。目前,潘建伟的团队计划发射第二颗卫星,他们还在中国的天宫二号空间站上进行着一项太空量子实验。潘建伟说,未来五年“还会取得很多精彩的成果,一个新的时代已经到来”。 潘建伟是一个有着无穷热情的乐观主义者。他低调地表达了自己的信心,称中国政府将会支持下一个宏伟计划——一项投资20亿美元的量子通信、量子计量和量子计算的五年计划,与此形成对照的是欧洲2016年宣布的旗舰项目,投资额为12亿美元。 (摘编自伊丽莎白·吉布尼《一位把量子通信带到太空又带回地球的物理学家》,《自然》2017年12月) 材料三: 日本《读卖新闻》5月2日报道:中国实验设施瞄准一流(记者:莳田一彦,船越翔)在中国南部广东省东莞市郊外的丘陵地带,中国刚刚建成了大型实施设施“中国散裂中子

量子计算和量子信息(量子计算部分,Nielsen等着)6

6.1 当x=0时有(2|0><0|-I )|x>=|0> 当x>0时有(2|0><0|-I )|x>=-|x> 所以2|0><0|-I I 即为相移算子 6.2 |φ><φ|=1/N Σ i =0 N?1Σ j =0 N?1|i><φ|-I )Σ k =0N?1 a k |k>=2/N Σi =0 N?1Σ j =0 N?1|i>-Σk =0 N?1a k |k> 而|i>,|j>,|k>都经过标准归一化,所以当|j>=|k>时,有|j>!=|k> 时,有|j>-Σ k =0 N?1a k |k>=Σ k =0 N?1[-a k +]|k> 其中=Σ k =0 N?1a k N 6.3 (此处为验证Grover 迭代能写成以下矩阵形式) |φ>=cos(θ/2)|α>+sin(θ/2)|β>写成向量形式为[cos(θ/2) sin(θ/2)]T 所以G|φ>= cos θ?sin θsin θ cos θ cos(θ/2)sin(θ/2) = cos(3θ/2) sin(3θ/2) =cos(3θ/2)|α>+sin(3θ/2)|β> 所以Grover 迭代能写成G= cos θ ?sin θsin θ cos θ 6.4 按照书上只有一解的过程,对于多解只能测量出所有解的和 6.5 6.6 (⊙为张量积符号 X 为PauliX 门, Z 为PauliZ 门) 框中的门可以表示为 (X ⊙X)(I ⊙H )(|0><0|⊙I+|1><1|⊙X )(I ⊙H)(X ⊙X) =X|0><0|X ⊙XHHX+X|1><1|X ⊙XHXHX(HXH=Z) =|1><1|⊙I +|0><0|⊙(-Z) =(I -|0><0|)⊙I +|0><0|⊙(I-2|0><0|)

量子计算和量子逻辑门

1 引言 量子信息是量子物理与信息科学相融合的新兴交叉学科,它诞生于上个世纪80年代,在90年代中期引起国际学术界的巨大兴趣,受到西方各国的高度重视,得到迅速发展,迄今方兴未艾! 量子计算是量子信息的一个重要分支,近年来得到了人们广泛的关注。量子计算机是实现量子计算(quantum computation)的机器。量子计算和量子计算机概念起源于著名物理学家Richard Feynman,是他在1982年研究用经典计算机模拟量子力学系统时提出的。1985年,量子图灵机(Turing)的模型被David Deutsch提出,通过它的性质的研究,预言了量子计算机的潜在能力。由于量子计算机依赖于量子力学规律处理信息,所以它有着经典计算机永远不可逾越的巨大优势。量子计算机不但可以提供更多的比特以及更高的时钟速度,它还提供了一种基于量子原理的算法的全新计算方法[1]。量子计算机中的信息是用量子逻辑门来进行处理的。量子逻辑门是实现量子计算的基础。为了实现量子计算,也就是说构建量子计算机,必须选择与设计合适的物理体系并控制它以实现量子逻辑门。目前,已经有许多作为执行这些量子计算系统的逻辑门的方案被提出,而且其中许多方案已经实现。例如,离子阱[2]、腔量子电动力学[3]、核磁共振[4]、量子点[5]和基于Josephson结的超导体方案[6]等。 基于Alan Turing理论发展起来的现代计算机科学在近几十年中取得惊人的发展,计算机硬件能力在20世纪60年代后的几十年时间里以近似Moore定律成长。随着电路集成度的提高,进一步提高芯片集成度已极为困难。当集成电路的线宽在011μm以下时,电子的波动性质便明显地显现出来。这种波动性就是量子效应。为此,多数观察家预期Moore定律将在21世纪前二十年内结束,人们在考虑替代当前计算机的新途径。物理学方面,自Max Planck在1900年提出量子假说以来,量子力学给人类生活带来翻天

量子计算机与经典计算机的比较

量子计算机与经典计算机的比较? 莫露洁颜源 湛江教育学院计算机科学系,广东湛江,524037 摘要:本文分析了经典计算机和量子计算机的异同;介绍了量子计算机的原理和特点,指出量子计算和量子信息技术在并行计算、保密通信等方面的重要应用。 关键词:量子计算机 经典计算机 量子位 The Compare with Classical and Quantum Computer Mo Lujie,Yan Yuan Department of Computer Science, Zhanjiang Education College,Guangdong,China,524037 Abstract:This paper analysis the difference and the sameness between quantum and classical computer. Introduces the principle of quantum computation. And expounds the applications of quantum computation technologies in parallel algorithm and secret communication. Keywords:quantum computer; classical computer;qubit 1 引 言 人类跨入了21世纪,信息科学面临着新的挑战。计算机是否存在极限的运算速度? 能否实现不可破译、不可窃听的保密通信? 诸如此类的问题成为科学家们关注的重要课题。创建新一代高性能的、安全的计算工具和通信技术当前研究的热点。近年的研究进展表明,应用量子信息的产生、载荷、传播和处理,可能构造高性能的量子计算机。其具备的量子特性在信息领域中有着独特的功能,在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有的经典信息系统的极限。本文通过分析经典计算机和量子计算机的异同,简述量子计算机的特点与应用。 2 经典计算机的特点 迄今为止,正在应用中的各种不同类型的计算机都是以经典物理学为信息处理的理论 作者简介:莫露洁,生于1980年10月,女,籍贯广西,大学本科学历,学士学位。目前在广东湛江教育学院计算机系任教,职称为助教,同时在职攻读重庆大学计算机专业硕士学位,研究方向是网络与智能信息处理。 26

量子信息小论文

量子信息 量子信息是量子力学与信息科学的巧妙结合。而量子信息的内容主要包括量子计算机与量子通讯两个部分。下图[1]生动地展示了量子信息与量子力学、信息科学间的错综复杂又富有逻辑的关系。 图1 量子力学与信息科学间的联系 量子计算机(quantum computer)是一种使用量子逻辑进行通用计算的设备。不同于电子计算机(传统电脑),量子计算用来存储数据的对象是量子比特(quantum qubit),它使用量子算法来进行数据操作。实际上,现在的计算机技术已经接近量子极限,量子计算机是一个新的发展方向。量子计算机具有巨大的信息携载量,在量子机和经典机中n个比特都可以表示2"个数。但在某一时刻,经典计算机只能表示其中的一个,而量子计算机可以同时表示所有的数的线性叠加。量子物理资源只需要经典计算机的对数多,即若经典机的需要为N,量子机的需要为log&N;经典平行计算时,每个计算机都在作不同的计算,而量子计算机的一个相同操作完成了不同的计算任务。以上两点便是量子计算机最大的特点。 早在1969年,史蒂芬·威斯纳最早提出“基于量子力学的计算设备”。而关于“基于量子力学的信息处理”的最早文章则是由亚历山大·豪勒夫(1973)、帕帕拉维斯基(1975)、罗马·印戈登(1976)和尤里·马尼(1980)发表。史蒂芬·威斯纳的文章发表于1983年。1980年代一系列的研究使得量子计算机的理论变得丰富起来。1982年,理查德·费曼(Feynman)在一个著名的演讲中提出利用量子体系实现通用计算的想法[3]。紧接着1985年大卫·杜斯(Deutsch)提出了量子图灵机模型[4]。人们研究量子计算机最初很

量子计算学习心得

量子计算学习心得 基于AlanTuring理论发展起来的现代计算机科学在近几十年中取得惊人的发展,计算机硬件能力在20世纪60年代后的几十年时间里以近似Moore定律成长。随着电路集成度的提高,进一步提高芯片集成度已极为困难。当集成电路的线宽在0.1μm以下时,电子的波动性质便明显地显现出来。这种波动性就是量子效应。为此,多数观察家预期Moore定律将在21世纪前二十年内结束,人们在考虑替代当前计算机的新途径。物理学方面,自MaxPlanck在1900年提出量子假说以来,量子力学给人类生活带来翻天覆地的变化,改变了经典物理学对世界的认知方式。Moore定律最终失效问题的一个可能解决办法是采用不同的计算模式,量子计算理论就是这类模式的一种。但是直到1982年,才由Benioff和Feynman发现了将量子力学系统用于推理计算的可能;1985年Deutsch提出第一个量子计算模型。由此,量子计算迅速吸引了全世界研究者的注意并成为一门具有巨大潜力的新学科。 量子计算是应用量子力学原理来进行有效计算的新颖计算模式,它利用量子叠加性、纠缠性和量子的相干性实现量子的并行计算。量子计算从本质上改变了传统的计算理念。 量子计算发挥作用的前提是量子计算的物理实现,即量子计算机的构建。虽然量子计算机的实现原则上已没有不可逾越的障碍,但技术上的实现却遇到严重的困难。无论是量子并 行计算还是量子模拟计算,本质上都是利用了量子相干性,但在实际系统中量子相干性很难保持。此外,量子的纠缠状态也很容易崩溃,且粒子数目越多,实现纠缠状态就越困难。要制造出实用的量子计算机,就必须使更多的粒子实现纠缠状态。 在量子算法方面,自Shor因子分解和Grover搜索算法提出后,虽然各国众多的研究者在该领域进行了大量的研究,但迄今为止,还没有发现其他解决经典问题的新量子算法。一方面是因为无论经典算法还是量子算法,算法设计本身就不容易,更何况要设计出超过最好的现有经典算法的量子算法就更显不易;另一方面,量子计算机上能提供相对经典计算机进行加速的问题可能本来就不多,而已经发现了其中的大部分重要算法;此外,量子计算机与人们的直觉相差太远,在过去几十年中发现传统经典算法的经验对于如何发现和寻找量子算法毫无帮助, 即使存在对很多问题有效的量子算法,也很难找出。 在目前量子计算机还未进入实际应用的情况下,量子计算的研究重点包括:a)计算的物理实现。提高量子体系中相干操控的能力,实现更多的量子纠缠状态。 b)研究新的量子算法。目前还有很多经典算法无法解决的难题,研究新的能解决这些难题的量子算法是一个重要方向。c)增强现有量子算法的实用性和扩展现有量子算法的应用范围,如将量子Fourier变换的应用推广到解决隐含子群问题以及更广的范围,将Grover算法体系扩展到二维和多维搜索域等。 量子计算正在新型计算中发挥更大的作用。

量子通信中的信息安全技术及比较

量子通信中的信息安全技术及比较 量子通信是近二十年发展起来的新型交叉学 科,是量子论和信息论相结合的新的研究领域。它主要是利用量子纠缠效应进行信息传 递,其研究主要涉及量子密码通信、量子远程传态和量子密集编码等等。而量子通信安全性是将保密通信建立在量子客观规律基础上的,是一个具有重要意义的研究课 题。 随着对数学难题求解的经典算法和量子算法的深入研 究,基于数学上计算复杂性的经典 安全通信面临着严峻的挑战。而经典计算机技术的飞速发展和量子计算机的实验进 展,导致 破译数学密码的难度逐渐降 低。与量子通信安全性相比,目前经典密码体制面临三个方面 的 威胁。首先,经典密码体制安全性是建立在没有严格证明的数学难题之 上。数学难题的突破必将给经典密码算法带来毁灭性打 击。其次,计算机科学的飞速发展导致其计算能力的快速 提高,始终冲击着经典密码。再次,量子计算理论的发展使得数学难题具有量子可解性。 在 1994年Shor提出了多项式时间内求解大数因子和离散对数的量子算法使得目前常用的基于 大数分解困难性提出的RSA公钥密码体制和ELGamal公钥密码体制受到极大威 胁。1998年, Grove提出了量子搜索算法,即在N个记录的无序数据库中搜索记录的时间复杂度为 对N开 平方根,可以提高量子计算机利用蛮力攻击方法破解经典密码的效率,使得经典密码体制 受 到威胁。仅仅因为量子计算机的应用仍处于初级阶 段,量子计算理论成果目前还没有影响经典密码体制系统的使用。但以量子力学为基础发展的安全通信是不可能被攻破的,它以量子力学为基础,利用系统所具有的量子性质,使得“一次一密”密码真正能应用于实际。量子 密码学的安全性是由“海森堡测不准原理”,或量子相干性以及“单量子不可克隆定理” 来 保证的,具有可证明的无条件安全性和对窃取者的可检测 性,完全可以对抗以量子计算机为 工具的密码破译。从而保证了密码本的绝对安全,也保证了加密信息的绝对安 全,故以量子 为载体的通信,具有以往经典通信所没有的安全优 势。 谈到量子安全通信就不得不介绍一下量子密码学。量子密码学的思想最早是由美 国人 S.Wiesner在1969年提出。后来 IBM的S.H.Bennett和Montreal大学的G.Brassard在此基础 上提出了量子密码学的概念,并于1984年提出了第一个量子密钥分发协议,简称议。1991年Ekert依据量子缠绕态而提出了一种基于EPR关联光子对的E91协议,BB84 1992 协 年 Bennet t 又进一步提出 了 B92量子密码协议。 一、量子密码保密通信的物理原理: 1、互补性以及测不准原理:在量子力学中具有互补性的两组物理量是指在进行观测时,对

量子计算机的现状及发展趋势

量子计算机的现状及发展趋势 2017年2月21日下午,《麻省理工科技评论》(MIT Technology Review)2017年全球十大突破性技术”中国大陆地区首发,其中量子计算机技术入选其中,量子计算机技术是一个充满魅力的科学领域,同时也是一门具有挑战性和研究性的课程,这就是许多科学家被它所吸引的原因之一。量子计算机能够分析的科学多种多样,对各个学科的分析详细到位,需要用到量子计算机的课程一般是物理学、材料分析学、信息科学、生物学等,所以量子计算机所涉及的领域很广,值得科学家们去开发和进一步研究。 量子计算机的特点包括运行快、处理信息的能力强、适用的范围广等。相比普通的计算机而言,信息的处理量越多对量子计算机的运算就越有利,更能保证运算的精确性,而普通的计算机对于信息的处理速度就比较慢,难于满足人们的需求。量子计算机的发展速度目前虽然比普通的计算机缓慢,但是明显比普通计算机更能引起人们的注意,最大的原因就是其拥有很强的适用性,能够提高人民的生活水平,改善人们的生活方式。 量子计算机和许多计算机一样都是由许多硬件和软件组成的,软件方面包括量子算法、量子编码等,在硬件方面包括量子晶体管、量子储存器、量子效应器等。量子晶体管就是通过电子高速运动来突破物理的能量界限,从而实现晶体管的开关作用,这种晶体管控制开关的速度很快,晶体管比起普通的芯片运算能力强很多,而且对使用的环境条件适应能力很强,所以在未来的发展中,晶体管是量子计算机不可缺少的一部分。量子储存器是一种储存信息效率很高的储存器,它能够在非常短时间里对任何计算信息进行赋值,是量子计算机不可缺少的组成部分,也是量子计算机最重要的部分之一。量子计算机的效应器就是一个大型的控制系统,能够控制各部件的运行。这些组成在量子计算机的发展中占领着主要的地位,发挥着重要的运用。 量子计算机相比普通的计算机拥有很明显的优势,量子计算机的计算速度快、计算更准确,所拥有分析信息的功能更强大,能够同时进行的运算多;它能够轻易战胜目前的RSA 公钥密码体系,在拥有这么强大的运算能力的背后不仅仅是以往0 和 1 信息单元的储存能力和运算能力的运行,而是0 和 1 的升

量子信息与量子计算

关于量子信息与量子计算 量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。 量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。 到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。以目前的技术来看,这其中以离子阱与核磁共振最具可行性。事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。 到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。量子位是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。 一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相

量子计算发展白皮书(2019年)

量子计算发展白皮书(2019年) 赛迪智库电子信息研究所 2019年9月

前言 量子信息技术可以突破现有信息技术的物理极限,在信息处理速度、信息容量、信息安全性、信息检测精度等方面均能够发挥极大作用,进而显著提升人类获取、传输和处理信息的能力,为未来信息社会的演进和发展提供强劲动力。当前,人类对量子信息技术的研究与应用主要包括量子计算、量子通信和量子测量等。其中,量子计算是一种基于量子力学的、颠覆式的计算模式,具有远超经典计算的强大计算能力,将在化学反应计算、材料设计、药物合成、密码破译、大数据分析和机器学习、军事气象等领域产生颠覆性影响。 近年来,一些国家以及企业纷纷加码布局量子计算,在相关领域的技术研究和应用不断提速。在此形势下,赛迪智库电子信息研究所编写了《量子计算发展白皮书(2019年)》,阐述了量子计算的基本内涵,系统梳理量子计算的技术路线及发展路线图,介绍了国内外发展态势,并提出了我国量子计算发展面临的挑战及相关对策建议。 如有商榷之处,欢迎大家批评指正。

目录 一、量子计算发展综述 (1) (一)量子计算的内涵 (1) (二)量子计算的发展背景与历程 (5) (三)量子计算的应用展望 (7) 二、量子计算技术与发展路线图 (9) (一)量子计算关键技术 (9) (二)量子计算的发展路线图 (16) 三、国际量子计算发展现状 (19) (一)主要国家的战略规划 (19) (二)量子计算的技术与产业进展 (22) 四、我国量子计算发展现状 (29) (一)我国的量子计算国家战略 (29) (二)我国量子计算的进展 (29) 五、我国量子计算发展面临的问题与挑战 (31) (一)关键技术研发仍属起步阶段,与国际水平存在差距 (31) (二)市场尚在培育阶段,技术和应用场景不成熟 (31) (三)国内企业参与度较低,缺乏全面战略布局 (32) (四)人才体系单一、集中,尚未形成全面培养体系 (32) 六、对策建议 (34) (一)加强前沿科技领域产业化布局 (34) (二)加大对关键核心领域的研发支持 (34) (三)完善对专业人才梯队建设的全面布局 (34) (四)积极构建量子计算应用生态体系 (35)

量子计算科普:量子计算的9大事实

量子计算科普:量子计算的9大事实 美国科技资讯网站SAI周三刊登长篇文章,以通俗易懂的语言介绍了有关量子计算学科的9个事实。量子计算机并不是用来浏览互联网、收发邮件,也不是用来运行常规软件。相反,量子计算机的基础为量子力学。量子力学为物理学的一个分支,该学科创立时间已有100年左右,并对人们的传统看法发起挑战。量子物理学研究对象为很小的事物,如电子和光子等,并试图解决人们此前没能解决的问题。 如果你声称量子计算机简直就是以魔法方式运行,这种说法也没有多少夸张之处。在我们面对这些很小的物体时(试想一下,比单个原子还小),科幻小说中描写的时间旅行、瞬间移动(teleportation)等奇特现象也只能说是司空见惯。

传统意义上的物理学“规则”在这儿不适用。 这无疑就可开启一些令人心动的可能性,尤其在数学分支优化学科领域就更是如此。顾名思义,优化就是要从一大堆潜在答案中找出最佳者。对于这门特定数学学科领域而言,它致力于解决现实世界中一些可实际感受到的问题。UPS 快递卡车如何选择其最佳投递路线?机场该如何合理安排航班才能保持各航班不会延误? 在处理一些优化计算任务上,传统计算机可谓设备简陋。美国南加州大学克希德·马丁量子计算中心科学主任丹尼尔·里达尔(Daniel Lidar)表示,人类验证蛋白质折叠状态会花上大量时间,自然界却能够在数秒或数分钟内完成这种任务,而传统计算机要解决这些问题,则要花上数十亿年的时间去思考。 从某种程度上讲,量子计算也具有了像自然界那样同世界互动的能力。这可能是一种今人感到难以理解的深奥想法。即便如此,这也仅仅是量子计算机的冰山一角。 1、量子计算机依靠量子力学来运行,而量子力学非常“疯狂”。 与我们肉眼所看到物体的运动规则相比,量子粒子的运动规则却大为不同。举例来说,量子粒子能够同时存在于两个地方,能够快速前进或后退,甚至能够进行所谓的瞬间移动,也就是物理学家们所说的“量子隧道效应”(quantum tunneling)。 这通常是我们在科幻小说中所看到的东西。但在量子世界中,这些现象可谓寻常之极。而科学家们也无法对此给出令人满意的答案。 2、没有人能够真正了解量子计算机的内部会发生什么。

量子计算发展现状的研究与应用

量子计算发展现状的研究与应用 (关亚琴11201131399276 西南大学) 摘要:本文对量子计算的最新研究方向进行了介绍,简述了量子计算和量子信息技术的重要应用领域。分析了量子计算机与经典计算机相比所具有的优点和目前制约量子计算机应用发展的主要因素,强调发展大规模的量子计算和实现强关联多系统的量子模拟,是当前量子计算的主流。文章主体部分主要介绍了量子计算机硬件研究方面的进展。最后展望了量子计算的未来发展趋势。 关键字:量子计算量子计算机量子算法

目录 1引言 (3) 2量子计算的研究进程 (4) 3量子计算机的优势 (5) 4量子计算的应用 (5) 4.1 保密通信 (5) 4.2 量子算法 (5) 4.3 量子计算机技术发展 (6) 4.4 量子计算机的优点 (6) 4.4.1 存储量大、速度高 (6) 4.4.2 可以实现量子平行态 (6) 4.5 量子计算机发展现状和未来趋势 (6) 4.5.1 量子计算机实现的技术障碍 (6) 4.5.2 量子计算机的现状 (7) 4.5.3 量子计算机的未来 (7) 5制约量子计算机发展的因素 (7) 6结语 (7) 7参考文献: (8)

1引言 众所周知,信息科学在推动人类社会文明进步和提高人类生活方面发挥着重大作用,然而,在人类迈入二十一世纪的今天,信息科学也面临着新的挑战。经典计算机随着电子元器件发展空间接近于极限值,其运算速度也将接近于极限值。另外,计算机能否实现不可破译?不可窃听的保密通信?这些问题都是近年来数学家和电子技术方面的专家们关注的主要课题。如今,随着量子理论和信息科学的相结合,为这些问题的解开辟了新的方向,从而也使得量子计算机成为了当今科研方面研究的热题。

什么是量子通信技术

什么是量子通信技术? 它的过去,现在,未来如何? 量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,并因此成为国际上量子物理和信息科学的研究热点。主要包括量子通信和量子计算2个领域。量子通信主要研究量子密码、量子隐形传态、远距离量子通信的技术等等;量子计算主要研究量子计算机和适合于量子计算机的量子算法。 量子通信具有高效率和绝对安全等特点,是此刻国际量子物理和信息科学的研究热点。追溯量子通信的起源,还得从爱因斯坦的"幽灵"--量子纠缠的实证说起。 由于人们对纠缠态粒子之间的相互影响一直有所怀疑,几十年来,物理学家一直试图验证这种神奇特性是否真实。 1982年,法国物理学家艾伦·爱斯派克特(Alain Aspect)和他的小组成功地完成了一项实验,证实了微观粒子"量子纠缠"(quantum entanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。量子纠缠证实了爱因斯坦的幽灵--超距作用(spooky action in a distance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。

量子计算机的现状及发展趋势

2017年2月21日下午,《麻省理工科技评论》(MIT Technology Review)2017年全球十大突破性技术”中国大陆地区首发,其中量子计算机技术入选其中,量子计算机技术是一个充满魅力的科学领域,同时也是一门具有挑战性和研究性的课程,这就是许多科学家被它所吸引的原因之一。量子计算机能够分析的科学多种多样,对各个学科的分析详细到位,需要用到量子计算机的课程一般是物理学、材料分析学、信息科学、生物学等,所以量子计算机所涉及的领域很广,值得科学家们去开发和进一步研究。 量子计算机的特点包括运行快、处理信息的能力强、适用的范围广等。相比普通的计算机而言,信息的处理量越多对量子计算机的运算就越有利,更能保证运算的精确性,而普通的计算机对于信息的处理速度就比较慢,难于满足人们的需求。量子计算机的发展速度目前虽然比普通的计算机缓慢,但是明显比普通计算机更能引起人们的注意,最大的原因就是其拥有很强的适用性,能够提高人民的生活水平,改善人们的生活方式。 量子计算机和许多计算机一样都是由许多硬件和软件组成的,软件方面包括量子算法、量子编码等,在硬件方面包括量子晶体管、量子储存器、量子效应器等。量子晶体管就是通过电子高速运动来突破物理的能量界限,从而实现晶体管的开关作用,这种晶体管控制开关的速度很快,晶体管比起普通的芯片运算能力强很多,而且对使用的环境条件适应能力很强,所以在未来的发展中,晶体管是量子计算机不可缺少的一部分。量子储存器是一种储存信息效率很高的储存器,它能够在非常短时间里对任何计算信息进行赋值,是量子计算机不可缺少的组成部分,也是量子计算机最重要的部分之一。量子计算机的效应器就是一个大型的控制系统,能够控制各部件的运行。这些组成在量子计算机的发展中占领着主要的地位,发挥着重要的运用。 量子计算机相比普通的计算机拥有很明显的优势,量子计算机的计算速度快、计算更准确,所拥有分析信息的功能更强大,能够同时进行的运算多;它能够轻易战胜目前的RSA 公钥密码体系,在拥有这么强大的运算能力的背后不仅仅是以往 0 和 1 信息单元的储存能力和运算能力的运行,而是 0 和 1 的升级,正是这种升级,使得量子计算机的运算速度超过普通计算机运算速度的 10 倍。这种信息单元的升级让量子计算机在国防领域也能够得到很好的应用。量子

相关文档
最新文档